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Blantyre City has experienced a wide range of changes in land use and land cover (LULC).+is study used Remote Sensing (RS) to
detect and quantify LULC changes that occurred in the city throughout a twenty-year study period, using Landsat 7 Enhanced
+ematic Mapper (ETM+) images from 1999 and 2010 and Landsat 8 Operational Land Imager (OLI) images from 2019. A
supervised classification method using an Artificial Neural Network (ANN) was used to classify and map LULC types. +e kappa
coefficient and the overall accuracy were used to ascertain the classification accuracy. Using the classified images, a post-
classification comparison approach was used to detect LULC changes between 1999 and 2019. +e study revealed that built-up
land and agricultural land increased in their respective areas by 28.54 km2 (194.81%) and 35.80 km2 (27.16%) with corresponding
annual change rates of 1.43 km·year−1 and 1.79 km·year−1. +e area of bare land, forest land, herbaceous land, and waterbody,
respectively, decreased by 0.05%, 90.52%, 71.67%, and 6.90%.+e LULC changes in the study area were attributed to urbanization,
population growth, social-economic growth, and climate change.+e findings of this study provide information on the changes in
LULC and driving factors, which Blantyre City authorities can utilize to develop sustainable development plans.

1. Introduction

Most parts of countries in the world are currently experi-
encing wide-ranging changes in land use and land cover
(LULC) [1–3]. +ese LULC changes have mostly been as-
sociated with the interaction between humans and the en-
vironment [3–5]. +e resulting negative impacts on
ecosystems and human wellbeing, which include erosion,
increased run-off, flooding, loss of water resources,
degrading water quality, and other negative impacts, have
brought these changes to the attention of the world [6–8].
+ere are many indicators for understanding the relation
between humans and the environment, one of which is land
cover change [6]. +e timely and accurate understanding
and monitoring of land use and land cover changes, their
intensity, direction, causes, and consequences are critical for
sustainable development planning; hence, it is an essential
goal in the field of land cover change science [6, 9, 10].

Land cover and land use are two different terms that are
frequently used interchangeably to describe land surface
features [11, 12]. Land use is evidence of land utilization by
humans and their habitat, mostly with an emphasis on
providing information on socioeconomic activities [11],
while land cover is described as the biophysical features of
the Earth’s surface, which includes vegetation, waterbodies,
soil, and other physical features of the land [8, 13, 14].
+ese definitions make it clear that there is a link between
land use and land cover. LULC change is a process that
occurs as a result of human interaction with the physical
environment, resulting in the modification and biophysical
attribute change of the Earth’s terrestrial surface [8, 12], by
either shifting to a new type of land use or intensifying
use of the existing type [12, 15]. Unfortunately, this
process has negative impacts on the environment, which
must be addressed if we are to achieve sustainable devel-
opment [6, 9]. Changes in land use, for example, can cause
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climate change, such as higher temperatures and the de-
struction of waterbodies, resulting in a reduction or ir-
regular vegetation pattern, which undermines the stability
of the ecosystem [16].

Rapid population growth and economic development
are some of the contributing factors to this rapid change in
LULC happening in most parts of the world [10, 17, 18].
Economic development and population growth cause
changes in land use, as it adjusts to satisfy the demand for
food and energy, as well as other capitals to support the
growing population [18]. A better analysis of LULC change
will not only result in accurate meaning but also ensure that
there is greater knowledge of land use changes, which can be
used by public or private organizations in the selection,
planning, and utilization of natural resources and their
management [19, 20] to meet the increasing demands for
basic human needs and welfare while also achieving sus-
tainable development goals. An understanding of the
landscape patterns, changes, and relationships between
human actions and natural phenomena will hence ensure
that our current use of land does not adversely affect future
generations [10, 21].

Since the 1970s, satellite Remote Sensing (RS) data has
served as the foundation and source of information for the
monitoring and analyzing of LULC changes [22]. It allows
researchers to investigate changes in land cover in less time,
at a cheaper cost, and with more precision [13, 23, 24]. To
ensure the effectiveness of land cover change detection, RS is
usually coupled with Geographic Information System (GIS)
techniques [25]. It is however not the only method for
analyzing the changes in LULC. Dynamic models are also
used for determining the changes in and patterns of vege-
tation. Xue et al. used dynamic models to show how dif-
fusion and nonlocal delay interact to produce vegetation
patterns in semiarid environments [16], Brhane et al. used a
mathematical model to investigate the effects of fire, rainfall,
and competition for space on the dynamics of the savannah
ecosystem [26], and Yan et al. used least-squares linear
regression to investigate vegetation dynamics and their
relationships to climatic change in southwestern China [27].

RS and GIS have been extensively utilized to give precise
and timely geographical data of LULC and analyze changes
in a study area [28]. RS images can efficiently capture land
use conditions and serve as a good source of data for
extracting, analyzing, and simulating current LULC infor-
mation and changes. GIS provides a versatile platform for
gathering, storing, presenting, and evaluating digital data
required for change detection [12]. Remotely sensed data are
very applicable and useful for LULC change detection
studies [13]. Several researchers have used Remote Sensing
to investigate LULC changes [12, 13, 28–30]. For example,
Suzanchi et al. used multispectral satellite data of 1977 and
2001 to analyze changes in LULC of the National Capital
Territory (NCT) of the Delhi region [31]. Gupta used RS and
GIS to study the pattern of urban land use changes of Indian
cities [32]. A case study in Algiers Town used Landsat images
for urban change detection [33]. Bekturov analyzed LULC
changes in Bishkek, Kyrgyzstan, between 1993 and 2003,
using satellite images [34]. +e mentioned studies show that

RS and GIS are used in the detection of land use and cover at
different scales.

Land cover classification, which is a Remote Sensing
application, is used in identifying features such as land use
by employing commonly multispectral satellite imagery [2].
Land cover classification using Remote Sensing images aims
to associate each pixel in a Remote Sensing image with a
predefined land cover category [35]. +e classification
techniques used in land cover classification can be catego-
rized as either supervised or unsupervised, with numerous
classification algorithms (classifiers) for each category
[36–39]. Maximum Likelihood Classifier (MLC) is an ex-
ample of a supervised classification approach, whereas the
K-means algorithm is an unsupervised classification ap-
proach. Mohajane et al. used the maximum likelihood (ML)
classification method to map LULC in Azrou Forest, in the
Central Middle Atlas of Morocco [40]. More advanced
methods, such as Artificial Neural Networks (ANN), a su-
pervised classification approach, have received a lot of at-
tention in land cover classification over the years [41]. +e
accuracy of the land cover classification process is influenced
by a range of factors such as classification system, image data
used, selection of training samples, preprocessing, classifi-
cation, and postprocessing procedures, data collection, and
validationmethodology [2]. An accurate LULC classification
map will result in a meaningful LULC change detection
analysis since the generated maps are used to trace and
quantify the change.

Change detection entails quantitatively analyzing
changes in land cover classes using multitemporal datasets
[10, 42]. It is described as the process of finding variations in
an object’s or phenomenon’s state by monitoring it at several
periods [43, 44]. Timely and accurate change detection of the
Earth’s surface characteristics is critical for laying the
groundwork for understanding the linkages and interactions
between human and natural events to improve resource
management and use [42]. With the advancement of high
spatial resolution satellite images and more advanced image
processing software, LULC change detection, analysis, and
monitoring have become more regular and consistent.
Techniques for detecting changes have been categorized into
several groups by authors over the years [45]. Lu et al.
categorized the techniques into six groups, which are al-
gebra, transformation, classification, advanced models,
Geographic Information System (GIS) approaches, and vi-
sual analysis [10, 45]. +e postclassification comparison
technique, under classification category, is the most popular
approach in change detection analysis [10, 44]. +is ap-
proach requires individual categorization of multitemporal
images into thematic maps; it then performs a pixel-by-pixel
comparison of the classified images to detect regions of
change [10]. +e technique reduces the effects of atmo-
spheric, sensor, and ambient variations across multi-
temporal pictures while still providing a comprehensive
change information matrix.

Malawi is a landlocked southern African country sur-
rounded by Mozambique, Tanzania, and Zambia [46].
Mzuzu, Lilongwe, Zomba, and Blantyre are Malawi’s four
largest cities, and Blantyre, where the study is situated, is the
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country’s commercial and industrial capital. According to
the 2018 census, it has the highest population density of
3,334 people per square kilometer, up by 81% from 2,704 in
2008. In comparison, the population density of the capital
city of Malawi, Lilongwe, stands at 2,455 people per square
kilometer as per the 2018 census [46–48]. +e study area has
witnessed a tremendous change in LULC during the past
decades due to urbanization, an increase in socioeconomic
activities, and population. However, there has been little, if
any, research to ascertain the classes of LULC and the extent
of the LULC changes and their driving factors.

+e main objective of this study is to analyze LULC
changes in Blantyre City between 1999 and 2019 using
Landsat 7 and 8 satellite imagery. To achieve the objective, it
was necessary to (1) differentiate and classify the various
LULC types, (2) accurately measure themagnitude and rate of
LULC change, and (3) evaluate the main causes of LULC
changes in the study area from 1999 to 2019. As alluded to
earlier, this study will contribute to the literature on LULC for
Blantyre City since the area has not been studied extensively
and exclusively, and the findings are pivotal in establishing
sustainable economic activity and urban planning.

2. Materials and Methods

2.1. Study Area. Blantyre City is the capital of Malawi’s
Blantyre District, which is located in the country’s southern
region. It is Malawi’s commercial city, with the majority of
the country’s industrial and business offices. +e City is
located at −15°29′59.99″S, 35°00′0.00″E and has an area of
240 km2. +e study area has a total population of 809,397
people, according to the 2018 Malawi Population and
Housing Census [47]. Blantyre City lies at an average ele-
vation of 1039 meters above sea level that helps to moderate
the tropical climate [49]. It has three seasons: rainy (De-
cember to March), cool (April to August), and hot (Sep-
tember to November). +e average temperature in Blantyre
is 20.7°C, and the city receives about 1086 millimeters of
precipitation each year [49, 50]. +e city is hilly, with
Ndirande Hill being the highest point at 1595 meters above
sea level [51].

As a commercial capital city, urbanization in Blantyre
City is driven by natural increase, rural-urban migration,
and reclassification [52]. Blantyre City has long had a young
population, with a median age of 17, resulting in a situation
where the population is always on the increase [47, 52].
Rural-urban migration has been driven by Blantyre City’s
several economic opportunities, which attract people to
migrate to the city. According to the World Bank, Malawi’s
GDP increased at a rate of 3.9 percent per year between 1998
and 2013, owing primarily to the rise of the manufacturing
and construction sectors [53]. +ese two are concentrated in
major cities, and Blantyre contributed because the city’s
most important economic activities include retail industry,
construction, food product manufacturing, transportation,
textile industry, automobile sales and maintenance, and
public administration, making it one of the country’s largest
employment centers. Figure 1 shows the location of the
study area.

2.2. Data Collection

2.2.1. LULC Classification Data. Landsat 7 Enhanced
+ematic Mapper (ETM+) images from 1999 and 2010 and
Landsat 8 Operational Land Imager (OLI) images from
2019, with a resolution of 30m, were utilized in this study
to evaluate changes in LULC in the study region during a
20-year period from 1999 to 2019.+ree cloud-free Landsat
satellite scenes for Path/Row 167/71 from two types of
sensors covering the study area were downloaded freely
from the United States Geological Survey (USGS) website
(http://earthexplorer.usgs.gov/). For easy visibility, the
cloud-free imagery used in this study was captured during
the dry season (September and October). +e detailed
characteristics of the Landsat images used in this study are
presented in Table 1.

2.2.2. Climate Data. +e paper also makes use of envi-
ronmental data, specifically rainfall and temperature data, in
discussing LULC class changes and determining the best
time of year to extract images. For the years 1999 to 2019,
rainfall and temperature data were freely obtained from the
Malawi Department of Climate Change and Meteorological
Services.

2.3. ImageProcessing andAnalysis. +e three satellite images
were processed using the ENVI5.3 software package. +e
analysis was carried out using the data processing steps
shown in Figure 2.

2.3.1. Image Preprocessing. Satellite image preprocessing is
critical before image classification and change detection
because it compensates for sensor, solar, atmospheric, and
topographic effects [2, 54]. Radiometric and geometric
correction of remotely sensed data is normally referred to as
preprocessing [55, 56]. In this work, image preprocessing
included many processes such as radiometric, geometric,
and atmospheric correction, as well as image gap filling,
subsetting, image enhancement, and selection of band
combination. All data preprocessing procedures were per-
formed using ENVI 5.3 software (Exelis Visual Information
Solutions, Inc., Boulder, CO 80301 USA).

+e radiometric correction tool in ENVI 5.3 was used to
calibrate the satellite images of the years 1999, 2010, and
2019 to reduce radiometric errors. Radiometric calibration
converts the digital number of pixels into spectral radiance
values and the radiance into reflectance values [57]. To
remove the influence of the atmosphere, the three satellite
images were atmospherically corrected using the QUick
Atmospheric Correction (QUAC) tool, one of the atmo-
spheric correction tools in ENVI 5.3.

Gap filling was performed to correct for the missing data
caused by the Scan Line Corrector (SLC) failure that hap-
pened on May 31, 2003, on Landsat 7’s ETM+ instrument.
SLC failure introduces line gaps on all Landsat 7 imagery
retrieved from the failure date until 2013 [58, 59]. In this
study, the Landsat 7 imagery acquired on September 21,
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2010, was affected by this failure. +e gap-fill triangulation
method in ENVI5.3 was applied to remove the gap lines and
fill in the missing data. To improve the image resolution
(from 30m to 15m), the Landsat images were sharpened
using the Nearest Neighbor Diffusion (NNDiffuse). Because
the downloaded satellite images’ Landsat scenes spanned a
considerably larger area than the study area, the image file
sizes were reduced to include only the area of study by
subsetting the satellite images using a shapefile specifying the
study area’s boundaries.

2.3.2. Image Classification. +e technique of assigning a
land cover classification to pixels is referred to as image
classification. +e procedure creates clusters of pixels with
comparable digital values in the same data categories [25].

Atlas Map of Malawi Land Cover and Land Change of 1990
to 2010 prepared in 2013 by the Food and Agriculture
Organization (FAO) of the United Nations [60] was used
with minor modifications as a basic reference for the
identification of existing LULC classes. +e adopted LULC
classification scheme for this study consisted of six LULC
classes: built-up area, bare land, forest land, agricultural
land, herbaceous land, and waterbody. Table 2 provides a
description of each class.

In the present study, ANN classifier, a supervised clas-
sification approach in ENVI 5.3, was used. +e theory be-
hind supervised classification is that a user may pick sample
pixels in an image that are indicative of certain classes and
then instruct the image processing software to utilize these
training samples as references for the categorization of all
other pixels in the image. In this work, uniformly dispersed

Table 1: Satellite imagery used.

Satellite sensor Path/row Acquisition date Number of bands Spatial resolution (m)
L7 ETM+ 167/71 22/08/1999 8 30
L7 ETM+ 167/71 21/09/2010 8 30
L8 OLI 167/71 05/08/2019 11 30
Data source: US Geological Survey.
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Figure 1: Location of the study area, Blantyre City. Data source: Diva GIS website and satellite image courtesy of the US Geological Survey
website.
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Regions of Interest (ROI) in the study area for all class types
were identified using visual interpretation of Landsat images
to train the classification. True and false composites were
employed to improve the feature visualization so that LULC
classes could be easily distinguished in the image. Google
Earth archived images were used as references when col-
lecting the training samples and for validating the classified
maps. A total of 12690, 10362, and 11063 training samples
were used for 1999, 2010, and 2019 images, respectively. A
spectral separability test using the M-statistic method was

performed to determine how separable the training samples
were before being used in the classification. ANN algorithm,
which can use backpropagation for supervised learning, was
applied to generate spectral signatures and later to classify
images into the above-mentioned six LULC categories.

+eANN classification is a biologically inspired computing
code composed of numerous basic, highly linked pro-
cessing components that imitate human brain activity to
analyze information. It is considered made up of a large
number of basic, linked neurons/units that function in

Table 2: LULC class description.

LULC class Description
Built-up land Land that has been built on. It includes commercial, residential, industrial, and transportation infrastructure
Bare land Areas with no dominant vegetation cover, including exposed rocks
Forest land Areas with open woodland (15–65%), herbaceous layers, and closed broadleaved deciduous trees (>70–60%)
Herbaceous land Including land with herbaceous closed vegetation (15–100%), permanent marsh, sparse tree, and shrub savannah
Agricultural
land

Idle land being used for small-scale farming of rain-fed crops (maize) and cultivated dambo areas (BCC laws do not
permit farming in the city even though small-scale farming is still practiced)

Waterbody Areas permanently covered by water, which includes man-made dams and ponds

Landsat Imagery

Landsat 7
1999

Landsat 8
2019

Landsat 7
2010

Image preprocessing ( including radiometric
calibration, atmospheric correction)

Selection of training data and classification
using neutral network classification scheme

Post classification

Accuracy assessment
 ( using overall accuracy and kappa
coefficient from confusion matrix)

Acceptable?

Classified maps
LCLC 1999, 2010, 2019

Change
detection

Change detection
statistics and discussion
(1999-2010, 2010-2019)

YES

NO

Figure 2: Flowchart of data processing steps.
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parallel inside a network to classify input data into output
classes [61].+e input data is used to weigh the connections
between the components. +e weights define the amount of
activation of a unit in the network, which impacts the level
of activation of other units in the network and eventually
dictates the network outputs [62]. +e weight’s magnitude
is determined through an iteration procedure in which the
network constantly attempts to learn the right output for
each of the training samples. +e procedure involves
adjusting the unit weights until the Artificial Neural
Network can accurately characterize the training data. To
improve the results, ANN employs a set of learning rules
called backpropagation (also known as backward propa-
gation of error) [63]. +is method of classification was
adopted for this study due to the advantageous charac-
teristics and capabilities it possesses, which include (1) high
tolerance to noisy data, (2) the capacity to categorize
patterns on which they have not been taught, and (3) the
ability to incorporate various forms of data into the
analysis. +e ANN supervised classification method is able
to perform supervised classification with less training data
because the criteria for recognizing categories are based on
this particular category class and other classes [64]. +is
method has high precision in classifying urban areas and
hence its selection for this study.

+e backpropagation algorithm was used in this study to
train the weights and to adjust weights within a supervised
classification. +is type of algorithm is probably the most
employed in neural network studies considering its opera-
tion. +e algorithm operates under two basic steps, which
are feedforward and backward. In the feedforward pass, the
activation of the network flows in a single direction. +is
flow is from the input layer passing through the hidden layer
to the output layer. +e unit in a layer is connected to every
unit in the next layer. However, the backward pass involves a
function in which the algorithm iteratively adjusts the
weights to correct the backpropagation algorithm. +e
network works backward from the output unit to the input
units, adjusting the weight of its connections between the
units so that the lowest error function between actual and
desired outputs is attained [63]. Equation (1) defines the
error vector, which is equal to the difference between the
output and the response of the network.

E �
1
2

 kt − k0( 
2
, (1)

where E is the square of the error between the desired output
and the real (actual) output and k0 and kt indicate the actual
and desired output of the network, respectively.

Several training parameters were tested in this study, and
the error of the ANN system’s output was examined each
time. +reshold training for this research study was pegged
at 0.9. +is was done to determine the size of the internal
weight’s contribution. Other types of training were done to
determine the magnitude of the adjustment of the weights.

2.3.3. Postclassification. +e categorized images required
postprocessing to assess classification accuracy and

generalize classes for output to image maps and vector GIS.
A postclassification was performed to apply majority
analysis to the classified map and to calculate class statistics
and confusion matrices. +e majority analysis reduces noise
from the classified map by converting erroneous pixels
within a big single class to a small class. +e generated
confusion matrix for each classified image was used to assess
the accuracy of thematic maps.

2.3.4. Accuracy Assessment. An accuracy assessment of
maps created from any remotely sensed product is a uni-
versal requirement in image classification since it allows for
self-evaluation, offers a quantitative comparison of various
approaches, algorithms, and analysts, and assures higher
dependability of the resultant maps [65]. In this study, 85%
was considered as the minimum level of interpretation
accuracy in the identification of land use and land cover
categories from remote sensor data according to the USGS’s
classification criterion [66]. In this study, an assessment of
the accuracy of the classification was done using derived
measures generated from the error matrix. +e error matrix
is the most common way to represent the classification
accuracy of remotely sensed data, and it is recommended by
many researchers [67]. It demonstrates the accuracy of a
classification result by comparing it to the ground truth
information. +e error matrix reports the overall accuracy,
producer and user accuracy, kappa coefficient, and errors of
commission and omission. Overall accuracy, which deter-
mines the proportion of pixels that have been properly
categorized, can be used to describe the overall accuracy of
the map for the classes. An overall accuracy rating of greater
than 70% is considered satisfactory for classification accu-
racy. +e kappa (κ) coefficient measures the agreement
between classification and ground truth pixels. In contrast to
the overall accuracy, the kappa coefficient takes into account
the errors of omission and commission. A kappa value of
one (1) indicates perfect agreement, whereas a value of zero
(0) signifies no agreement. Most applications can accept a
kappa value of more than 0.75 as an excellent or very good
agreement. Mathematically, the kappa coefficient (k) is
presented as

k �
N 

n
i�1 mi,i − 

n
i�1 GiGi( 

N
2

− 
n
i�1 G1Gi( 

, (2)

where i represents the class number,N is the total number of
classified pixels relative to the ground truth, mi,i denotes the
number of pixels of ground truth class i, which have also
been assigned to class i, Ci is the total number of classified
pixels in class i, and Gi refers to the total number of ground
truth pixels in class i.

2.3.5. LULC Change Detection. +e technique of identifying
changes in land cover by analyzing Remote Sensing images
in the same geographical area at various times is referred to
as change detection [68]. In this study, LULC change de-
tection was accomplished using a postclassification com-
parison technique to track LULC changes that happened
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over a twenty-year period. A thematic change detection
algorithm using ENVI 5.3 was applied by comparing pairs of
the three produced LULC classification maps (1999, 2010,
and 2019) to the produced change maps. Using the change
detection statistics tool in ENVI 5.3, change matrices (a
comprehensive list of the differences between each pair of
classification images) were produced to assess the magnitude
of change for the periods of 1999 to 2010, 2010 to 2019, and
1999 to 2019.

3. Results

3.1. Accuracy Assessment. An accuracy assessment was
carried out for the three classified maps to verify if what was
mapped corresponds to what exists on the ground. +e
classification accuracy was evaluated through the error
matrix. Overall accuracy, kappa coefficient, and the user and
producer’s accuracy obtained from the error matrix were
used to verify the accuracy of the three classified maps. For
1999, 2010, and 2019, the overall accuracies were 89.71%,
85.50%, and 87.06%, respectively, indicating that the three
classified maps met the USGS’s classification criterion of the
overall accuracy of 85% in classifying land use and land
cover classes from remote sensor data. In addition, all three
classified maps achieved kappa coefficient values of 0.82,
0.78, and 0.76 in 1999, 2010, and 2019, respectively, thus
greater than 0.75, indicating that the classification is sig-
nificantly better. User and producer’s accuracies of indi-
vidual classes for each year of the land cover map are
presented in the error matrix shown in Table 3.

3.2. LULC Classification Analysis. +e classification of the
three Landsat images resulted in a LULC map for each year,
as shown in Figure 3, which depicts the distribution of the six
classes in the study area. Table 4 shows the area statistical
distribution of LULC and their proportions for the three
years based on the classification results.+e findings indicate
that agricultural land is the most dominant land class in the
studied area. In 1999, 2010, and 2019, the agricultural land
class occupied 131.83 km2, 170.71 km2, and 167.63 km2,
respectively, accounting for 57.15%, 74%, and 72.67% of the
total area. Herbaceous land was the second largest class in
1999 and 2010, representing 26.46% and 12.03% of the total
land, respectively, while in 2019, it was the third largest class,
with 7.5 percent of the total area. As regards the built-up
area, the class is distributed across the research region, with a
concentration in the northwest part. +e built-up area oc-
cupied 6.35%, 11.76%, and 18.72% of the total land in the
respective years of 1999, 2010, and 2019. Forest land oc-
cupied 9.83%, 1.97%, and 0.93% of the total area, making it
the third dominating class in 1999 and the fourth largest in
2010 and 2019.+e waterbody class has an area percentage of
0.13%, 0.11%, and 0.12% of the entire area over the study
period. +e smallest class in the study area in 1999 and 2019
is bare land, with 0.09% and 0.07% of the total area.

3.3. LULC Change Detection Analysis. +e postclassification
comparison change detection results show that LULC has

changed greatly in the study area over the last two decades.
+e change matrix in Table 5 shows the amount and type of
change that has occurred in each LULC class. +e change
matrix and statistics from 1999 to 2010, 2010 to 2019, and
1999 to 2019, which were constructed using the classified
maps 1999, 2010, and 2019, and the population data of
Blantyre presented in Table 6 will be used to discuss the
changes that have taken place over the study period in depth
in the following sections.

3.3.1. LULC Change Detection between 1999 and 2010.
Agriculture was by far the most prominent LULC class type
in the studied area in 1999, accounting for 57.15% of the total
land, followed by herbaceous land, forest, built-up area,
waterbody, and lastly, bare land, accounting for 0.09% of the
total land. Between 1999 and 2010, the classes of herbaceous
forests and waterbody experienced a decline in their re-
spective areas. Table 7 provides a summary of the major
changes in LULC in the study region between 1999 and 2010.

Table 7 shows that the area of the waterbody declined
from 0.29 km2 (0.13% of the total land) in 1999 to 0.26 km2

(0.11%) in 2010, with a minimal decrease of 0.03 km2

(10.34% of the initial area). +e decrease represents a
negative annual change rate of 0.94%. Table 5 shows that
only 0.26 km2 of the 0.29 km2 waterbody remained un-
changed from 1999 to 2010; however, 0.03 km2 changed
classes. During this time frame, 0.01 km2 was converted to
agricultural land, whereas 0.02 km2 was transformed into
herbaceous land.

Over the study period, there has been a significant loss of
herbaceous land in the study area. In 2010, compared to
1999, the herbaceous area decreased by 33.28 km2 (54.52% of
the initial) at a negative annual rate of 3.03 km·year−1

(4.96%). Only 18.89 km2 of the 61.04 km2 herbaceous area
remained unchanged in 1999, while 42.15 km2 changed
classes in 2010. A larger area of herbaceous land (40.06 km2)
was converted to agricultural land, whereas 1.85 km2 was
converted to a built-up area. +e remaining 0.24 km2

transitioned into bare land and forest land.
Between 1999 and 2010, forest land declined by

18.12 km2 (79.93%) from 22.67 km2 to 4.55 km2, as shown in
Table 7. Table 5 shows that 18.31 km2 of the total area of
forest land (out of 22.67 km2) was converted to other classes
in 2010, while 4.36 km2 remained constant. Out of
18.312 km2 of forest land that changed classes, more than
half changed into agricultural land (10.78 km2), while 7 km2

changed into herbaceous land and 0.52 km2 was converted to
the built-up area. +e smallest transition was to bare land,
registering 0.01 km2.

+e class of bare land is the least dominant in the year
1999, accounting for only 0.09% of the total area. During this
period, the area of bare land increased from 0.20 km2 in 1999
to 0.27 km2 in 2010, representing a 0.07 km2 increase (35% of
the initial area) and a 0.01 km·year1 annual growth rate.
Table 5 shows that, between 1999 and 2010, 0.03 km2 of bare
land remained unchanged in 2010, while a total of 0.17 km2

changed classes. +e largest transition was to agricultural
land with 0.16 km2.
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During this 11-year time frame, the results in Table 7 show
that the class of built-up area increased by 12.48 km2, that is,
85.19% of the initial. +e area coverage of the built-up area
class increased from 14.65 km2 (6.35% of total land) in 1999 to
27.13 km2 (11.76%) in 2010.+e change represents an increase
in the built-up area with an annual change rate of
1.13 km·year−1 (7.74%). As shown in Table 5, out of 14.65 km2

of the total built-up area in 1999, 14.15 km2 remained un-
changed in 2010, while 0.50 km2 changed classes.

+e area of agricultural land increased by 30.88 km2

between 1999 and 2010, from 131.83 km2 to 170.71 km2,
registering the highest annual change rate of 3.53 km·year−1.
During this period, out of 131.83 km2 of the total land in
1999, 119.35 km2 remained unchanged in 2010, whereas
12.48 km2 changed classes. As shown in Table 5, the tran-
sition was into the built-up area, herbaceous area, forest
land, and bare land classes. +e greatest change was into the
built-up area (10.61 km2), followed by the herbaceous class
(1.77 km2), and the smallest change was into bare land
(0.03 km2).

3.3.2. LULC Change Detection between 2010 and 2019.
+e results in Table 8 show that the forest area continued to
decrease in the second period of the study. +e forest area
declined by 52.75%, from 4.55 km2 in 2010 to 2.15 km2 in
2019, with an annual change rate of −0.27 km·year−1 (4.36%).
Table 5 shows that, out of 4.55 km2 area of forest, 2.01 km2

did not change in the subsequent nine years, while 2.54 km2

switched classes. Most of the forest land was converted to
agricultural land with 1.04 km2, whereas 0.97 km2 changed
to herbaceous land, 0.51 km2 to the built-up area, and
0.02 km2 into bare land. Similarly, the class of herbaceous
land also continued to decline. Its area decreased by
10.47 km2, from 27.76 km2 to 17.29 km2, with an annual
change rate of 1.16 km·year−1 between 2010 and 2019.
During the study period, 14.87 km2 of herbaceous land
remained in the same class, whereas 12.89 km2 changed
classes. A large portion of the herbaceous area (12.76 km2)
was converted to agricultural land, whereas 0.45 km2 was
transformed to the built-up area (0.35 km2), forest land
(0.07 km2), and bare ground (0.03 km2). Population increase

Table 3: Error matrix: accuracy assessment for land cover maps of 1999, 2010, and 2019.

LULC class Built-up
area

Forest
land

Bare
land

Herbaceous
land

Agricultural
land Waterbody Row

total
Producer’s accuracy

(%)
1999

Built-up area 402 1 0 6 37 0 446 90.13
Forest land 0 7710 0 256 62 2 8030 96.01
Bare land 0 0 215 1 3 0 219 98.17
Herbaceous land 12 363 65 1512 138 0 2090 72.34
Agricultural land 11 197 11 122 1254 0 1595 78.62
Waterbody 0 17 0 0 2 291 310 93.87
Column total 425 8288 291 1897 1496 293 12690
User’s accuracy 94.59 93.03 73.88 79.70 83.82 99.32
Overall accuracy
(%) 89.71

Kappa coefficient 0.82
2010

Built-up area 641 0 12 0 1 0 654 98.01
Forest land 0 1564 0 52 127 11 1754 89.17
Bare land 17 0 216 0 17 0 250 86.40
Herbaceous land 1 292 0 1196 194 0 1683 71.06
Agricultural land 33 605 17 122 5020 1 5798 86.58
Waterbody 0 1 0 0 0 222 223 99.55
Column total 692 2462 245 1370 5359 234 10362
User’s accuracy 92.63 63.53 88.16 87.30 93.67 94.87
Overall accuracy
(%) 85.50

Kappa coefficient 0.78
2019

Built-up area 788 0 3 0 37 0 828 95.17
Forest land 2 888 5 163 77 0 1135 78.24
Bare land 6 0 240 0 32 0 278 86.33
Herbaceous land 1 146 5 1774 343 2 2271 78.12
Agricultural land 63 108 44 390 5661 0 6266 90.34
Waterbody 0 1 1 0 3 280 285 98.25
Column total 860 1143 298 2327 6153 282 11063
User’s accuracy 91.63 77.69 80.54 76.24 92.00 99.29
Overall accuracy
(%) 87.06

Kappa coefficient 0.76
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Figure 3: LULC map for (a) 1999, (b) 2010, and (c) 2019. Data source: satellite images courtesy of the US Geological Survey website.
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influenced the continuous loss of forest and herbaceous
land. As shown in Table 6, the population of the study area
increased by 23.34% during this period, with an annual
growth rate of 2.33%. As shown in Table 5, the largest
transition in both forest and herbaceous classes was into
agricultural land and built-up area. As the population in-
creased, so did the demand for food and shelter. As a result,
the land class in Blantyre City transitioned from herbaceous
land and forest land to agricultural and built areas, resulting
in a decline in herbaceous and forest land.

+e area of the waterbodies in the period between 2010
and 2019, compared to the previous period (1999 to 2010),
increased by 0.01 km2 (3.89%), with an annual change per-
centage of 0.43%, as shown in Table 8. Table 5 shows that, in
2010, 0.01 km2 of the waterbody was converted to herbaceous
land, while 0.25 km2 remained constant in 2019.

In comparison with the previous period, the class of bare
land decreased between 2010 and 2019. Table 8 shows that the
area of bare land decreased by 0.12 km2 (44.44% of the initial)
during this time frame. +e decline represents an annual

Table 4: LULC area statistics for 1999, 2010, and 2019.

LULC classes
1999 2010 2019

Area (km2) % Area (km2) % Area (km2) %
Built-up area 14.65 6.35 27.13 11.76 43.19 18.72
Forest land 22.67 9.83 4.55 1.97 2.15 0.93
Bare land 0.20 0.09 0.27 0.12 0.15 0.07
Herbaceous land 61.04 26.46 27.76 12.03 17.29 7.5
Agricultural land 131.83 57.15 170.71 74.00 167.63 72.67
Waterbody 0.29 0.13 0.26 0.11 0.27 0.12
Total 230.68 100 230.68 100 230.68 100

Table 5: LULC class change/transition matrix.

LULC class Built-up area Forest land Bare land Herbaceous land Agricultural land Waterbody Class total
1999 LULC area (km2)

2010 LULC

Built-up area 14.15 0.52 0.00 1.85 10.61 0.00 27.13
Forest land 0.02 4.36 0.00 0.10 0.07 0.00 4.55
Bare land 0.06 0.01 0.03 0.14 0.03 0.00 0.27

Herbaceous land 0.07 7.00 0.01 18.89 1.77 0.02 27.76
Agricultural land 0.35 10.78 0.16 40.06 119.35 0.01 170.71

Waterbody 0.00 0.00 0.00 0.00 0.00 0.26 0.26
Class total 14.65 22.67 0.20 61.04 131.83 0.29 230.68

Class changes 0.50 18.31 0.17 42.15 20.48 0.03
2010 LULC area (km2)

2019 LULC

Built-up area 27.01 0.51 0.01 0.35 15.31 0.00 43.19
Forest land 0.01 2.01 0.00 0.07 0.06 0.00 2.15
Bare land 0.00 0.02 0.08 0.03 0.02 0.00 0.15

Herbaceous land 0.03 0.97 0.00 14.87 1.41 0.01 17.29
Agricultural land 0.08 1.04 0.16 12.44 153.91 0.00 167.63

Waterbody 0.00 0.00 0.02 0.00 0.00 0.25 0.27
Class total 27.13 4.55 0.27 27.76 170.71 0.26 230.68

Class changes 0.12 2.54 0.19 12.89 16.80 0.01
1999 LULC area (km2)

2019 LULC

Built-up area 13.96 2.46 0.01 3.89 22.87 0.00 43.19
Forest land 0.00 1.97 0.00 0.08 0.10 0.00 2.15
Bare land 0.01 0.04 0.05 0.03 0.01 0.01 0.15

Herbaceous land 0.07 3.93 0.00 9.25 4.03 0.01 17.29
Agricultural land 0.61 14.27 0.14 47.79 104.82 0.00 167.63

Waterbody 0.00 0.00 0.00 0.00 0.00 0.27 0.27
Class total 14.65 22.67 0.20 61.04 131.83 0.29 230.68

Class changes 0.69 20.70 0.15 51.79 27.01 0.02

Table 6: Population of Blantyre City (source: NSO).

Population Population growth (%) Annual growth rate (%)
1998 2008 2018 1998–2008 2008–2018 1998–2018 1998–2008 2008–2018 1998–2018
502,053 648,852 800,264 29.24 23.34 59.40 2.92 2.33 5.94
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change rate of 0.01 km·year−1 (4.94%). Table 5 shows that, of
the 0.27 km2 of bare land in 2010, only 0.08 km2 has remained
unchanged, while 0.19 km2 has changed, with 0.01 km2 being
converted to the built-up area, 0.02 km2 to water, and
0.16 km2 to agricultural land. +e results in Table 8 show that
the class of built-up area continued to increase during this
period. +e built-up area increased from 27.13 km2 in 2010 to
43.19 km2 in 2019, representing an increase of 16.06 km2, with
an annual change rate of 1.78 km·year−1 (6.58%). As presented
in Table 5, out of the total area of 27.13 km2 in 2010, 27.01 km2

remained unchanged, and 0.12 km2 changed classes. Com-
pared to the previous period, the built-up area in the study
area increased slightly.

In the second period of the study, the area of agricultural
land decreased from 170.71 km2 in 2010 to 167.63 km2 in
2019, indicating a 3.08 km2 change. As shown in Table 8, the
decline in the agricultural class represents an annual change
rate of 0.34 km·year−1 (0.20%). It can be seen in Table 5 that
153.91 km2 out of a total of 170.71 km2 of the land of ag-
ricultural land remained unchanged, while 10.80 km2

changed classes. With an area of 15.31 km2, the built-up
region took up a bigger percentage of the transition. Fur-
thermore, 1.41 km2 changed to herbaceous land, 0.06 km2 to
forest, and 0.02 km2 to bare land.

3.3.3. LULC Change Detection between 1999 and 2019.
+is period reflects the overall changes that occurred in the
study area over the two decades. According to Table 9, the
forest land in the study area decreased by 20.52 km2

(90.52%), with an annual change rate of 1.03 km·year−1

(4.53%). Table 5 further reveals that, in 2019, 20.70 km2 of

forest land out of a total of 22.67 km2 was converted to other
class types, while 1.97 km2 remained unchanged. A large
area of forest land, covering 14.27 km2, was transformed into
agricultural land. +e other class transition was into her-
baceous land (3.93 km2), built-up area (2.46 km2), and bare
land (0.04 km2).

+e results of the classification reveal that the class of
waterbody was 0.29 km2 in 1999 and 0.27 km2 in 2019. As
shown in Table 9, during this period (1999 to 2019), the area
of the waterbody declined by 0.02 km2 (6.90%) from the
initial size with a 0.34% annual change rate. Out of 0.29 km2

in 1999, 0.27 km2 remained unchanged while 0.02 km2

changed to other classes, where 0.01 km2 was converted to
bare land and 0.01 km2 to herbaceous land by the year 2019.

As indicated in Table 9, the class of bare land declined
from 0.20 km2 in 1999 to 0.15 km2 in 2019, achieving a total
decrease of 0.05 km2, representing 25% of the initial area.
During this period, the annual rate of decrease was estimated
at 1.25%. Results in Table 5 show that, out of 0.20 km2 area of
bare land in 1999, 0.05 km2 area remained unchanged,
whereas 0.15 km2 was converted into other classifications in
2019. A total of 0.01 km2 was converted to the built-up area,
while 0.14 km2 was converted to agricultural land.

+e results in Table 9 show that, between 1999 and 2019,
the area of built-up land increased by 28.54 km2, which is
more than 100% of the initial area. +e increase represents
an annual change rate of 1.43 km·year−1 (9.74%). From
Table 5, it can be seen that built-up land of 13.96 km2 out of
14.65 km2 remained unchanged in 2019. On the other hand,
0.69 km2 changed to other classes in 2019, of which 0.01 km2

was converted to bare land, 0.07 km2 to herbaceous land, and
0.61 km2 to agricultural land.

Table 7: LULC class annual change rate from 1999 to 2010.

LULC classes 1999 2010
1999 to 2010

Change Annual change rate
Area (km2) Area (km2) Area (km2) % of initial km·year−1 %

Built-up area 14.65 27.13 20.48 85.19 1.13 7.74
Forest land 22.67 4.55 −18.12 −79.93 −1.65 −7.27
Bare land 0.20 0.27 0.07 35.00 0.01 3.18
Herbaceous land 61.04 27.76 −33.28 −54.52 −3.03 −4.96
Agricultural land 131.83 170.71 30.88 29.49 3.53 2.68
Waterbody 0.29 0.26 −0.03 −10.34 0.00 −0.94
Total 230.68 230.68

Table 8: LULC class annual change rate from 2010 to 2019.

LULC classes 2010 2019
2010 to 2019

Change Annual change rate
Area (km2) Area (km2) Area (km2) % of initial km·year−1 %

Built-up area 27.13 43.19 16.06 59.20 1.78 6.58
Forest land 4.55 2.15 −2.40 −52.75 −0.27 −5.86
Bare land 0.27 0.15 −0.12 −44.44 −0.01 −4.94
Herbaceous land 27.76 17.29 −10.47 −37.72 −1.16 −4.19
Agricultural land 170.71 167.63 −3.08 −1.80 −0.34 −0.20
Waterbody 0.26 0.27 0.01 3.85 0.00 0.43
Total 230.68 230.68
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Table 9 shows that, between 1999 and 2019, herbaceous
land decreased by 43.75 km2, from 61.04 km2 to 17.29 km2,
representing an annual change rate of 2.19 km·year−1

(3.58%). During the studied period, out of 61.04 km2 of
herbaceous land in 1999, only 9.25 km2 remained un-
changed, while 51 km2 transitioned to other classes in 2019.
+e major shift was into agricultural land (47.79 km2),
followed by a 3.89 km2 change to built-up land.

Over this 20 year study period, agricultural land increased
in the study area. As shown in Table 9, the area of agricultural
land increased from 131.83 km2 in 1999 to 167.63 km2 in 2019,
representing an annual change rate of 1.79 km·year−1 (1.36%).
Between 1999 and 2019, 27.01 km2 of agricultural land was
converted to other classifications, while 104.82 km2 remained
constant. Table 5 shows that 22.87 km2 of agricultural land
was converted to built-up land, 4.03 km2 to herbaceous land,
0.10 km2 to forest land, and 0.01 km2 to bare land.

3.4. Rainfall and Temperature Data. Data obtained from the
Malawi Department of Climate Change and Meteorological
Services indicate that annual rainfall amounts have been
fluctuating between 729.5mm and 1454.2mm between 1999
and 2019, as shown in Figure 4, with the highest leap being
between the years 2005 and 2006 and 2010 and 2011. During
the 20-year period, the highest annual rainfall was in 2010,
while the lowest was in 2005 (729.5mm).

+e changes in the mean annual temperatures were
insignificant, as shown in Figure 5, in which the annual
variations were between 0°C and 1.6°C. +e range of the
maximum temperature was from 25°C to 27.1°C, while the
minimum temperature ranged from 15.7°C to 16.8°C.

4. Discussion

Blantyre City has witnessed LULC changes, as evidenced by
the results from the change matrix from the post-
classification comparison method of change detection. +e
built-up area, which increased the most among the classes by
194.81% between 1999 and 2019 (Table 9), indicates that
urbanization has been one of the major factors in LULC
changes. +is is supported by the conversion of agricultural
land, forest land, herbaceous land, and bare land into a built-
up area. A decline in forest land is considered one of the
characteristics that are associated with the growth in the

built-up area as a result of urbanization. +is is consistent
with the findings of Munthali et al. who, while assessing the
local perception of drivers of LULC change in Dedza district,
229 km from Blantyre City, established that the built-up area
increased due to the development of agricultural areas, forest
land, and bare land for commercial, academic, and business
purposes [69]. Outside the region, this is comparable with
the findings in Wuhan, in Hubei Province, China, and in
Ethiopia [14, 70, 71].

Another factor that contributed to the increase in built-
up land was the lack of enforcement of the city’s plans and
regulations, which resulted in informal settlements. +ese
unplanned urban sprawls take over significant parts of the
city that were not initially intended for residential purposes.
+e expansion in the built-up area might also be attributed
to the growth in population. According to the 2018 Malawi
Housing and Population Census, the population of Blantyre
City increased by 29.24% between 1998 and 2008 and
23.34% between 2008 and 2018, resulting in a population
density increase from 2,704 in 2008 to 3,334 in 2018 [47]. As
a result of this increase in population, there is a conversion of
herbaceous land to built-up land to serve the increasing
population’s need for land for housing.

On the other hand, the social-economic growth of the
population also contributed to the increase in built-up land.
Building in cities becomes more affordable as the cities’
social-economic condition improves. Social-economic de-
velopment might have contributed to the increase in built-
up area as this period was the second term of multiparty
democracy (1994), which provided citizens with the op-
portunity to do and own businesses freely in cities and all
parts of the country.

Although the economic activities in Blantyre City are
attracting multitudes to migrate to the city, not enough land
is being converted into built-up land leading to the pop-
ulation being crammed in a limited area. +is is consistent
with the findings from other studies in Malawi, which
revealed that, between 2001 and 2010, approximately 63% of
the land remained in the same land use classification [72].
+is study also found that, despite the economic activities
happening in the city and agricultural land being converted
into mostly built-up land, agricultural land remains the
largest land by area. +is is mainly because Blantyre City has
several hills, rendering the land area unsuitable for either
residential or commercial buildings or other economic

Table 9: LULC class annual change rate from 1999 to 2019.

LULC classes 1999 2019
1999 to 2019

Change Annual change rate
Area (km2) Area (km2) Area (km2) % of initial km·year−1 %

Built-up area 14.65 43.19 28.54 194.81 1.43 9.74
Forest land 22.67 2.15 −20.52 −90.52 −1.03 −4.53
Bare land 0.20 0.15 −0.05 −25.00 0.00 −1.25
Herbaceous land 61.04 17.29 −43.75 −71.67 −2.19 −3.58
Agricultural land 131.83 167.63 35.80 27.16 1.79 1.36
Waterbody 0.29 0.27 −0.02 −6.90 0.00 −0.34
Total 230.68 230.68
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activities other than illicit agricultural activities. As the
population grows, it becomes a challenge for city develop-
ment and utility service provision to be sustainable as set-
tlements are either sparsely distributed or densely packed. It
also puts a strain on the limited amount of land available.

In the process of urbanization, the surge of people into
Blantyre City has increased the demand for water in the city,
resulting in reduction of waterbodies, as indicated in Table 9,
which shows that the class of waterbodies has decreased by
6.9% from 1999 to 2019.+e uncontrolled developments also
lead to encroachment of protected catchment areas; as a
result, a good amount of water is easily lost through
evaporation. +e decline in waterbodies is consistent with
the rainfall trend in the study area, which has been in-
consistent, limiting the amount of water available because
most of the waterbodies in the area are artificial reservoirs.
During both study periods, the study area experienced dry
spells in which the annual rainfall was considerably low, and
the temperatures were high. +e period between 1999 and

2010 comparably received less rainfall, and during the same
period, the highest maximum annual mean temperature was
recorded (in 2005). +is suggests that climate change is
another factor that may have contributed to the decrease in
the area of waterbodies.

Table 9 shows that the class of forest land has declined by
90.52%, and the class of herbaceous land has decreased by
71.67% from 1999 to 2019, indicating an overall decrease in
vegetation cover. +e decrease can be attributed to the
encroachment of vegetation area by mainly the informal
settlements being formed due to urbanization. +is is,
however, against the background that most of the forest
areas and catchment areas for the rivers in the city are
protected areas. Hence, poor enforcement of the city’s plans
and laws resulting in informal settlements contributed to the
decrease in the area of forest and herbaceous land and
eventually a reduction in area of waterbody. Climate data
indicates that the study area has been experiencing occa-
sional dry spells in which the amount of rainfall received
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decreased significantly. +e increased demand for timber,
firewood, and modern infrastructure due to the population
increase is one of the major factors that contributed to the
loss of forest and herbaceous areas and consequently in-
crease in surface temperatures. More than 97% of Malawian
households use firewood and charcoal for cooking and
heating [73]. Even though electricity and gas are available,
they are prohibitively expensive, and power outages are
common. Because alternative sources of energy are unaf-
fordable, there is a significant increase in the demand for
trees, resulting in a decline in the area of herbaceous land,
forest land, and consequently waterbodies.

+ere is an overall increase in the agricultural area. Most
of the herbaceous land was converted to agricultural land to
serve the need for food for the growing population of the
study area, in particular the informal settlements. Since it is
difficult to monitor the progress of informal settlements in
the protected areas due to poor enforcement of laws, they are
also to blame for the increase in the agricultural land area
because as the built-up area grows, so do informal com-
munities that practice small-scale farming.

Limitations of this study relate to the imagery used. After
Pan-sharpening, the spatial resolution of the imagery used
was 15m. An analysis of the LULC changes using satellite
data with high resolution would have achieved high-quality
results in that changes below the 15m size would have been
detected. Furthermore, sampling ensured that the images
were cloud-free, so seasonal variations in land cover may
have affected the analysis.

5. Conclusion

Remote Sensing is the most used technology in LULC
change detection analysis. +is study used Landsat7 ETM+
and Landsat8 OLI image data, which were downloaded and
classified to detect the LULC changes in Blantyre City. ANN
supervised classification was used to produce accurate LULC
maps for 1999, 2010, and 2019, which were used in detecting
the changes that have occurred using the postclassification
comparison technique. +e overall accuracy and kappa
coefficient values obtained met the classification criteria.+e
results of the study revealed that there had been a significant
change in LULC during the 20-year study period in the area.
+e obtained results showed that there was a decrease (from
the initial area) in the area of forest land, waterbody, bare
land, and herbaceous land, while the area of built-up land
and agricultural land increased between 1999 and 2019. +e
highest increase rate of built-up land, the highest decline rate
of forest land, and the highest decrease in waterbody were all
achieved in the first phase (1999–2010), signifying that this
was the period of great changes. +e annual rate of 6.58%
achieved by built-up land between the years 2010 and 2019
was only slightly lower than that recorded in the preceding
period, indicating that developments are still taking place.
+e expansion of the built-up land was at the expense of
forest land, agricultural land, and herbaceous land. +e rate
of decline of forest land was registered at 4.53%, with most of
the land in this class converted to agricultural land between
1999 and 2010. Waterbody area declined by 0.34% in 20

years, and the largest change rate of −0.94% was registered in
the first period. +us, the observed changes indicated a
decrease in the class of waterbody during the first period and
an increase of 0.43% during the second period.

Several factors have been identified as contributing to the
change in LULC in the study area, including population
increase, social-economic growth, climate change, poor
planning, and poor plan implementation. Population in-
crease in the area influenced the increase and the decrease of
built-up land and forest land, respectively. As the demand
for settlement areas increased, the area of forest land de-
creased.+e decrease in the area of forest land was due to the
increase in demand for firewood, timber, and new infra-
structure caused by the increased population. +e decrease
in the waterbody area, forest land, and herbaceous land was
due to encroachment as a result of weak enforcement and
application of laws and policies on the protection and
conservation of the catchment areas of these waterbodies.
Furthermore, environmental data has been used in dis-
cussing the changes that have occurred in land use and land
cover. +e data has revealed that, for a reduction in vege-
tation cover and waterbodies, there was a reduction in
annual rainfall and an increase in the highest maximum
temperature for the studied period.

+e knowledge of LULC change is essential for both the
land administration and land use planning activities in
Blantyre City. Blantyre City Council (BCC) should consider
setting aside land for nature conservation and recreational
activities to mitigate the effects of climate change. It is also a
recommendation of this study that the city should consider
enforcing vertical development for both residential and
commercial buildings to effectively use the available land.
+is recommendation is being made based on the fact that
while the majority of the area is agricultural land, the to-
pography is mountainous and rugged, making it unsuitable
for residential development. Horizontal development is thus
unsustainable because it may be required to demolish for
high-rise construction in the future. +ese efforts should
include the drafting of city-level land development plans that
are compliant with current LULC and population projec-
tions. BCC should also consider developing law and policy
enforcement strategies that make it difficult for developers to
circumvent laws and policies while still preventing en-
croachment into protected areas.
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