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In recent ten years, artificial bee colony (ABC) has attracted more and more attention, and many state-of-the-art ABC variants
(ABCs) have been developed by introducing different biased information to the search equations. However, the same biased
information is employed in employed bee and onlooker bee phases, which will cause over exploitation and lead to premature
convergence. To overcome this limit, an effective framework with tristage adaptive biased learning is proposed for existing ABCs
(TABL +ABCs). In TABL+ABCs, the search direction in the employed bee stage is guided by learning the ranking biased
information of the parent food sources, while in the onlooker bee stage, the search direction is determined by extracting the biased
information of population distribution. Moreover, a deletion-restart learning strategy is designed in scout bee stage to prevent the
potential risk of population stagnation. Systematic experiment results conducted on CEC2014 competition benchmark suite show
that proposed TABL+ABCs perform better than recently published AEL+ABCs and ACoS +ABCs.

1. Introduction

Optimization has long been a basic research topic, which
attracts an ever-increasing interest from scientific research
to engineering practice due to its obvious application po-
tential in almost all real-world systems. Without losing
generality, a box-constrained optimization problem can be
modelled as follows:

minf(x),

s.t. x � x1, x2, . . . , xD( 􏼁,
(1)

where f(x) is a real-value objective function and x is a
candidate solution in search space Ω � 􏽑

D
i�1[Li, Ui], where

Ui and Li are the upper and lower boundaries for the ith
dimension.

To better achieve the goal of global optimization, various
optimization technologies have been developed, mainly
including mathematical programming and evolutionary

computing (EC). Compared with mathematical program-
ming, EC has its own advantages in the weak assumption of
mathematical properties for optimized problems and high
probability to find a global optimal solution. In the past
thirty years, a variety of EC algorithms have been proposed,
such as genetic algorithm (GA) [1], differential evolution
(DE) [2], particle swarm optimization (PSO) [3], and arti-
ficial bee colony (ABC) [4]. As a relatively new evolutionary
optimization algorithm, ABC has become popular in EC
community due to its simple concept and easy imple-
mentation yet effectiveness.

ABC developed by Karaboga is a population-based
stochastic algorithm which simulates the foraging behavior
of honey bees. A recent study has shown that ABC performs
a good performance on many box-constrained continuous
optimization problems [5–9], but its slow convergence rate
has been widely criticized. *e main reason is that the so-
lution search strategy of ABC is good at exploration but poor
at exploitation. *erefore, how to properly balance the
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exploration and exploitation during the search process is the
core idea of improvement works of ABC. For this purpose, a
lot of improvement works have been developed in the last
ten years. In the following, a brief survey about ABC is
reviewed from four aspects.

1.1. Search Equations with Biased Information. In the orig-
inal ABC, one parent of the solution search equation is the
current target vector, and the other is randomly chosen from
the population. *erefore, one of the reasons for the slow
convergence of ABC is that the search equation has no
biased information. To overcome this limitation, many re-
searchers have proposed various solution search equations
with biased information [10–17]. For example, Cui et al.
proposed an adaptive ABC (ARABC) [18], in which all
parent food sources were chosen based on their rankings.
Xiang et al. put forward a gravity model-based ABC (ABCG)
[19]. In ABCG, an attractive force model was designed to
select a better neighbor of the current target vector. Kumar
and Mishra proposed a covariance-based guided ABC
(CABC) [20], in which the covariance information was
embedded to accelerate the convergence. Aslan et al.
designed an improved qABC (iqABC) [21] to balance the
search ability. Ji et al. proposed a scale-free ABC (SFABC)
[22], in which the topology information of a scale-free
network introduced into ABC. Awadallah et al. introduced
natural selection methods for ABC (NSM+ABCs) [23].
Bajer and Zoric proposed an improved ABC based on di-
versity refining (DRABC) [24]. In DRABC, the solution
search equation was modified by introducing the infor-
mation of the top population members to increase the ex-
ploitation ability.

1.2. Ensemble of Multiple Search Strategies. In the original
ABC, only one solution search equation is used as the update
rule during the search process, which is considered to be
very difficult to adapt to optimization problems with dif-
ferent characteristics. To enhance the robustness of ABC,
many researchers make efforts to realize an ensemble of
multiple search strategies [25–34]. For instance, Song et al.
designed a two-strategy adaptive ABC (TSaABC) [35]. In
TSaABC, the two search strategies were dynamically ad-
justed by success rate to balance the exploration and ex-
ploitation ability. Chen et al. developed a self-adaptive
differential ABC (sdABC) [36]. In sdABC, three differential
search strategies were combined into the framework of ABC,
and the selection probability of each strategy was adjusted
adaptively. Zhou et al. presented a multicolony ABC
(IDABC) [37], in which the whole colony was divided into
superior, mid, and inferior subcolonies, and three search
strategies with different biases were assigned into the cor-
responding subcolony for different roles. Gao et al. intro-
duced a Parzen window-based ABC (ABCPW) [38], in
which three search strategies with different characteristics
were estimated by PW and the best one was used to generate
offspring. Yavuz and Aydin designed a self-adaptive search
equation-based ABC (SSEABC) [39] which integrated three
local search strategies into the ABC, and each strategy was

selected by competitive learning. Very recently, Song et al.
put forward a multistrategy fusion ABC (MFABC) [40], in
which the search strategy with high exploration was
inherited and the other two search strategies were selected
adaptively according to the evolution ratio.

1.3. Hybridization of ABCs and Other Metaheuristic
Algorithms. Combining the advantages of different algo-
rithms is an effective way to design high-performance al-
gorithms. According to this idea, many researchers have
proposed various hybrid algorithms based on ABCs. For
example, Gao et al. proposed an enhanced ABC through DE
(DGABC) [41] which combined the good features of DE and
GABC to accelerate the convergence. Liang et al. employed
adaptive differential operator to remedy the limitation of
slow convergence speed of ABC (ABCADE) [42]. Ghanem
and Jantan mixed the ABC with monarch butterfly opti-
mization (HAM) [43], in which the modified butterfly
adjusting operator was used as the search equation of
employed bees. Wang and Yi developed a hybridization
algorithm of krill herd (KH) and ABC (KHABC) [44], in
which the found optimal solutions by KHABC were con-
sidered as a neighbor food source for onlooker bees. Chen
et al. proposed a hybrid ABC (TLABC) [45] by combining
the teaching-learning-based optimization with the ABC.
Very recently, Chen et al. further presented a mixed ABC
based on fireworks explosion (FW-ABC) [46]. In FW-ABC,
the fireworks explosion search was implemented to find
better solutions after three bee search stages.

1.4. Combination of ABCs and Local Search Techniques.
*e success of memetic framework has confirmed the ef-
fectiveness of the combination of metaheuristic algorithms
and local search techniques, which drives many researchers
to design various enhanced ABCs with local search strate-
gies. For example, Kang et al. presented a memetic ABC
based on the Rosenbrock approach (RABC) [47]. In RABC,
the Rosenbrock rotational direction was used to improve the
quality of the optimal solution. Kang et al. further proposed
another memetic ABC (HABC) [48], in which the Hoo-
ke–Jeeves method was carried out to improve the local
search capability. Gao et al. introduced two other memetic
ABCs, denoted as PABC [49] and OL-ABC [50], respec-
tively. In PABC and OL-ABC, Powell’s method and or-
thogonal crossover operator were employed to enhance their
exploitation ability.

Based on the previously reported experimental results,
we note that most ABCs are very efficient for separable
functions, but they still suffer from low convergence rate for
nonseparable functions. *erefore, there is much room for
improvement of existing ABCs in terms of nonseparable
functions. Nevertheless, not much effort on nonseparable
functions for ABCs has been done so far. In our recently
published work [51, 52], an adaptive encoding learning was
introduced to improve the performance of existing ABCs
(AEL+ABCs) on complex nonseparable functions. Differ-
ent from most existing ABCs based on the individual biased
information to guide search, the AEL method guides the

2 Discrete Dynamics in Nature and Society



population to converge to the promising region by
extracting the population distribution information. It is
therefore natural to combine both types of biased infor-
mation into existing ABCs for further improving their
performance on complex nonseparable functions. To
achieve this goal, we propose a tristage adaptive biased
learning framework for ABCs (TABL+ABCs), where the
main new contributions are summarized as follows:

(i) A tristage adaptive biased learning is designed for
existing ABCs, in which the search direction in the
employed bee stage is guided by the ranking biased
information of the parent food sources, while in the
onlooker bee stage, the search direction is deter-
mined by extracting the biased information of
population distribution. Both types of biased in-
formation are adaptively learned from the feedback
information of the population evolution.

(ii) A deletion-restart learning strategy is designed in
scout bee stage to prevent the potential risk of
population stagnation.

(iii) *e proposed TABL framework is applied to several
existing ABCs. Systematic experiment results con-
ducted on CEC2014 competition benchmark suite
show that proposed TABL+ABCs has better opti-
mization performance than the corresponding
ABCs, recently published AEL+ABCs and
ACoS+ABCs.

In the rest of the paper, we first describe the original ABC
in Section 2. Section 3 develops a tristage adaptive biased
learning for ABCs. Section 4 designs a set of experiments to
verify the advantages of TABL+ABCs, and some discusses
are made in Section 5. *e proposed algorithm is applied to
big optimization problems in Section 6. Finally, Section 7
concludes the entire work and identifies some future studies.

2. Artificial Bee Colony

*e ABC is a population-based intelligent optimization
technique. It is inspired by the foraging behavior of bees and
their cooperative foraging process is transformed into a
search mechanism of optimal solution. In ABC, the location
of a food source is hypothesized as a candidate solution, and
its fitness is measured by the amount of nectar. During the
cooperative foraging, employed bees are employed to ex-
plore the food sources and pass on their quality information
to onlooker bees through waggle dancing. Based on the
obtained quality information, onlooker bees select some
better food sources for further exploitation. If the quality of
some food source is not improved over a predefined cycle
(limit), the food source is considered as exhausted and its
associated employed bee is transformed into a scour bee to
explore other food source in a random way. Algorithm 1 is
the main framework of ABC and its key steps are introduced
as follows:

(i) Initialization. ABC randomly creates SN food
sources x � x1, x2, · · · , xN􏼈 􏼉 by the following
equation:

xi,j � Lj + randi,j[0, 1] · Uj − Lj􏼐 􏼑, (2)

where i ∈ 1, 2, · · · , SN{ }, j ∈ 1, 2, · · · , D{ }.
randi,j[0, 1] is a random number between 0 and 1.
*e quality information of each food source is
measured by the objective functionf(·). *e
smaller the f(·) is, the better the solution quality is.

(ii) Employed Bee Phase. After initialization, each
employed bee begins to visit its associated food
source xi in an attempt to explore a better one vi.
*e process is performed by equation (3), which
updates a single component of xi as the linear
combination:

vi,j � xi,j + ϕ · xi,j − xk,j􏼐 􏼑, (3)

where ϕ ∈ [−1, 1], k ∈ 1, 2, · · · , SN{ }/ i{ } and
j ∈ 1, 2, · · · , D{ }. *e better one between vi and xi in
terms of quality will survive to the next generation.

(iii) Onlooker Bee Phase. Based on the quality infor-
mation of the food sources, each onlooker bee will
fly to a better food source xi for further exploitation
in terms of the selection probability which is cal-
culated by the following equations:

pi �
fiti

􏽐
SN
i�1fiti

, (4)

fiti �

1
1 + fi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, if fi ≥ 0,

1 + fi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where fiti is the fitness value of the ith solution.
Obviously, solutions with larger fitness values have
more opportunity to be selected.

(iv) Scout Bee Phase. During the search process, each
update of a particular food source in the previous
two phases is tracked. When the number of un-
successful update attempts exceeds the threshold
limit, the food source exceeding the threshold by the
largest amount denoted as equation (6) is replaced
by equation (2):

arg max
i∈ 1,2,···,SN{ }

i: ni ≥ limit􏼈 􏼉, (6)

where ni is the number of consecutive unsuccessful update
associated with the ith food source xi.

3. Proposed TABL+ABCs

3.1. Motivation. *e AEL framework introduced in [51] is a
very promising method. However, we also notice that the
AEL framework is not always effective or even negative for
ABCs on somemultimode problems. Figure 1 shows that the
AEL strategy can effectively accelerate the convergence
speed but significantly reduce the convergence accuracy.*e
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reason is that the information of population distribution is
used in two search stages may increase the risk of falling into
local optimum for some complex multimode problems. In
addition, the experimental results of [52] have been clearly
shown that most existing ABCs are only efficient for sep-
arable functions, while the convergence rate of these algo-
rithms is still very poor when working with nonseparable
functions.

Motivated by the above two aspects, an effective
framework with tristage adaptive biased learning is
proposed for existing ABCs (TABL +ABCs) to improve
their performance on nonseparable problems, and its
main framework is described in Algorithm 2. In the
following, we will elaborate on the TABL +ABCs
framework.

3.2. Rank-Based Biased Learning. As discussed in intro-
duction, the imbalance between exploration and exploi-
tation is the focus of the argument about ABC. One of the
reasons for this phenomenon is the lack of biased in-
formation in the solution search equation. In order to
reverse this phenomenon, many improved ABCs have
been proposed by introducing various biased information
into solution search equations. Most of them are inspired
by the natural phenomenon that good individuals always
contain good biased information and thus they always
have more chances to generate good offspring. Different
from the guidance mechanism based on single individual
biased information, the AEL method extracted the biased
information of population distribution to guide the
search. As discussed in Section 3.1, this method may also

 //Initialization
 Randomly create SN food sources xi, i � 1, 2, · · · , SN by Equation (2);
 Evaluate the quality information of each food source f(xi), i � 1, 2, · · · , SN;
 while Termination condition is not met do
  //Employed bee phase
  for i � 1, 2, · · · , SN do
  Create a new food source vi near the xi by Equation (3);
  Evaluate the quality information of vi;
  if f(vi)<f(xi) then
  xi � vi;

  ni � 0;

  else
  ni � ni + 1;

  end
  end
 //Onlooker bee phase
 Calculate the selection probability pi for each onlooker bee by Equation (4);
 t � 0, i � 1;
 while t≤ SN do
  if ran d[0, 1]<pi then
  Create a new food source vi near the xi by Equation (3);
  Evaluate the quality information of vi;
  if f(vi)<f(xi) then
  xi � vi;

  ni � 0;

  else
  ni � ni + 1;

  end
  t � t + 1;
  end
  if i �� SN then
  i � 1;
  end
 end
 //Scout bee phase
  if max(ni)> limit then
  Reinitialize xi by Equation (2);
  ni � 0;

  end
 end

ALGORITHM 1: *e main flowchart of ABC

4 Discrete Dynamics in Nature and Society



increase the risk of falling into local optimum for some
complex multimode problems. *e reason is that the same
biased information is employed in two search phases,
which will cause over exploitation and lead to premature
convergence.

To reduce the over exploitation caused by the population
distribution information, the rank-based biased information
instead of it is introduced into the solution search equation
for guiding the search of employed bees. *e main process is
described lines 8-18 of Algorithms 2 and 3. *e modified
solution search equation with the rank-based biased learning
is designed as follows:

vi,j � xi,j + ϕ · xi,j − 􏽥xk,j􏼐 􏼑. (7)

It is obvious that the only difference between equations
(3) and (7) is that the parent food source xk of equations (3)
is selected with the same probability from the population,
while the parent food source 􏽥xk in equation (7) is selected
based on its ranking among the population. According to the
linear ranking model [18], the selection probability Probk of
the kth food source is calculated as

Probk �
Rk

SN
, (8)

where Rk is the linear ranking of kth food source among the
population by fitness value. Apparently, the higher the
ranking is, the greater the selection probability is. Compared
with equation (3), equation (7) can make each target in-
dividual converge to the global optimal position faster by

learning the biased information from higher ranking solu-
tions. Figure 2 shows this process. In an ideal state, the
solution P can reach the global optimal point P∗ of the
quadratic function by only two-step search
(P⟶ P1⟶ P∗ or P⟶ P2⟶ P∗) and achieve the
global best of the rotated quadratic function by only three-
step search (P⟶ P1⟶ P2⟶ P∗ or P⟶ P3⟶
P4⟶ P∗).

In addition, it is noteworthy that the target vector xi in
equation (7) is still selected from the population in turn,
while in [18], it is selected based on the selection probability.
*e reason is that the target vectors have been proportionally
selected by equation (4) in the onlooker bee phase, and the
similar biased information adopted in the employed bee
phase may cause over exploitation and premature conver-
gence. To further confirm it, Figure 3 shows the situation
based on a typical multimodal problem, where the higher
rank solutions are distributed near the local optimal solu-
tion, and the lower ranking solutions are distributed near the
global optimal solution. In this case, ABC is not sufficient to
yield any progress and may be further intensified into local
convergence since these higher rank solutions are frequently
selected for search.

3.3. Population Distribution Information-Based Biased
Learning. For a separable function, the original coordinate
system x1 − o − x2 is the best choice for ABC. *is is be-
cause the original coordinate system can maximize the
improvement interval such as Figure 4(a). When the fitness
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Figure 1: *e convergence curves of AEL+ABCs vs. ABCs on F9 with 30D.
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 //Initialization
 Randomly create SN(max) food sources xi, i � 1, 2, · · · , SN(max) by Equation (2);
 Evaluate the quality information of each food source f(xi), i � 1, 2, · · · , SN(max);
 Set G � 0, SN(0) � SN(max);
 while Termination condition is not met do
  f1 � min(f(x));
  //Employed bee phase
  Assign a linear ranking for each food source Ri, i � 1, 2, · · · , SN(G);
  Calculate the selection probability for each food source Probi, i � 1, 2, · · · , SN(G) by Equation (10);
  for i � 1, 2, · · · , SN(G) do
  Select the parent food source index k in Equation (9) by LRS(i, SN,Prob);
  Create a new food source vi near the xi by Equation (9);
  Evaluate the quality information of vi;
  if f(vi)<f(xi) then
  xi � vi;

  end
  end
  //Onlooker bee phase
  Compute the covariance matrix cov(x1: SN(G)/2) of the top SN(G) food sources;
  Get new coordinate system B by the Eigen decomposition of cov(x1: SN(G)/2);
  Calculate the selection probability pi for each onlooker bee by Equation (4);
  t � 0, i � 1;
  while t≤ SN do
  if ran d[0, 1]<pi then
  Randomly create a food source xk different from xi;
  Create a new food source vi near the xi by B;
  Evaluate the quality information of vi;
  if f(vi)<f(xi) then
  xi � vi;

  end
  t � t + 1;
  end
  if i �� SN then
  i � 1;
  end
  end
  //Scout bee phase
  f2 � min(f(x));
  if |f2 − f1|< 0.1 then
  Replace the worst-ranking food source by the new food source generated by “DE/rand/1”;
  else
  Calculate SN(G+1) according to Equation (11);
  Delete SN(G) − SN(G+1) worst-ranking food sources from the population;
  end
  G � G + 1;
 end

ALGORITHM 2: *e main flowchart of TABL+ABC

 Randomly select k ∈ [1, SN];
 while ran d[0, 1]>Probk||k �� i do
  Randomly select k ∈ [1, SN];
 end
 Return k

ALGORITHM 3: LRS(i, SN,Prob).

6 Discrete Dynamics in Nature and Society



landscape of Figure 4(a) is rotated, however, the im-
provement interval under the original coordinate system
such as Figure 4(b) is shrunk rapidly, which severely limits
the search ability of ABC. *erefore, increasing the im-
provement interval of variables by turning the coordinate
system is an effective way to enhance the optimization
performance of ABC on nonseparable problems. Accord-
ing to this, an adaptive Eigen coordinate system x1′ − o − x2′
(i.e., B) was built by learning the population distribution
information. A more detailed introduction can be found
in [51].

It is widely known that the covariance matrix of pop-
ulation can release variable correlation to a certain extent.
*erefore, the obtained Eigen coordinate system can ef-
fectively increase the improvement interval of variables and
thus improve the search ability. Figure 5 shows a simple
example to illustrate how the Eigen coordinate system in-
creases the improvement interval of variables. In addition,
the search direction guided by Eigen coordinate system is
based on the biased information of population distribution
instead of individual rank-based biased information.

*erefore, the Eigen coordinate system is served as the
guiding mechanism in onlooker bee phase, which is con-
ducive to the realization of the complementary advantages of
two kinds of biased learning.

3.4. Deletion-Restart Learning Strategy. In addition to slow
convergence for nonseparable problems, ABC is also prone
to fall into local optimum for complex multimodal prob-
lems. Figure 6 shows the situation for a typical multimodal
problem, where the local optimum position is not distrib-
uted on a grid that is aligned with the coordinate system. It is
assumed that the population has converged to the vicinity of
the lower-left local optimum. In this case, ABC is not suf-
ficient to yield any progress. In other words, the global
optimum cannot be reached by modifying one decision
variable per food source position.

To detect the state evolution in real time, the im-
provement of the optimal value of two adjacent generations
is identified. If the improvement value is larger than a
predefined threshold (e.g., 0.1), the particles should pay
more attention exploitation to accelerate the convergence. In
this case, SN(G) − SN(G+1) worst-ranking food sources need
be deleted based on the linear decreasing strategy of pop-
ulation size defined in equation (9); otherwise, the particles
should pay more attention exploration to prevent the po-
tential risks of stagnation as shown in Figure 6. In this
situation, intervention of multivariable perturbation strategy
is very useful for jumping out of local optimum. Based on
this consideration, the “DE/rand/1” mutation strategy is
adopted to create a new food source position to replace the
worst one. *e reason for “DE/rand/1” mutation strategy is
the rotation-invariant property, while the solution search
equation in ABC as well as the random initialization op-
erator is rotation-variant. *erefore, the combination of two
operators with different properties can achieve comple-
mentary advantages:

SN(G+1)
� round SN(max)

−
FES

MaxFEs
· SN(max)

− SN(min)
􏼐 􏼑􏼒 􏼓,

(9)

x2

x1P1

P2 P∗

P

Biased solution

(a)

x2

x1

P3

P1

P4

P2 P∗

P

Biased solution

(b)

Figure 2: *e search process of the solution P by learning the biased information for the quadratic function (a) and the rotated quadratic
function (b), respectively.

higher ranking solutions

lower ranking solutions

Global optimum

x1

x2

o

Figure 3: *e population distribution for a typical multimodal
problem.
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where SN(max) � 4 D and SN(min) � 4. Whenever SN(G+1) <
SN(G), the SN(G) − SN(G+1)worst-ranking food sources are
deleted from the population.

4. Experimental Studies

For experimental comparison, 30 CEC2014 competition
benchmarks (denoted as F1–F30) with 30 dimensions (30D)
are employed for performance test. *ese competition
benchmarks are nonseparable and can be further subdivided
into unimodal functions (F1–F3), simple multimodal
functions (F4–F16), hybrid functions (F17–F22), and
composition functions (F23–F30). A more detailed de-
scription about them can be found in [53].

In addition, we performed 51 independents runs for each
algorithm on each test problem, which is based on a PC with
Intel Core i7-4790 CPU @ 3.60GHz, 8GB RAM, and 64 bit
Windows 7 OS. In each run, the absolute error F(xbest) −

F(x∗) was recorded when themaximum number of function
evaluations 10000∗D was met, where xbest and x∗ represent
the best solution found by some algorithm and the optimal
solution of a test problem, respectively. *e mean error

values and their standard deviation are considered for
performance assessment. Furthermore, the Wilcoxon rank
sum test was introduced to test the statistical significance of
experimental results between pair of algorithms, and the
Friedman test was used to compute the average rankings of
all compared algorithms [54].

4.1. Comparison between TABL and AEL Framework. *e
aim of this section is to compare TABL with the AEL
framework by applying them to the eight ABCs above. *e
resultant methods are denoted as TABL+ABCs and
AEL+ABCs, respectively. For fair comparison,
TABL+ABCs and AEL+ABCs adopt the same parameter
settings shown in Table 1, while the AEL +ABCs have an
additional learning period LPwhich is set to 50 suggested in
[51]. Tables 2 and 3 summarize the experimental results and
some important observations can be made as follows:

(i) TABL+ABCs perform better than AEL+ABCs for
20, 22, 23, 20, 22, 27, 25, 27 out of 30 test functions
with 30D, respectively. However, AEL+ABCs can-
not surpass the TABL+ABCs on more than seven
test functions.

(ii) Compared with AEL+ABCs, TABL+ABCs can
achieve significant performance improvement on all
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Figure 4: (a) Fitness landscape of the quadratic function and (b) fitness landscape of the rotated quadratic function [52].
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Figure 6: *e local optimum situation for a typical multimodal
problem [52].
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Table 1: *e parameter settings of eight compared ABCs.

Public parameter settings Private parameter settings
Population size: SN� 2D ABC: limit� 100, GABC: limit� 100, C� 1.5
Termination condition: MaxFEs� 10000∗? ABCM: limit� SN∗D, M� 2; MABC: K� 301
Number of independent runs: 51 ABCVSS: limit� SN∗D; OPIABC: limit� 200
Dimension: ?� 30 EABC: limit� 200, µ� 0.3, ?� 0.3; OPIABC: SN∗D

Table 2: *e statistical results (mean (Std)) of AEL +ABC vs. TABL +ABC, AEL+ABCM vs. TABL+ABCM, AEL+ABCVSS vs.
TABL+ABCVSS, and AEL+EABC vs. TABL+EABC over 51 independent runs on the CEC2014 benchmarks with 30D.

Function AEL+ABC TABL+ABC AEL+ABCM TABL+ABCM AEL+ABCVSS TABL+ABCVSS AEL+EABC TABL+EABC

F1 2.65E+ 04‡ 6.53E− 02 2.72E+ 04‡ 8.57E− 02 5.62E+ 04‡ 6.63E− 01 1.60E+ 05‡ 1.06E+ 00
(2.24E+ 04) (1.28E− 01) (3.18E+ 04) (1.64E− 01) (3.22E+ 04) (1.79E+ 00) (9.83E+ 04) (1.87E+ 00)

F2 1.14E− 09† 1.79E− 07 4.08E− 11† 4.85E− 07 2.79E− 14† 6.52E− 14 1.47E+ 02‡ 2.10E− 13
(1.16E− 09) (5.12E− 07) (2.41E− 10) (3.12E− 06) (3.98E− 15) (9.73E− 14) (9.52E+ 02) (9.93E− 13)

F3 3.37E− 08§ 2.41E− 10 8.58E− 14† 7.23E− 12 5.68E− 14† 7.91E− 14 5.35E− 14‡ 2.90E− 14
(1.65E− 07) (1.05E− 09) (2.87E− 14) (2.58E− 11) (0.00E+ 00) (4.56E− 14) (1.35E− 14) (2.87E− 14)

F4 1.96E+ 01‡ 8.28E+ 00 1.62E+ 01‡ 1.11E+ 01 1.45E+ 01‡ 6.98E+ 00 1.37E+ 01§ 1.42E+ 01
(2.69E+ 01) (2.11E+ 01) (2.69E+ 01) (2.35E+ 01) (2.64E+ 01) (1.25E+ 01) (2.59E+ 01) (2.60E+ 01)

F5 2.02E+ 01‡ 2.00 E+ 01 2.01E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01
(4.17E− 02) (1.42E− 04) (1.69E− 02) (1.66E− 03) (2.47E− 02) (4.75E− 05) (5.25E− 02) (5.33E− 04)

F6 1.44E+ 01‡ 1.06E+ 01 1.46E+ 01‡ 1.11E+ 01 1.36E+ 01‡ 9.13E+ 00 1.18E+ 01‡ 6.25 E+ 00
(1.35 E+ 00) (1.90E+ 00) (1.48E+ 00) (1.60E+ 00) (1.33E+ 00) (1.84E+ 00) (1.56E+ 00) (2.20E+ 00)

F7 3.15E− 06‡ 3.39E− 11 3.15E− 06‡ 3.87E− 11 2.74E− 06‡ 1.81E− 13 1.08E− 07‡ 1.07E− 13
(4.67E− 06) (5.59E− 11) (8.57E− 06) (1.63E− 10) (2.94E− 06) (1.02E− 13) (2.86E− 07) (4.78E− 14)

F8 1.89E− 13† 4.66E− 08 1.09E− 13† 1.95E− 02 1.18E− 13‡ 7.36E− 14 1.00E− 13‡ 8.92E− 15
(5.41E− 14) (2.29E− 07) (2.23E− 14) (1.48E− 01) (2.23E− 14) (5.49E− 14) (3.70E− 14) (3.09E− 14)

F9 9.45E+ 01‡ 8.20E+ 01 9.30E+ 01‡ 8.58E+ 01 6.29E+ 01§ 6.01E+ 01 3.80E+ 01† 4.28E+ 01
(1.58E+ 01) (1.36E+ 01) (1.62E+ 01) (1.21E+ 01) (8.73E+ 00) (9.14E+ 00) (8.07E+ 00) (6.67E+ 00)

F10 1.24E+ 00† 4.25E+ 00 1.67E+ 00† 4.14E+ 00 2.77E− 02† 4.67E− 02 3.83E− 01† 4.22E− 01
(7.36E− 01) (1.33E+ 00) (9.63E− 01) (1.49E+ 00) (2.69E− 02) (4.09E− 02) (5.01E− 01) (4.05E− 01)

F11 1.95E+ 03‡ 1.83E+ 03 2.00E+ 03‡ 1.80E+ 03 1.87E+ 03‡ 1.74E+ 03 1.74E+ 03‡ 1.50E+ 03
(2.21E+ 02) (2.02E+ 02) (2.34E+ 02) (2.25E+ 02) (3.10E+ 02) (2.54E+ 02) (3.24E+ 02) (2.48E+ 02)

F12 1.99E− 01‡ 9.96E− 02 1.63E− 01‡ 9.39E− 02 1.91E− 01‡ 8.29E− 02 2.36E− 01‡ 1.02E− 01
(3.77E− 02) (2.46E− 02) (2.31E− 02) (2.38E− 02) (3.25E− 02) (2.45E− 02) (6.40E− 02) (3.31E− 02)

F13 2.22E− 01‡ 2.02E− 01 2.17E− 01‡ 1.90E− 01 2.53E− 01‡ 2.19E− 01 2.30E− 01‡ 2.15E− 01
(2.59E− 02) (2.68E− 02) (2.75E− 02) (2.74E− 02) (3.19E− 02) (3.35E− 02) (3.26E− 02) (3.40E− 02)

F14 1.75E− 01§ 1.69E− 01 1.85E− 01§ 1.84E− 01 1.94E− 01‡ 1.75E− 01 1.71E− 01† 1.85E− 01
(1.94E− 02) (2.11E− 02) (2.02E− 02) (2.28E− 02) (2.70E− 02) (2.68E− 02) (2.19E− 02) (2.52E− 02)

F15 8.04E+ 00‡ 4.96E+ 00 7.48E+ 00‡ 4.97E+ 00 5.82E+ 00‡ 3.67E+ 00 4.09E+ 00‡ 3.35E+ 00
(1.19E+ 00) (9.35E− 01) (1.03E+ 00) (8.34E− 01) (9.94E− 01) (7.56E− 01) (8.33E− 01) (5.89E− 01)

F16 9.88E+ 00§ 9.74E+ 00 9.72E+ 00§ 9.79E+ 00 9.66E+ 00‡ 9.50 E+ 00 8.95E+ 00§ 8.93E+ 00
(3.55E− 01) (3.61E− 01) (4.47E− 01) (3.98E− 01) (3.32E− 01) (3.43E− 01) (6.28E− 01) (4.65E− 01)

F17 5.34E+ 02‡ 3.78E+ 02 5.19E+ 02‡ 3.93E+ 02 4.37E+ 02‡ 3.00E+ 02 5.30E+ 02‡ 2.43 E+ 02
(1.54E+ 02) (1.51E+ 02) (1.30E+ 02) (1.35E+ 02) (1.38E+ 02) (1.47E+ 02) (2.14E+ 02) (1.18E+ 02)

F18 2.38E+ 01‡ 1.85E+ 01 2.44E+ 01‡ 1.58E+ 01 1.72E+ 01‡ 1.24E+ 01 2.69E+ 01‡ 8.90E+ 00
(6.11E+ 00) (5.14E+ 00) (7.11E+ 00) (5.17E+ 00) (6.06E+ 00) (3.68E+ 00) (1.05E+ 01) (2.68E+ 00)

F19 6.68E+ 00‡ 4.79E+ 00 6.56E+ 00‡ 4.85E+ 00 6.34E+ 00‡ 4.01E+ 00 5.46E+ 00‡ 3.77E+ 00
(6.53E− 01) (8.05E− 01) (7.78E− 01) (6.62E− 01) (5.72E− 01) (3.54E− 01) (9.09E− 01) (6.94E− 01)

F20 1.94E+ 01‡ 1.46E+ 01 2.21E+ 01‡ 1.49E+ 01 1.35E+ 01‡ 1.05E+ 01 1.21E+ 01‡ 7.47E+ 00
(5.53E+ 00) (4.62E+ 00) (6.24E+ 00) (4.90E+ 00) (3.70E+ 00) (3.21E+ 00) (4.08E+ 00) (2.14E+ 00)

F21 1.66E+ 02§ 1.54E+ 02 1.76E+ 02§ 1.60E+ 02 1.65E+ 02‡ 1.25E+ 02 2.20E+ 02‡ 1.00E+ 02
(8.05E+ 01) (8.19E+ 01) (7.95E+ 01) (7.68E+ 01) (9.29E+ 01) (7.32E+ 01) (9.45E+ 01) (7.45E+ 01)

F22 2.23E+ 02§ 2.13E+ 02 2.61E+ 02‡ 2.09E+ 02 2.28E+ 02‡ 1.90E+ 02 1.86E+ 02§ 1.75E+ 02
(8.38E+ 01) (7.39E+ 01) (8.68E+ 01) (8.03E+ 01) (8.73E+ 01) (7.18E+ 01) (7.43E+ 01) (6.60E+ 01)

F23 3.15E+ 02‡ 3.15 E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02
(1.14E− 11) (1.56E− 09) (3.76E− 05) (2.64E− 08) (1.43E− 11) (5.94E− 13) (7.31E− 04) (3.98E− 13)

F24 2.27E+ 02‡ 2.26E+ 02 2.27E+ 02‡ 2.26 E+ 02 2.25E+ 02‡ 2.25E+ 02 2.24E+ 02† 2.25E+ 02
(1.12E+ 00) (8.16E− 01) (1.31E+ 00) (9.00E− 01) (7.41E+ 00) (7.30E− 01) (8.27E− 01) (7.61E− 01)

F25 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02
(2.84E− 01) (2.53E− 01) (3.19E− 01) (2.53E− 01) (3.19E− 01) (1.15E− 01) (3.78E− 01) (7.56E− 02)
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the three simple modal functions (F6, F7, and F11),
three hybrid functions (F15 and F19–F20), and two
composition functions (F28 and F30).

Combining the above experiment results, it is concluded
that the proposed TABL framework is more effective than
the AEL framework and its main advantage is the perfor-
mance improvement of complex multimodal problems. It
further shows that the proposed TABL approach is effective
to fuse the advantages of the ranking biased information
biased information and the biased information of pop-
ulation distribution and thus improve optimization accuracy
of multimodal problems due to the risk reduction of falling
into local optimum. Moreover, as can be seen from the
statistical results of the multiproblem Wilcoxon test of
Table 4, TABL+ABCs obtain higher R+ values than R−

values in all cases, which further confirms that TABL+ABCs
perform significantly better than the AEL+ABCs. Finally,
the convergence curves of TABL+ABCs and AEL+ABCs
on F1, F7, and F17 functions with 30D are shown in Figure 7.

4.2. Comparison between TABL and ACoS Framework.
*e main purpose of this subsection is to compare TABL
with the ACoS framework [55] by applying them to the eight
ABCs above. *e resultant algorithms are denoted as
TABL+ABCs and ACoS +ABCs, respectively. Different
from the AEL framework, the ACoS framework adaptively
tunes the coordinate systems using the cumulative pop-
ulation distribution information. *erefore, the ACoS
framework can be considered as an improved version of the
AEL framework. For fair comparison, TABL+ABCs and
ACoS+ABCs adopt the same parameter settings shown in
Table 1.*e experimental results are summarized in Tables 5
and 6 , and some important observations can be made as
follows:

(i) TABL+ABCs beat the ACoS +ABCs on 22, 20, 19,
19, 20, 17, 22, and 27 out of 30 test functions, re-
spectively. However, ACoS +ABCs cannot surpass
the TABL+ABCs on more than six test functions.

(ii) Compared with ACoS +ABCs, TABL+ABCs can
achieve significant performance improvement on all
the three simple modal functions (F6, F7, and F11),
two hybrid functions (F15–F16), and one compo-
sition function (F28).

Based on the above experiment results, it can be seen that
the proposed TABL framework is more effective than the
ACoS framework. *e main advantage of TABL framework
is that it can reduce the risk of falling into local optimum for
most complex multimodal problems, which shows that the
proposed TABL framework can achieve a better balance
between exploration and exploitation by tristage adaptive
biased learning. Moreover, as can be seen from the statistical
results of the multiproblem Wilcoxon test of Table 7,
TABL+ABCs obtain higher R+ values than R− values in all
cases, which further confirms that TABL+ABCs perform
significantly better than the ACoS+ABCs for most cases.
Finally, the convergence curves of TABL+ABCs and
ACoS +ABCs on F1, F7, and F17 functions with 30D are
shown in Figure 8.

4.3. <e Average Ranking of All Algorithms. *e previous
comparison of experimental results is based on the Wil-
coxon test, which is only applicable to the comparison of a
pair of algorithms. To compare the performance of the al-
gorithm more comprehensively, Table 8 gives the average
rankings of all compared algorithms based on the Friedman
test, and some important observations can be made as
follows:

(i) From Table 8, we can see that the overall rankings of
TABL+ABCs are obviously better than
AEL+ABCs and ACoS +ABCs, which further
verifies the effectiveness of proposed TABL
framework.

(ii) Under the TABL framework, the performance of
different algorithms is obviously different, which
implies that how to design the matching operators
with this framework is one of the key factors af-
fecting the performance of the algorithm.

(iii) *e TABL+ qABC ranks the first in all twenty-four
comparison algorithms by calculating the sum of
the average rankings for 30D.

4.4. Comparison of Computation Complexity. To compare
the computation complexity of AEL+ABCs, ACoS +ABCs,
and TABL+ABCs, we take the AEL+ABC, ACoS+ABC,
and TABL+ABC as a comparative case. *e computational

Table 2: Continued.

Function AEL+ABC TABL+ABC AEL+ABCM TABL+ABCM AEL+ABCVSS TABL+ABCVSS AEL+EABC TABL+EABC

F26 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02
(4.21E− 02) (3.88E− 02) (4.69E− 02) (3.73E− 02) (4.97E− 02) (3.52E− 02) (3.94E− 02) (3.80E− 02)

F27 3.93E+ 02† 4.00E+ 02 4.06E+ 02‡ 4.00E+ 02 4.05E+ 02‡ 4.00E+ 02 4.01E+ 02‡ 4.00E+ 02
(5.52E+ 01) (2.05E− 01) (2.55E+ 00) (1.34E− 01) (2.70E+ 00) (9.05E− 02) (4.69E− 01) (1.49E− 01)

F28 1.12E+ 03‡ 9.26E+ 02 1.25E+ 03‡ 9.14E+ 02 9.67E+ 02‡ 8.74E+ 02 8.59E+ 02§ 8.44E+ 02
(1.40E+ 02) (3.63E+ 01) (2.03E+ 02) (4.39E+ 01) (5.82E+ 01) (3.98E+ 01) (4.74E+ 01) (2.42E+ 01)

F29 7.26E+ 02§ 7.15E+ 02 9.84E+ 02‡ 7.06E+ 02 7.15E+ 02‡ 7.15E+ 02 7.98E+ 02‡ 7.15E+ 02
(5.81E+ 01) (8.77E− 01) (8.02E+ 01) (6.90E+ 01) (8.53E− 01) (5.35E− 01) (8.01E+ 01) (1.43E+ 00)

F30 1.68E+ 03‡ 7.35E+ 02 1.96E+ 03‡ 8.14E+ 02 1.47E+ 03‡ 7.34E+ 02 1.46E+ 03‡ 7.93 E+ 02
(3.17E+ 02) (1.63E+ 02) (3.75E+ 02) (1.99E+ 02) (3.48E+ 02) (2.53E+ 02) (3.71E+ 02) (1.92E+ 02)

‡/§/† 20/6/4 23/3/4 26/1/3 22/4/4
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Table 3: *e statistical results (mean (Std)) of AEL +GABC vs. TABL+GABC, AEL+MABC vs. TABL+MABC, AEL+OPIABC vs.
TABL+OPIABC, and AEL+ qABC vs. TABL+ qABC over 51 independent runs on the CEC2014 benchmarks with 30D.

Function AEL+ABC TABL+ABC AEL+ABCM TABL+ABCM AEL+ABCVSS TABL+ABCVSS AEL+ EABC TABL+EABC

F1 2.65E+ 04‡ 6.53E− 02 2.72E+ 04‡ 8.57E− 02 5.62E+ 04‡ 6.63E− 01 1.60E+ 05‡ 1.06E+ 00
(2.24E+ 04) (1.28E− 01) (3.18E+ 04) (1.64E− 01) (3.22E+ 04) (1.79E+ 00) (9.83E+ 04) (1.87E+ 00)

F2 1.14E− 09† 1.79E− 07 4.08E− 11† 4.85E− 07 2.79E− 14† 6.52E− 14 1.47E+ 02‡ 2.10E− 13
(1.16E− 09) (5.12E− 07) (2.41E− 10) (3.12E− 06) (3.98E− 15) (9.73E− 14) (9.52E+ 02) (9.93E− 13)

F3 3.37E− 08§ 2.41E− 10 8.58E− 14† 7.23E− 12 5.68E− 14† 7.91E− 14 5.35E− 14‡ 2.90E− 14
(1.65E− 07) (1.05E− 09) (2.87E− 14) (2.58E− 11) (0.00E+ 00) (4.56E− 14) (1.35E− 14) (2.87E− 14)

F4 1.96E+ 01‡ 8.28E+ 00 1.62E+ 01‡ 1.11E+ 01 1.45E+ 01‡ 6.98E+ 00 1.37E+ 01§ 1.42E+ 01
(2.69E+ 01) (2.11E+ 01) (2.69E+ 01) (2.35E+ 01) (2.64E+ 01) (1.25E+ 01) (2.59E+ 01) (2.60E+ 01)

F5 2.02E+ 01‡ 2.00E+ 01 2.01E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01
(4.17E− 02) (1.42E− 04) (1.69E− 02) (1.66E− 03) (2.47E− 02) (4.75E− 05) (5.25E− 02) (5.33E− 04)

F6 1.44E+ 01‡ 1.06E+ 01 1.46E+ 01‡ 1.11E+ 01 1.36E+ 01‡ 9.13E+ 00 1.18E+ 01‡ 6.25E+ 00
(1.35E+ 00) (1.90E+ 00) (1.48E+ 00) (1.60E+ 00) (1.33E+ 00) (1.84E+ 00) (1.56E+ 00) (2.20E+ 00)

F7 3.15E− 06‡ 3.39E− 11 3.15E− 06‡ 3.87E− 11 2.74E− 06‡ 1.81E− 13 1.08E− 07‡ 1.07E− 13
(4.67E− 06) (5.59E− 11) (8.57E− 06) (1.63E− 10) (2.94E− 06) (1.02E− 13) (2.86E− 07) (4.78E− 14)

F8 1.89E− 13† 4.66E− 08 1.09E− 13† 1.95E− 02 1.18E− 13‡ 7.36E− 14 1.00E− 13‡ 8.92E− 15
(5.41E− 14) (2.29E− 07) (2.23E− 14) (1.48E− 01) (2.23E− 14) (5.49E− 14) (3.70E− 14) (3.09E− 14)

F9 9.45E+ 01‡ 8.20E+ 01 9.30E+ 01‡ 8.58E+ 01 6.29E+ 01§ 6.01E+ 01 3.80E+ 01† 4.28E+ 01
(1.58E+ 01) (1.36E+ 01) (1.62E+ 01) (1.21E+ 01) (8.73E+ 00) (9.14E+ 00) (8.07E+ 00) (6.67E+ 00)

F10 1.24E+ 00† 4.25E+ 00 1.67E+ 00† 4.14E+ 00 2.77E+ 02† 4.67E− 02 3.83E− 01† 4.22E− 01
(7.36E− 01) (1.33E+ 00) (9.63E− 01) (1.49E+ 00) (2.69E− 02) (4.09E− 02) (5.01E− 01) (4.05E− 01)

F11 1.95E+ 03‡ 1.83E+ 03 2.00E+ 03‡ 1.80E+ 03 1.87E+ 03‡ 1.74E+ 03 1.74E+ 03‡ 1.50E+ 03
(2.21E+ 02) (2.02E+ 02) (2.34E+ 02) (2.25E+ 02) (3.10E+ 02) (2.54E+ 02) (3.24E+ 02) (2.48E+ 02)

F12 1.99E− 01‡ 9.96E− 02 1.63E− 01‡ 9.39E− 02 1.91E− 01‡ 8.29E− 02 2.36E− 01‡ 1.02E− 01
(3.77E− 02) (2.46E− 02) (2.31E− 02) (2.38E− 02) (3.25E− 02) (2.45E− 02) (6.40E− 02) (3.31E− 02)

F13 2.22E− 01‡ 2.02E− 01 2.17E− 01‡ 1.90E− 01 2.53E− 01‡ 2.19E− 01 2.30E− 01‡ 2.15E− 01
(2.59E− 02) (2.68E− 02) (2.75E− 02) (2.74E− 02) (3.19E− 02) (3.35E− 02) (3.26E− 02) (3.40E− 02)

F14 1.75E− 01§ 1.69E− 01 1.85E− 01§ 1.84E− 01 1.94E− 01‡ 1.75E− 01 1.71E− 01† 1.85E− 01
(1.94E− 02) (2.11E− 02) (2.02E− 02) (2.28E− 02) (2.70E− 02) (2.68E− 02) (2.19E− 02) (2.52E− 02)

F15 8.04E+ 00‡ 4.96E+ 00 7.48E+ 00‡ 4.97E+ 00 5.82E+ 00‡ 3.67E+ 00 4.09E+ 00‡ 3.35E+ 00
(1.19E+ 00) (9.35E− 01) (1.03E+ 00) (8.34E− 01) (9.94E− 01) (7.56E− 01) (8.33E− 01) (5.89E− 01)

F16 9.88E+ 00§ 9.74E+ 00 9.72E+ 00§ 9.79E+ 00 9.66E+ 00‡ 9.50E+ 00 8.95E+ 00§ 8.93E+ 00
(3.55E− 01) (3.61E− 01) (4.47E− 01) (3.98E− 01) (3.32E− 01) (3.43E− 01) (6.28E− 01) (4.65E− 01)

F17 5.34E+ 02‡ 3.78E+ 02 5.19E+ 02‡ 3.93E+ 02 4.37E+ 02‡ 3.00E+ 02 5.30E+ 02‡ 2.43E+ 02
(1.54E+ 02) (1.51E+ 02) (1.30E+ 02) (1.35E+ 02) (1.38E+ 02) (1.47E+ 02) (2.14E+ 02) (1.18E+ 02)

F18 2.38E+ 01‡ 1.85E+ 01 2.44E+ 01‡ 1.58E+ 01 1.72E+ 01‡ 1.24E+ 01 2.69E+ 01‡ 8.90E+ 00
(6.11E+ 00) (5.14E+ 00) (7.11E+ 00) (5.17E+ 00) (6.06E+ 00) (3.68E+ 00) (1.05E+ 01) (2.68E+ 00)

F19 6.68E+ 00‡ 4.79E+ 00 6.56E+ 00‡ 4.85E+ 00 6.34E+ 00‡ 4.01E+ 00 5.46E+ 00‡ 3.77E+ 00
(6.53E− 01) (8.05E− 01) (7.78E− 01) (6.62E− 01) (5.72E− 01) (3.54E− 01) (9.09E− 01) (6.94E− 01)

F20 1.94E+ 01‡ 1.46E+ 01 2.21E+ 01‡ 1.49E+ 01 1.35E+ 01‡ 1.05E+ 01 1.21E+ 01‡ 7.47E+ 00
(5.53E+ 00) (4.62E+ 00) (6.24E+ 00) (4.90E+ 00) (3.70E+ 00) (3.21E+ 00) (4.08E+ 00) (2.14E+ 00)

F21 1.66E+ 02§ 1.54E+ 02 1.76E+ 02§ 1.60E+ 02 1.65E+ 02‡ 1.25E+ 02 2.20E+ 02‡ 1.00E+ 02
(8.05E+ 01) (8.19E+ 01) (7.95E+ 01) (7.68E+ 01) (9.29E+ 01) (7.32E+ 01) (9.45E+ 01) (7.45E+ 01)

F22 2.23E+ 02§ 2.13 E+ 02 2.61E+ 02‡ 2.09E+ 02 2.28E+ 02‡ 1.90E+ 02 1.86E+ 02§ 1.75E+ 02
(8.38E+ 01) (7.39E+ 01) (8.68E+ 01) (8.03E+ 01) (8.73E+ 01) (7.18E+ 01) (7.43E+ 01) (6.60E+ 01)

F23 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02
(1.14E− 11) (1.56E− 09) (3.76E− 05) (2.64E− 08) (1.43E− 11) (5.94E− 13) (7.31E− 04) (3.98E− 13)

F24 2.27E+ 02‡ 2.26E+ 02 2.27E+ 02‡ 2.26E+ 02 2.25E+ 02‡ 2.25E+ 02 2.24E+ 02† 2.25E+ 02
(1.12E+ 00) (8.16E− 01) (1.31E+ 00) (9.00E− 01) (7.41E+ 00) (7.30E− 01) (8.27E− 01) (7.61E− 01)

F25 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02
(2.84E− 01) (2.53E− 01) (3.19E− 01) (2.53E− 01) (3.19E− 01) (1.15E− 01) (3.78E− 01) (7.56E− 02)

F26 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02
(4.21E− 02) (3.88E− 02) (4.69E− 02) (3.73E− 02) (4.97E− 02) (3.52E− 02) (3.94E− 02) (3.80E− 02)

F27 3.93E+ 02† 4.00E+ 02 4.06E+ 02‡ 4.00E+ 02 4.05E+ 02‡ 4.00E+ 02 4.01E+ 02‡ 4.00E+ 02
(5.52E+ 01) (2.05E− 01) (2.55E+ 00) (1.34E− 01) (2.70E+ 00) (9.05E− 02) (4.69E− 01) (1.49E− 01)

F28 1.12E+ 03‡ 9.26E+ 02 1.25E+ 03‡ 9.14E+ 02 9.67E+ 02‡ 8.74E+ 02 8.59E+ 02§ 8.44E+ 02
(1.40E+ 02) (3.63E+ 01) (2.03E+ 02) (4.39E+ 01) (5.82E+ 01) (3.98E+ 01) (4.74E+ 01) (2.42E+ 01)

F29 7.26E+ 02§ 7.15E+ 02 9.84E+ 02‡ 7.06E+ 02 7.15E+ 02‡ 7.15E+ 02 7.98E+ 02‡ 7.15E+ 02
(5.81E+ 01) (8.77E− 01) (8.02E+ 01) (6.90E+ 01) (8.53E− 01) (5.35E− 01) (8.01E+ 01) (1.43E+ 00)

F30 1.68E+ 03‡ 7.35E+ 02 1.96E+ 03‡ 8.14E+ 02 1.47E+ 03‡ 7.34E+ 02 1.46E+ 03‡ 7.93E+ 02
(3.17E+ 02) (1.63E+ 02) (3.75E+ 02) (1.99E+ 02) (3.48E+ 02) (2.53E+ 02) (3.71E+ 02) (1.92E+ 02)

‡/§/† 20/6/4 23/3/4 26/1/3 22/4/4
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Table 4: *e statistical results of the multiple-problem Wilcoxon test for TABL+ABCs vs. AEL +ABCs.

Algorithms at 30D
0.05 R+ R− p value

TABL+ABC vs. AEL+ABC 429.0 36.0 5.10E− 05
Yes
TABL+ABCM vs. AEL+ABCM 393.0 42.0 1.41E− 04
Yes
TABL+ABCVSS vs. AEL+ABCVSS 350.0 85.0 3.83E− 03
Yes
TABL+EABC vs. AEL +EABC 368.5 66.5 1.05E− 03
Yes
TABL+GABC vs. AEL+GABC 367.0 68.0 1.11E− 03
Yes
TABL+MABC vs. AEL+MABC 440.0 25.0 1.90E− 05
Yes
TABL+OPIABC vs. AEL+OPIABC 415.0 20.0 1.80E− 05
Yes
TABL+ qABC vs. AEL + qABC 430.0 35.0 4.75E− 05
Yes
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Figure 7: Continued.
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costs of ABC mainly include the following three parts: (1)
initialization phase (CIP), (2) employed bee phase (CEBP),
and (3) onlooker bee phase (COBP).*erefore, the total worst
computation complexity of ABC in one generation is

CABC � CIP + CEBP + COBP

� O(SN × D) + O(SN × D) + O(SN × D)

� O(SN × D).

(10)

*e computational costs of TABL+ABC mainly include
the following three parts: (1) ABC (CABC), (2) sorting fitness
values (CSFV), and (3) Eigen decomposition of covariance

matrix (CCMED). *erefore, the total worst computation
complexity of TABL+ABC in one generation is

CTABL+ABC � CABC + CSFV + CCMDE

� O(SN × D) + O SN
2

􏼐 􏼑 + O D
3

􏼐 􏼑.
(11)

According to the above discussion, the main difference
between TABL+ABC, AEL+ABC, and ACoS+ABC includes
two aspects: (1) the AEL+ABC employed the covariance
matrix, while the ACoS+ABC introduced the cumulative
covariance matrix; (2) the TABL+ABC introduced the mul-
tivariable perturbation strategy as the scout bee phase. As the
Eigen decomposition process of the cumulative covariance
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Figure 7:*e mean function error values versus numbers of function evaluations for eight groups of AEL+ABCs vs. TABL+ABCs over 51
independent runs on F1, F7, and F17 with 30D, respectively.
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Table 5: *e statistical results (mean (Std)) of ACoS+ABC vs. TABL+ABC, ACoS+ABCM vs. TABL+ABCM, ACoS +ABCVSS vs.
TABL+ABCVSS, and ACoS+EABC vs. TABL+EABC over 51 independent runs on the CEC2014 benchmarks with 30D.

Function ACoS +ABC TABL+ABC ACoS +ABCM TABL+ABCM ACoS +ABCVSS TABL+ABCVSS ACoS+EABC TABL+EABC

F1 3.10E+ 00‡ 6.53E− 02 2.39E+ 00‡ 8.57E− 02 1.31E+ 04‡ 6.63E− 01 6.70E+ 03‡ 1.06E+ 00
(1.27E+ 01) (1.28E− 01) (1.39E+ 01) (1.64E− 01) (3.33E+ 04) (1.79E+ 00) (1.52E+ 04) (1.87E+ 00)

F2 1.18E− 08§ 1.79E− 07 8.18E− 11† 4.85E− 07 1.11E− 14† 6.52E− 14 5.57E− 16† 2.10E− 13
(4.33E− 08) (5.12E− 07) (1.56E− 10) (3.12E− 06) (1.40E− 14) (9.73E− 14) (3.98E− 15) (9.93E− 13)

F3 8.02E− 14† 2.41E− 10 4.90E− 14† 7.23E− 12 0.00 E+ 00† 7.91E− 14 0.00 E+ 00† 2.90E− 14
(2.83E− 14) (1.05E− 09) (1.98E− 14) (2.58E− 11) (0.00E+ 00) (4.56E− 14) (0.00E+ 00) (2.87E− 14)

F4 1.86E+ 01‡ 8.28E+ 00 1.71E+ 01‡ 1.11E+ 01 8.22E+ 00§ 6.98E+ 00 3.51E+ 00† 1.42E+ 01
(2.91E+ 01) (2.11E+ 01) (3.04E+ 01) (2.35E+ 01) (2.00E+ 01) (1.35E+ 01) (1.37E+ 01) (2.60E+ 01)

F5 2.02E+ 01‡ 2.00E+ 01 2.01E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01 2.03E+ 01‡ 2.00E+ 01
(3.21E− 02) (1.42E− 04) (3.84E− 02) (1.66E− 03) (4.17E− 02) (4.75E− 05) (4.74E− 02) (5.33E− 04)

F6 1.44E+ 01‡ 1.06E+ 01 1.54E+ 01‡ 1.11E+ 01 1.34E+ 01‡ 9.13E+ 00 1.36E+ 01‡ 6.25E+ 00
(1.55E+ 00) (1.90E+ 00) (1.54E+ 00) (1.60E+ 00) (1.29E+ 00) (1.84E+ 00) (1.24E+ 00) (2.20E+ 00)

F7 1.44E− 06‡ 3.39E− 11 8.50E− 07‡ 3.87E− 11 4.16E− 06‡ 1.81E− 13 1.27E− 05‡ 1.07E− 13
(2.32E− 06) (5.59E− 11) (1.75E− 06) (1.63E− 10) (6.07E− 06) (1.02E− 13) (1.73E− 05) (4.78E− 14)

F8 1.14E− 13† 4.66E− 08 1.83E− 13† 1.95E− 02 0.00E+ 00† 7.36E− 14 0.00E+ 00† 8.92E− 15
(0.00 E+00) (2.29E− 07) (6.05E− 14) (2.05E− 01) (0.00E+ 00) (5.49E− 14) (0.00E+ 00) (3.09E− 14)

F9 9.44E+ 01‡ 8.20E+ 01 1.02E+ 02‡ 8.58E+ 01 5.65E+ 01† 6.01E+ 01 4.36E+ 01§ 4.28E+ 01
(2.54E+ 01) (1.36E+ 01) (2.04E+ 01) (1.21E+ 01) (7.66E+ 00) (9.32E+ 00) (6.09E+ 00) (3.55E+ 00)

F10 1.56E+ 00† 4.25E+ 00 3.14E+ 00† 4.14E+ 00 2.04E− 02† 4.67E− 02 2.22E− 01† 4.22E− 01
(7.15E− 01) (1.33E+ 00) (1.17E+ 00) (1.49E+ 00) (2.18E− 02) (4.09E− 02) (1.72E− 01) (4.05E− 01)

F11 1.97E+ 03‡ 1.83E+ 03 2.18E+ 03‡ 1.80E+ 03 1.78E+ 03§ 1.74E+ 03 1.84E+ 03‡ 1.50E+ 03
(2.61E+ 02) (2.02E+ 02) (3.53E+ 02) (2.25E+ 02) (2.59E+ 02) (2.54E+ 02) (2.77E+ 02) (2.48E+ 02)

F12 1.99E− 01‡ 9.96E− 02 2.23E− 01‡ 9.39E− 02 2.73E− 01‡ 8.29E− 02 3.30E− 01‡ 1.02E− 01
(3.57E− 02) (2.35E− 02) (3.93E− 02) (2.23E− 02) (5.11E− 02) (2.65E− 02) (6.47E− 02) (3.31E− 02)

F13 2.46E− 01‡ 2.02E− 01 2.44E− 01‡ 1.90E− 01 2.69E− 01‡ 2.19E− 01 2.95E− 01‡ 2.15E− 01
(2.36E− 02) (2.68E− 02) (2.75E− 02) (2.74E− 02) (3.22E− 02) (3.35E− 02) (3.29E− 02) (3.40E− 02)

F14 1.78E− 01§ 1.69E− 01 1.78E− 01§ 1.84E− 01 1.93E− 01‡ 1.75E− 01 1.90E− 01§ 1.85E− 01
(2.28E− 02) (2.11E− 02) (2.27E− 02) (2.28E− 02) (1.96E− 02) (2.68E− 02) (3.28E− 02) (2.52E− 02)

F15 7.66E+ 00‡ 4.96E+ 00 7.90E+ 00‡ 4.97E+ 00 6.19E+ 00‡ 3.67E+ 00 6.38E+ 00‡ 3.35E+ 00
(1.03E+ 00) (9.35E− 01) (1.41E+ 00) (8.34E− 01) (8.71E− 01) (7.56E− 01) (8.62E− 01) (5.89E− 01)

F16 9.97E+ 00‡ 9.74E+ 00 1.03E+ 01‡ 9.79E+ 00 9.60E+ 00§ 9.50E+ 00 9.43E+ 00‡ 8.93E+ 00
(3.57E− 01) (3.61E− 01) (3.80E− 01) (3.98E− 01) (4.17E− 01) (3.43E− 01) (3.87E− 01) (3.76E− 01)

F17 4.49E+ 02‡ 3.78E+ 02 4.42E+ 02§ 3.93E+ 02 3.62E+ 02‡ 3.00E+ 02 3.51E+ 02‡ 2.43E+ 02
(1.26E+ 02) (1.51E+ 02) (1.32E+ 02) (1.56E+ 02) (1.61E+ 02) (2.56E+ 02) (1.47E+ 02) (1.18E+ 02)

F18 2.11E+ 01‡ 1.85E+ 01 1.80E+ 01‡ 1.58E+ 01 1.25E+ 01§ 1.24E+ 01 1.24E+ 01‡ 8.90E+ 00
(4.97E+ 00) (5.14E+ 00) (4.37E+ 00) (5.17E+ 00) (3.36E+ 00) (3.68E+ 00) (3.02E+ 00) (2.68E+ 00)

F19 6.74E+ 00‡ 4.79E+ 00 7.15E+ 00‡ 4.85E+ 00 6.37E+ 00‡ 4.01E+ 00 6.18E+ 00‡ 3.77E+ 00
(6.02E− 01) (5.68E− 01) (6.10E− 01) (6.62E− 01) (6.06E− 01) (6.23E− 01) (6.32E− 01) (6.94E− 01)

F20 1.95E+ 01‡ 1.46E+ 01 1.87E+ 01‡ 1.49E+ 01 1.29E+ 01‡ 1.05E+ 01 1.28E+ 01‡ 7.47E+ 00
(5.20E+ 00) (4.62E+ 00) (4.46E+ 00) (4.90E+ 00) (3.67E+ 00) (2.57E+ 00) (2.85E+ 00) (2.14E+ 00)

F21 1.65E+ 02§ 1.54E+ 02 1.59E+ 02§ 1.60E+ 02 1.27E+ 02§ 1.25E+ 02 1.12E+ 02§ 1.00E+ 02
(6.92E+ 01) (8.19E+ 01) (7.30E+ 01) (7.68E+ 01) (7.61E+ 01) (7.32E+ 01) (8.12E+ 01) (7.68E+ 01)

F22 2.25E+ 02§ 2.13E+ 02 2.23E+ 02§ 2.09E+ 02 2.01E+ 02§ 1.90E+ 02 1.74E+ 02§ 1.75E+ 02
(8.54E+ 01) (7.39E+ 01) (8.06E+ 01) (8.03E+ 01) (7.70E+ 01) (7.18E+ 01) (6.19E+ 01) (6.60E+ 01)

F23 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02§ 3.15E+ 02
(5.22E− 13) (1.56E− 09) (4.50E− 13) (2.64E− 08) (4.02E− 13) (5.94E− 13) (7.20E− 09) (3.98E− 13)

F24 2.26E+ 02‡ 2.26E+ 02 2.27E+ 02‡ 2.26E+ 02 2.25E+ 02‡ 2.25E+ 02 2.26E+ 02‡ 2.25E+ 02
(3.96E+ 00) (6.78E− 01) (2.90E+ 00) (9.00E− 01) (5.20E+ 00) (7.30E− 01) (6.37E− 01) (7.61E− 01)

F25 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02
(3.05E− 01) (2.53E− 01) (3.41E− 01) (2.53E− 01) (1.44E− 01) (1.15E− 01) (1.19E− 01) (7.83E− 02)

F26 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02
(4.53E− 02) (3.88E− 02) (3.47E− 02) (3.73E− 02) (4.20E− 02) (3.52E− 02) (2.76E− 02) (3.80E− 02)

F27 4.01E+ 02‡ 4.00E+ 02 3.93E+ 02† 4.00E+ 02 4.02E+ 02‡ 4.00E+ 02 4.00E+ 02‡ 4.00E+ 02
(8.62E− 01) (2.54E− 01) (5.42E+ 01) (1.34E− 01) (1.55E+ 00) (9.05E− 02) (8.06E− 01) (1.49E− 01)

F28 1.09E+ 03‡ 9.26E+ 02 1.22E+ 03‡ 9.14E+ 02 9.20E+ 02‡ 8.74E+ 02 8.62E+ 02‡ 8.44E+ 02
(7.54E+ 01) (3.63E+ 01) (1.74E+ 02) (2.56E+ 01) (3.19E+ 01) (3.98E+ 01) (2.42E+ 01) (2.42E+ 01)

F29 7.15E+ 02‡ 7.15E+ 02 7.15E+ 02§ 7.06E+ 02 7.15E+ 02‡ 7.15E+ 02 7.15E+ 02‡ 7.15E+ 02
(9.38E− 01) (8.77E− 01) (5.20E− 01) (6.90E+ 01) (1.05E+ 00) (8.62E− 01) (1.31E+ 00) (1.4300)

F30 1.27E+ 03‡ 7.35E+ 02 1.39E+ 03‡ 8.14E+ 02 1.32E+ 03‡ 7.34E+ 02 1.24E+ 03‡ 7.93E+ 02
(2.38E+ 02) (1.63E+ 02) (2.27E+ 02) (1.99E+ 02) (2.19E+ 02) (1.77E+ 02) (2.13E+ 02) (1.92E+ 02)

‡/§/† 22/5/3 20/5/5 19/6/5 20/5/5
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Table 6: *e statistical results (mean (std)) of ACoS +GABC vs. TABL+GABC, ACoS +MABC vs. TABL+MABC, ACoS +OPIABC vs.
TABL+OPIABC, and ACoS+ qABC vs. TABL+ qABC over 51 independent runs on the CEC2014 benchmarks with 30D.

Function ACoS +GABC TABL+GABC ACoS +MABC TABL+MABC ACoS +OPIABC TABL+OPIABC ACoS+ qABC TABL+ qABC

F1 3.23E+ 02§ 4.67E− 02 6.07E+ 03† 1.18E+ 04 1.84E+ 04‡ 3.17E+ 00 6.66E+ 03‡ 5.88E+ 00
(1.65E+ 03) (7.44E− 02) (1.02E+ 04) (1.63E+ 04) (3.18E+ 04) (8.25E+ 00) (7.54E+ 03) (1.86E+ 01)

F2 2.90E− 14† 1.73E− 13 2.62E− 14§ 2.45E− 14 1.67E− 15† 4.12E− 14 4.06E+ 02‡ 3.79E− 14
(3.98E− 15) (4.39E− 13) (7.72E− 15) (9.88E− 15) (6.75E− 15) (1.91E− 14) (1.78E+ 03) (2.88E− 14)

F3 3.34E− 14† 7.69E− 14 5.24E− 14‡ 4.35E− 14 2.23E− 15† 6.02E− 14 1.24E− 07‡ 2.56E− 14
(2.83E− 14) (3.38E− 14) (1.54E− 14) (2.44E− 14) (1.11E− 14) (2.10E− 14) (6.78E− 07) (2.86E− 14)

F4 9.38E+ 00§ 5.22E+ 00 1.13E+ 01§ 1.08E+ 01 8.20E+ 00§ 4.50E+ 00 2.33E+ 01§ 1.18E+ 01
(2.19E+ 01) (1.98E+ 01) (1.89E+ 01) (4.05E+ 01) (1.95E+ 01) (2.36E+ 01) (5.12E+ 01) (3.25E+ 01)

F5 2.02E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01 2.03E+ 01‡ 2.00E+ 01 2.02E+ 01‡ 2.00E+ 01
(4.05E− 02) (8.36E− 05) (3.10E− 02) (8.06E− 04) (4.12E− 02) (1.77E− 04) (4.03E− 02) (6.71E− 04)

F6 1.36E+ 01‡ 8.33E+ 00 1.32E+ 01‡ 7.16E+ 00 1.26E+ 01‡ 7.36E+ 00 1.46E+ 01‡ 6.85E+ 00
(1.43E+ 00) (2.09E+ 00) (1.13E++00) (2.37E+ 00) (1.66E+ 00) (2.09E+ 00) (1.46E+ 00) (1.81E+ 00)

F7 4.27E− 07‡ 4.37E− 13 1.26E− 06‡ 1.11E− 13 2.24E− 07‡ 2.96E− 13 7.83E− 09‡ 1.11E− 13
(5.13E− 07) (3.19E− 13) (1.70E− 06) (9.23E− 14) (4.14E− 07) (2.88E− 13) (1.95E− 08) (5.33E− 14)

F8 6.46E− 14† 1.25E− 13 1.05E− 13‡ 0.00E+ 00 0.00E+ 00† 1.11E− 14 1.18E− 13‡ 2.23E− 15
(5.69E− 14) (4.10E− 14) (3.09E− 14) (0.00E+ 00) (0.00E+ 00) (3.41E− 14) (2.23E− 14) (1.59E− 14)

F9 6.64E+ 01‡ 5.41E+ 01 6.23E+ 01‡ 4.71E+ 01 5.89E+ 01‡ 4.92E+ 01 9.51E+ 01‡ 4.24E+ 01
(9.98E+ 00) (8.05E+ 00) (9.65E+ 00) (6.03E+ 00) (9.98E+ 00) (8.76E+ 00) (1.30E+ 01) (6.07E+ 00)

F10 4.42E− 01† 1.64E+ 00 2.34E− 01† 4.59E− 01 6.82E− 02‡ 2.49E− 02 1.46E+ 00‡ 1.47E− 01
(3.81E− 01) (1.06E+ 00) (4.05E− 01) (8.20E− 01) (3.44E− 02) (2.54E− 02) (4.56E− 01) (4.70E− 02)

F11 1.79E+ 03‡ 1.63E+ 03 1.80E+ 03‡ 1.55E+ 03 1.84E+ 03‡ 1.69E+ 03 2.02E+ 03‡ 1.51E+ 03
(2.63E+ 02) (2.27E+ 02) (2.74E+ 02) (3.04E+ 02) (2.00E+ 02) (2.39E+ 02) (2.69E+ 02) (1.92E+ 02)

F12 1.95E− 01‡ 9.40E− 02 1.90E− 01‡ 7.73E− 02 2.93E− 01‡ 1.11E− 01 2.04E− 01‡ 1.09E− 01
(3.84E− 02) (3.05E− 02) (4.11E− 02) (2.89E− 02) (5.12E− 02) (3.36E− 02) (3.83E− 02) (4.56E− 02)

F13 2.49E− 01‡ 2.32E− 01 2.43E− 01§ 2.31E− 01 2.59E− 01‡ 2.06E− 01 1.89E− 01† 2.09E− 01
(3.03E− 02) (3.45E− 02) (3.28E− 02) (4.05E− 02) (3.55E− 02) (3.01E− 02) (3.02E− 02) (3.27E− 02)

F14 1.63E− 01† 1.84E− 01 1.56E− 01† 2.20E− 01 1.91E− 01§ 1.96E− 01 1.57E− 01† 1.76E− 01
(2.37E− 02) (2.50E− 02) (3.05E− 02) (2.82E− 02) (2.56E− 02) (2.10E− 02) (1.82E− 02) (2.39E− 02)

F15 6.54E+ 00‡ 4.22E+ 00 5.82E+ 00‡ 3.38E+ 00 6.35E+ 00‡ 4.16E+ 00 6.39E+ 00‡ 3.36E+ 00
(9.98E− 01) (8.05E− 01) (9.55E− 01) (6.41E− 01) (9.07E− 01) (7.83E− 01) (1.15E+ 00) (6.01E− 01)

F16 9.61E+ 00‡ 9.25E+ 00 9.52E+ 00‡ 8.93E+ 00 9.80E+ 00‡ 9.47E+ 00 9.86E+ 00‡ 8.78E+ 00
(5.57E− 01) (4.63E− 01) (3.93E− 01) (5.41E− 01) (3.26E− 01) (4.75E− 01) (4.08E− 01) (5.46E− 01)

F17 4.78E+ 02‡ 3.77E+ 02 4.22E+ 02‡ 3.26E+ 02 3.81E+ 02‡ 2.90 E+ 02 4.89E+ 02‡ 2.35E+ 02
(1.36E+ 02) (1.70E+ 02) (2.06E+ 02) (1.38E+ 02) (1.21E+ 02) (1.31E+ 02) (1.51E+ 02) (2.04E+ 02)

F18 1.85E+ 01‡ 1.32E+ 01 2.01E+ 01‡ 1.05E+ 01 1.50E+ 01‡ 1.05E+ 01 2.45E+ 01‡ 1.22E+ 01
(5.50E+ 00) (3.90E+ 00) (8.72E+ 00) (3.87E+ 00) (3.35E+ 00) (2.66E+ 00) (6.36E+ 00) (4.52E+ 00)

F19 6.48E+ 00‡ 4.47E+ 00 6.15E+ 00‡ 3.74E+ 00 6.33E+ 00‡ 4.50E+ 00 6.81E+ 00‡ 3.94E+ 00
(7.25E− 01) (8.00E− 01) (6.62E− 01) (6.61E− 01) (5.44E− 01) (7.87E− 01) (6.98E− 01) (5.80E− 01)

F20 1.65E+ 01‡ 1.05E+ 01 1.48E+ 01‡ 7.89E+ 00 1.48E+ 01‡ 9.89E+ 00 1.98E+ 01‡ 7.57E+ 00
(2.65E+ 00) (3.38E+ 00) (5.60E+ 00) (2.65E+ 00) (3.97E+ 00) (3.13E+ 00) (5.93E+ 00) (2.21E+ 00)

F21 1.61E+ 02§ 1.36E+ 02 1.58E+ 02§ 1.47E+ 02 1.41E+ 02‡ 1.07 E+ 02 1.77E+ 02‡ 1.14E+ 02
(8.12E+ 01) (9.63E+ 01) (9.21E+ 01) (5.65E+ 01) (7.17E+ 01) (6.89E+ 01) (8.60E+ 01) (7.71E+ 01)

F22 2.02E+ 02§ 1.75E+ 02 1.91E+ 02‡ 1.34E+ 02 1.93E+ 02§ 1.95E+ 02 2.14E+ 02‡ 1.72E+ 02
(7.89E+ 01) (9.62E+ 01) (8.25E+ 01) (9.69E+ 01) (6.19E+ 01) (5.74E+ 01) (5.93E+ 01) (6.42E+ 01)

F23 3.15E+ 02‡ 3.15E+ 02 3.15E+ 02§ 3.15E+ 02 3.15E+ 02§ 3.15E+ 02 3.15E+ 02‡ 3.15E+ 02
(4.02E− 13) (5.03E− 13) (4.02E− 13) (3.98E− 13) (2.27E− 10) (3.98E− 13) (5.57E− 05) (4.55E− 13)

F24 2.26E+ 02‡ 2.26E+ 02 2.24E+ 02§ 2.26E+ 02 2.22E+ 02† 2.25E+ 02 2.27E+ 02‡ 2.25E+ 02
(4.96E+ 00) (8.12E− 01) (9.93E+ 00) (6.87E− 01) (8.92E+ 00) (5.46E− 01) (4.50E+ 00) (9.02E− 01)

F25 2.03E+ 02§ 2.03E+ 02 2.03E+ 02§ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02 2.03E+ 02‡ 2.03E+ 02
(1.75E− 01) (2.41E− 01) (2.35E− 01) (1.77E− 01) (1.41E− 01) (2.02E− 01) (3.47E− 01) (8.97E− 02)

F26 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02 1.00E+ 02‡ 1.00E+ 02
(4.18E− 02) (3.18E− 02) (3.90E− 02) (3.14E− 02) (3.82E− 02) (4.10E− 02) (5.24E− 02) (2.69E− 02)

F27 4.00E+ 02‡ 4.00E+ 02 3.94E+ 02† 4.00E+ 02 4.01E+ 02‡ 3.85E+ 02 4.01E+ 02‡ 4.00 E+ 02
(2.15E− 01) (6.54E− 02) (5.53E+ 01) (1.95E− 01) (1.34E+ 00) (7.76E+ 01) (6.19E− 01) (2.00E− 01)

F28 9.18E+ 02‡ 8.65E+ 02 9.24E+ 02‡ 8.42E+ 02 9.09E+ 02‡ 8.46E+ 02 1.13E+ 03‡ 8.43E+ 02
(6.00E+ 01) (3.87E+ 01) (5.44E+ 01) (2.69E+ 01) (4.24E+ 01) (3.05E+ 01) (1.08E+ 02) (1.88E+ 01)

F29 7.15E+ 02‡ 7.05E+ 02 7.15E+ 02† 7.41E+ 02 7.16E+ 02‡ 7.15E+ 02 7.66E+ 02‡ 7.15E+ 02
(5.99E− 01) (6.65E+ 01) (1.43E+ 00) (3.65E+ 01) (1.02E+ 00) (2.18E− 01) (1.57E+ 02) (1.18E+ 00)

F30 1.13E+ 03‡ 8.13E+ 02 1.15E+ 03§ 1.08E+ 03 1.22E+ 03‡ 9.74E+ 02 1.37E+ 03‡ 8.03E+ 02
(2.46E+ 02) (1.88E+ 02) (2.95E+ 02) (2.39E+ 02) (2.01E+ 02) (1.99E+ 02) (2.69E+ 02) (1.96E+ 02)

‡/§/† 20/5/5 17/8/5 22/4/4 27/1/2
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Figure 8: Continued.

16 Discrete Dynamics in Nature and Society



matrix of ACoS+ABC is the same as the AEL+ABC, its
computational complexity (CCCMED) isO(D3). In addition, the
computational complexity of the multivariable perturbation
strategy CMPS is O(D). *erefore, the total worst computation
complexity of TABL+ABC in one generation is

CABC � CABC + CSFV + CCMDE + CMPS

� O(SN × D) + O SN2
􏼐 􏼑 + O D

3
􏼐 􏼑

� O(SN × D) + O SN2
􏼐 􏼑 + O D

3
􏼐 􏼑 + O(D).
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Figure 8: *e mean function error values versus numbers of function evaluations for eight groups of ACoS+ABCs vs. TABL+ABCs over
51 independent runs on F1, F7, and F17 with 30D, respectively.

Table 7: *e statistical results of the multiple-problem Wilcoxon test for TABL+ABCs vs. ACoS +ABCs.

Algorithms at 30D
0.05 R+ R− p value

TABL+ABC vs. ACoS +ABC 395.0 40.0 1.19E− 04Yes
TABL+ABCM vs. ACoS+ABCM 366.0 69.0 1.24E− 03Yes
TABL+ABCVSS vs. ACoS +ABCVSS 380.0 55.0 3.94E− 04Yes
TABL+EABC vs. ACoS +EABC 361.5 73.5 1.73E-03Yes
TABL+GABC vs. ACoS +GABC 388.0 47.0 2.18E− 04Yes
TABL+MABC vs. ACoS+MABC 331.5 103.5 1.13E− 02Yes
TABL+OPIABC vs. ACoS +OPIABC 382.5 52.5 3.45E− 04Yes
TABL+ qABC vs. ACoS + qABC 420.5 14.5 1.10E− 04Yes
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Based on the above discussion, the worst computation
complexity of TABL +ABC is the same as that of the
AEL+ABC and ACoS+ABC.

5. Discussion

In the previous experimental discussion, we have verified the
effectiveness of the proposed TABL framework for ABCs. In
this section, we further compare the proposed algorithms in
terms of TABL+ qABCwith other state-of-the-art EAs.*ey
are the CMM_rcBBOg [56], NCS [57], TLBO [58], TSaABC
[35], CSO [59], SLPSO [60], and CMA-ES [61]. *e ex-
perimental platform for all compared algorithms is the same
as that of TABL+ qABC, and the parameter settings are
suggested as the corresponding original literature studies.
Table 9 summarizes the experimental results.

From Table 9, it can be seen that the TABL+ qABC
shows better performance than other seven compared al-
gorithms. To be specific, the TABL+ qABC outperforms the
CMM_rcBBOg, NCS, TLBO, TSaABC, CSO, SLPSO, and
CMA-ES on 24, 26, 27, 25, 21, 24, and 24 functions, re-
spectively. In contrast, the CMM_rcBBOg, NCS, TLBO,
TSaABC, CSO, SLPSO, and CMA-ES can beat the
TABL+ qABC on 3, 2, 2, 2, 8, 5, and 4 functions, respectively.

In addition, we note that the TABL+ABCs is not as good
as CMA-ES in solving unimodal functions.*e reason is that
the covariance matrix of TABL+ABCs only utilizes the
distribution information of the current population, while the
CMA-ES employs the cumulative learning of population
distribution information from the previous to current
generations. Generally, the CMA-ES has faster guidance
capability, which speeds up the convergence speed.

6. TABL+ qABC for BigOptimization Problems

In this section, the proposed TABL+ABC algorithm is
applied to big optimization problems. *e results are
compared with the other learning algorithms PSO, DE, and
ABC.

6.1. Big Optimization Problems. In the optimization of big
data 2015 competition [62], the big optimization problem is
introduced. Next, we will briefly introduce this problem.
Assume the dimension of matrix Y is N × M, where N and
M are the number and length of interdependent time series,
respectively. *e same is true for matrix X. A linear
transformation matrix A of N × N is given. *en, we have

Y � AX. (13)

*emain problem of big optimization problem is how to
decompose the matrixX into two matrices X1 and X2 as
follows:

X � X1 + X2,

Y � AX1 + AX2.
(14)

*e Pearson correlation coefficient C between AX1 and
AX2 is given as follows:

C �
cov Y, AX1( 􏼁

δ(Y)δ AX1( 􏼁
, (15)

where cov(·) is the covariance matrix and δ(·) is the
standard deviation.

*e optimization objective can be defined as

Table 8: *e average ranking of twenty-four algorithms based on the Friedman test, respectively.

Algorithms Ranking
AEL+ABC 20.20
AEL+ABCM 20.65
AEL+ABCVSS 17.68
AEL+EABC 14.38
AEL+GABC 15.23
AEL+MABC 18.42
AEL+OPIABC 16.53
AEL+ qABC 18.72
ACoS+ABC 19.52
ACoS+ABCM 19.35
ACoS+ABCVSS 14.68
ACoS+ EABC 14.05
ACoS+GABC 15.25
ACoS+MABC 13.22
ACoS+OPIABC 15.25
ACoS+ qABC 20.55
TABL+ABC 12.72
TABL+ABCM 13.13
TABL+ABCVSS 8.37
TABL+EABC 7.37
TABL+GABC 9.27
TABL+MABC 9.47
TABL+OPIABC 8.03
TABL+ qABC 7.03

18 Discrete Dynamics in Nature and Society



Table 9:*e statistical results (mean (std)) of CMM_rcBBOg, NCS, TLBO, TSaABC, CSO, SLPSO, and CMA-ES over 51 independent runs
on the CEC2014 benchmarks with 30D.

Function TABL+ qABC CMM_rcBBOg NCS TLBO TSaABC CSO SLPSO CMA-ES

F1 5.88E+ 00 1.50E+ 06‡ 7.86E+ 05‡ 2.88E+ 05‡ 1.80E+ 07‡ 5.19E+ 05‡ 3.87E+ 05‡ 1.25E− 14†
(1.86E+ 01) (1.13E+ 06) (2.98E+ 05) (3.85E+ 05) (6.00E+ 06) (2.22E+ 05) (2.41E+ 05) (4.62E− 15)

F2 3.79E − 14 9.48E+ 03‡ 1.20E+ 02‡ 9.65E − 01‡ 5.87E+ 02‡ 1.16E+ 04‡ 1.11E+ 04‡ 2.56E − 14†
(2.88E − 14) (5.55E+ 03) (1.22E+ 02) (1.34E+ 00) (9.36E+ 02) (6.76E+ 03) (1.00E+ 04) (8.54E − 15)

F3 2.56E − 14 6.31E+ 03‡ 9.09E+ 04‡ 5.59E+ 01‡ 7.66E+ 02‡ 7.17E+ 03‡ 6.71E+ 03‡ 5.57E − 14†
(2.86E − 14) (5.14E+ 03) (1.65E+ 04) (7.67E+ 01) (7.78E+ 02) (5.37E+ 03) (5.44E+ 03) (1.79E − 14)

F4 1.18E+ 01 7.45E+ 01‡ 1.10E+ 01§ 5.87E+ 01‡ 3.22E+ 01‡ 7.70E+ 01‡ 3.68E+ 01‡ 4.97E+ 00†
(2.47E+ 01) (4.37E+ 01) (2.28E+ 01) (3.51E+ 01) (2.72E+ 01) (2.62E+ 01) (2.83E+ 01) (1.72E+ 01)

F5 2.00E+ 01 2.00E+ 01§ 2.00E+ 01§ 2.09E+ 01‡ 2.03E+ 01‡ 2.09E+ 01‡ 2.09E+ 01‡ 2.00E+ 01§
(6.71E − 04) (5.65E − 05) (1.25E − 04) (5.79E − 02) (5.23E − 02) (5.04E − 02) (5.38E − 02) (1.34E − 05)

F6 6.85E+ 00 6.68E+ 00† 1.20E+ 01‡ 1.55E+ 01‡ 1.27E+ 01‡ 8.05E − 01† 9.42E − 01† 4.16E+ 01‡
(1.81E+ 00) (2.67E+ 00) (1.61E+ 00) (2.31E+ 00) (1.54E+ 00) (9.67E − 01) (1.19E+ 00) (1.07E+ 01)

F7 1.11E − 13 2.78E − 02‡ 1.37E − 02‡ 5.59E − 02‡ 2.66E − 06‡ 1.11E − 14† 3.38E − 04‡ 2.85E − 03‡
(5.33E − 14) (3.33E − 02) (1.72E − 02) (7.66E − 02) (4.52E − 06) (3.41E − 14) (1.71E − 03) (4.96E − 03)

F8 2.23E − 15 3.16E+ 01‡ 9.35E+ 01‡ 6.75E+ 01‡ 8.69E-14‡ 1.13E+ 01‡ 1.73E+ 01‡ 4.32E+ 02‡
(1.59E − 14) (8.74E+ 00) (1.72E+ 01) (1.26E+ 01) (4.87E − 14) (2.64E+ 00) (4.73E+ 00) (7.82E+ 01)

F9 4.24E+ 01 4.09E+ 01§ 9.98E+ 01‡ 7.34E+ 01‡ 3.92E+ 01§ 1.26E+ 01† 2.11E+ 01† 5.97E+ 02‡
(6.07E+ 00) (1.15E+ 01) (1.66E+ 01) (1.54E+ 01) (6.69E+ 00) (3.41E+ 00) (1.78E+ 01) (1.22E+ 02)

F10 1.47E − 01 1.21E+ 03‡ 2.22E+ 03‡ 1.58E+ 03‡ 2.77E-01‡ 1.08E+ 02‡ 3.55E+ 02‡ 5.05E+ 03‡
(4.70E − 02) (4.30E+ 02) (2.56E+ 02) (3.99E+ 02) (2.59E − 01) (1.26E+ 02) (2.28E+ 02) (8.26E+ 02)

F11 1.51E+ 03 3.18E+ 03‡ 2.30E+ 03‡ 5.03E+ 03‡ 1.96E+ 03‡ 8.65E+ 02† 9.38E+ 02† 5.01E+ 03‡
(1.92E+ 02) (7.15E+ 02) (3.04E+ 02) (1.56E+ 03) (3.41E+ 02) (3.06E+ 02) (4.75E+ 02) (6.72E+ 02)

F12 1.09E − 01 9.73E − 02† 6.39E − 02† 2.45E+ 00‡ 3.77E − 01‡ 1.69E − 01‡ 2.22E+ 00‡ 2.86E − 01‡
(3.39E − 02) (6.67E − 02) (1.83E − 02) (2.27E − 01) (7.04E − 02) (4.52E − 01) (5.60E − 01) (3.06E − 01)

F13 2.09E − 01 2.04E − 01† 5.10E − 01‡ 4.31E − 01‡ 1.78E − 01† 8.63E − 02† 1.69E − 01† 2.81E − 01‡
(3.27E − 02) (5.49E − 02) (8.44E − 02) (1.07E − 01) (2.13E − 02) (2.33E − 02) (3.61E − 02) (7.86E − 02)

F14 1.76E − 01 2.78E − 01‡ 2.21E − 01‡ 2.71E − 01‡ 2.15E − 01‡ 3.82E − 01‡ 3.94E − 01‡ 3.98E − 01‡
(2.39E − 02) (5.14E − 02) (3.21E − 02) (8.61E − 02) (1.77E − 02) (4.70E − 02) (7.05E − 02) (1.88E − 01)

F15 3.36E+ 00 4.67E+ 00‡ 4.73E+ 00‡ 1.66E+ 01‡ 5.08E+ 00‡ 3.24E+ 00† 6.44E+ 00‡ 3.56E+ 00‡
(6.01E − 01) (2.37E+ 00) (9.81E − 01) (6.32E+ 00) (9.03E − 01) (5.33E − 01) (4.70E+ 00) (9.57E − 01)

F16 8.78E+ 00 1.22E+ 01‡ 1.20E+ 01‡ 1.13E+ 01‡ 9.56E+ 00‡ 7.88E+ 00† 1.21E+ 01‡ 1.43E+ 01‡
(5.46E − 01) (5.32E − 01) (4.49E − 01) (4.89E − 01) (4.42E − 01) (9.40E − 01) (2.91E − 01) (4.42E − 01)

F17 2.35E+ 02 2.67E+ 05‡ 3.03E+ 04‡ 1.02E+ 05‡ 2.50E+ 06‡ 2.23E+ 05‡ 1.10E+ 05‡ 1.70E+ 03‡
(1.19E+ 02) (1.87E+ 05) (1.77E+ 04) (8.53E+ 04) (9.86E+ 05) (1.29E+ 05) (7.01E+ 04) (3.93E+ 02)

F18 1.22E+ 01 8.88E+ 02‡ 7.36E+ 02‡ 2.87E+ 03‡ 5.51E+ 02‡ 7.31E+ 02‡ 1.41E+ 03‡ 1.55E+ 02‡
(4.52E+ 00) (1.15E+ 03) (4.92E+ 02) (5.08E+ 03) (5.99E+ 02) (8.25E+ 02) (1.76E+ 03) (5.20E+ 01)

F19 3.94E+ 00 8.90E+ 00‡ 7.26E+ 00‡ 1.76E+ 01‡ 7.20E+ 00‡ 4.04E+ 00‡ 7.16E+ 00‡ 1.17E+ 01‡
(5.80E − 01) (8.14E+ 00) (7.41E − 01) (1.96E+ 01) (4.82E − 01) (1.14E+ 00) (1.36E+ 00) (2.24E+ 00)

F20 7.57E+ 00 1.63E+ 04‡ 1.67E+ 04‡ 3.83E+ 02‡ 2.92E+ 03‡ 1.47E+ 04‡ 2.20E+ 04‡ 2.75E+ 02‡
(2.21E+ 00) (8.23E+ 03) (8.05E+ 03) (1.40E+ 02) (1.47E+ 03) (7.21E+ 03) (1.17E+ 04) (1.10E+ 02)

F21 1.14E+ 02 1.69E+ 05‡ 2.22E+ 04‡ 5.33E+ 04‡ 5.29E+ 05‡ 1.52E+ 05‡ 7.41E+ 04‡ 1.07E+ 03‡
(7.71E+ 01) (1.56E+ 05) (1.15E+ 04) (3.50E+ 04) (2.66E+ 05) (9.49E+ 04) (6.05E+ 04) (3.46E+ 02)

F22 1.72E+ 02 3.50E+ 02‡ 2.59E+ 02‡ 2.70E+ 02‡ 2.86E+ 02‡ 1.77E+ 02‡ 1.81E+ 02‡ 3.89E+ 02‡
(6.42E+ 01) (1.55E+ 02) (1.08E+ 02) (9.84E+ 01) (1.02E+ 02) (6.44E+ 01) (1.26E+ 02) (2.54E+ 02)

F23 3.15E+ 02 3.15E+ 02§ 3.16E+ 02‡ 3.15E+ 02§ 3.16E+ 02‡ 3.15E+ 02§ 3.15E+ 02§ 3.15E+ 02§
(4.55E − 13) (1.32E − 03) (1.00E − 01) (1.34E − 11) (2.33E − 01) (1.11E − 07) (1.27E − 12) (5.08E − 12)

F24 2.25E+ 02 2.28E+ 02‡ 2.23E+ 02† 2.00E+ 02† 2.25E+ 02§ 2.26E+ 02‡ 2.31E+ 02‡ 2.55E+ 02‡
(9.02E − 01) (4.05E+ 00) (1.50E+ 01) (8.21E − 04) (3.78E+ 00) (3.29E+ 00) (6.53E+ 00) (1.55E+ 02)

F25 2.03E+ 02 2.12E+ 02‡ 2.04E+ 02‡ 2.00E+ 02† 2.08E+ 02‡ 2.08E+ 02‡ 2.05E+ 02‡ 2.08E+ 02‡
(8.97E − 02) (1.87E+ 00) (3.62E − 01) (1.98E+ 00) (9.66E − 01) (1.59E+ 00) (2.07E+ 00) (6.90E+ 00)

F26 1.00E+ 02 1.10E+ 02‡ 1.01E+ 02‡ 1.20E+ 02‡ 1.00E+ 02§ 1.31E+ 02‡ 1.16E+ 02‡ 1.05E+ 02‡
(2.69E − 02) (3.00E+ 01) (9.61E − 02) (3.99E+ 01) (4.90E − 02) (4.68E+ 01) (3.67E+ 01) (3.08E+ 01)

F27 4.00E+ 02 4.31E+ 02‡ 4.02E+ 02‡ 5.62E+ 02‡ 4.15E+ 02‡ 3.66E+ 02† 3.93E+ 02† 4.72E+ 02‡
(2.00E − 01) (5.07E+ 01) (3.28E − 01) (1.75E+ 02) (4.38E+ 00) (5.31E+ 01) (5.62E+ 01) (1.11E+ 02)

F28 8.43E+ 02 1.01E+ 03‡ 8.61E+ 02‡ 1.10E+ 03‡ 8.37E+ 02† 8.72E+ 02‡ 9.00E+ 02‡ 4.44E+ 03‡
(1.88E+ 01) (1.65E+ 02) (4.88E+ 01) (1.66E+ 02) (2.60E+ 01) (5.35E+ 01) (5.74E+ 01) (3.50E+ 03)

F29 7.15E+ 02 1.47E+ 03‡ 4.05E+ 03‡ 9.42E+ 05‡ 1.63E+ 03‡ 1.42E+ 03‡ 1.65E+ 03‡ 4.91E+ 06‡
(1.18E+ 00) (2.50E+ 02) (1.47E+ 03) (2.89E+ 06) (2.42E+ 02) (2.87E+ 02) (5.57E+ 02) (5.60E+ 06)

F30 8.03E+ 02 2.95E+ 03‡ 4.59E+ 03‡ 2.68E+ 03‡ 4.47E+ 03‡ 3.11E+ 03‡ 3.38E+ 03‡ 2.28E+ 03‡
(2.05E+ 02) (7.44E+ 02) (8.60E+ 02) (1.07E+ 03) (1.09E+ 03) (8.28E+ 02) (9.78E+ 02) (5.40E+ 02)

‡/§/† -- 24/3/3 26/2/2 27/1/2 25/3/2 21/1/8 24/1/5 24/2/4
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6.2. Experimental Results. To verify the effectiveness of the
proposed TABL+ qABC algorithm, six datasets as test
problems are introduced. *ey are shown in Table 10, and
the experimental results are given in Table 11.

Table 11 shows that TABL+ qABC achieves the best
results on D4, D12, and D19 problems, which suggested that
the TABL+ qABC is more suitable for solving high-di-
mensional optimization problems.

7. Conclusions

In this paper, we have discussed the search behavior of ABC
and confirmed that ABC always works perfectly for sepa-
rable problems but suffers a drastic performance loss for
nonseparable problems. Based on this analysis, a tristage
adaptive biased learning framework is proposed to enhance
the performance of ABCs on nonseparable problems,
termed TABL+ABCs. In TABL+ABCs, the ranking biased
information of the parent food sources is served as the search
direction to accelerate the convergence speed in employed
bee stage, while in onlooker bee stage, the search direction is
guided by turning the coordinate system for increasing the
improvement interval of variables. Moreover, a deletion-
restart learning strategy is designed in scout bee stage to
prevent the potential risk of population stagnation. Finally,
we compared TABL+ABCs with AEL+AELs and
ACoS+ABCs by applying them to 30 CEC2014 test prob-
lems with 30D, respectively. *e experimental results show
that TABL+ABCs perform better than the compared al-
gorithms in most cases.

Although TABL+ABCs can effectively solve these
benchmark problems with 30D, like many evolutionary
algorithms, they still suffer from the curse of dimensionality.
*erefore, it needs to study the TABL strategy in depth to

meet the requirements of large-scale optimization in the
future. In addition, establishing a bridge between the
benchmark problems and real-world application problems is
of great significance to the generalization of TABL+ABCs.
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