
Research Article
Prediction of Regional Logistics Heat and Coupling
Development between Regional Logistics and Economic Systems

Guojun Yin 1 and Jianhui Peng2

1School of Economics & Management, Changsha University of Science & Technology, Changsha 410114, China
2School of Architecture, Harbin Institute of Technology,
Heilongjiang Cold Region Urban-Rural Human Settlements Science Key Laboratory, Harbin 150006, China

Correspondence should be addressed to Guojun Yin; 25786203@qq.com

Received 30 August 2021; Revised 28 September 2021; Accepted 30 September 2021; Published 14 October 2021

Academic Editor: Daqing Gong

Copyright © 2021 Guojun Yin and Jianhui Peng. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

-e research on logistics heat facilitates the understanding of the drivers of regional logistics development. However, many
scholars ignore the difference between prediction methods in terms of attributes and focal points of data analysis during the
selection of regional logistics heat prediction model. Regional logistics interacts with regional economy. However, the studies on
the coupling development between the two systems fail to make a detailed analysis in the light of their actual situation. -erefore,
the evaluation of the coordination degree is often biased. To solve the problem, this paper probes into the prediction of regional
logistics heat and the coupling development between regional logistics and economic systems. Firstly, an index system was
established to measure the level of coupling development between the two systems, and a grey relational analysis was performed
on the indices, leading to the evaluation results on coordination degree. Next, a composite model of GM (1, 1) and back-
propagation (BP) neural network was proposed, and the deviation interval of the composite predictions was predicted based on
Markov chain prediction model. -e proposed algorithm proved effective through experiments.

1. Introduction

-e logistics industry is an important support for the flow
of economic elements and the junction between various
parts of social production. It can promote both social
development and economic benefits [1–3]. Logistics heat
is the abstraction of specific geographical things, e.g., a
logistics warehouse and a delivery point. -e concept
truthfully reflects the development of regional logistics
and demonstrates the real-time logistics distribution with
high credibility. Featured by timeliness, accuracy, sci-
entific nature, and wide coverage, logistics heat should be
studied to further understand the drivers of regional
logistics development [4–6]. Regional logistics interacts
with regional economy. Economic development expands
the traffic network, improves the integration between
transportation methods, and thus boosts the develop-
ment of logistics industry [7–10].

Logistics heat has always been a hot topic in the research
of the logistics industry [11–15]. Lan and Zhong [16] carried
out entropy analysis and classification of the data collected
from online logistics heat maps, aiming to optimize the
spatial pattern of logistics in economic development zones.
Wang [17] conducted logistic regression of the logistical
network system, which centers on regional economic scale
and logistics facilities, and obtained the description and
analysis result on spatial logistics pattern, including service
ability, service level, and radiation range. Based on logistics
heat correlation index, Zhou and Zhang [18] analyzed the
spatial pattern of logistics hubs at different levels and
compared the internal spatial correlations within a region
under different transportation conditions, market economy
backgrounds, and policy support intensities. Lacoa et al. [19]
summarized the development features of modern logistics
packaging and e-commerce logistics against the rapid de-
velopment of the big data and artificial intelligence (AI) and
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regarded green logistics and intelligent logistics as the di-
rection of logistics transformation and upgrading. Ishii et al.
[20] surveyed the logistics development state of Yangtze
River Economic Belt and depicted the logistics heat distri-
bution features at macro and micro levels. Wang et al. [21]
modeled the coupling coordination degree between logistics
and economy, identified the drivers of the logistics distri-
bution features, and explored the spatiotemporal evolution
law of logistics-economy coupling.

From the perspective of logistics heat, visualization tools
can be adopted to analyze the spatiotemporal evolution
pattern of regional economy and logistics heat at both macro
and micro levels. -is helps to discover the problems in
regional logistics development and provide objective and
authentic data support for relevant studies. Currently, most
scholars in the industry refer to relevant research results to
select the factors affecting the coupling development of
regional logistics heat and economic systems, failing to
analyze the specific conditions of the objects. -at is why the
coordination degree is often evaluated incorrectly [22].
Besides, many scholars ignore the difference between pre-
diction methods in terms of attributes and focal points of
data analysis, during the selection of regional logistics heat
prediction model. To solve the problem, this paper intro-
duces grey relational analysis and neural network into the
prediction of regional logistics heat and the coupling de-
velopment between regional logistics and economic systems.
-e main contents of this work are as follows: (1) setting up
an index system to measure the level of coupling develop-
ment between the two systems and carrying out grey rela-
tional analysis of all the indices; (2) evaluating the
coordination degree of the coupling development between
the two systems; (3) combining GM (1, 1) with back-
propagation (BP) neural network into a hybrid prediction
model for regional logistics heat; (4) estimating the deviation
interval of the composite predictions, using the Markov
chain prediction model. -e proposed algorithm proved
effective through experiments.

2. Grey Relational Analysis and Coupling
Development Evaluation

2.1. Grey Relational Analysis. Grey relational analysis pro-
vides a quantitative metric for the development trend of a
system. It is particularly suitable for analyzing dynamic
processes. Before grey relational analysis, this paper draws
on the existing research and selects the following evaluation
indices, forming a systematic, scientific, operable, and stable
index system to measure the level of coupling development
between regional logistics system and regional economic
system quantitatively and qualitatively:

(1) Mileage of regional transportation lines, LE1, which
reflects the construction of regional logistics
infrastructure.

(2) Fixed asset investment in logistics, LE2, which re-
flects the development potential of regional logistics
industry.

(3) Number of logistics employees, LE3, which mea-
sures regional logistics development from the angle
of manpower.

(4) Volume of freight traffic, LE4, which reflects the
development scale of regional logistics.

(5) Total output of logistics industry, LE5, which reflects
the contribution of logistics to regional economy.

(6) Growth rate of added value of logistics, LE6, which
reflects the development speed and overall trend of
regional logistics.

(7) Growth rate of logistics investment, LE7, which
reflects the ability and trend of regional logistics
attracting internal/external investment.

(8) Logistics development environment, LE8, which
comprehensively reflects the development expec-
tation of regional logistics.

(9) Logistics user satisfaction, LE9, which influences the
subsequent development of regional logistics.

(10) Logistics talent cultivation, LE10, which reflects the
training situation of professional talents.

(11) Regional gross domestic product (GDP), LE11,
which reflects the overall level of regional economic
development.

(12) Tertiary industry as a proportion of GDP, LE12,
which reflects the advanced level of regional eco-
nomic development.

(13) Total retail sales of consumer goods, LE13, which
measures the changes in regional retail market and
the prosperity of regional economy.

Indices 1–10 are about regional logistics development,
and indices 11–13 are about regional economic
development.

To prevent some indices from being ignored due to their
units or dimensionality, the above index data should be
normalized by

LEi �
LEi − LEmin

LEmax − LEmin
. (1)

By (1), all the index data were converted into numbers in
[0, 1]. By taking the correlation coefficient between the
contrastive series and the reference series as the maximum,
the correlation coefficient between a regional logistics de-
velopment index and a regional economic development
index can be calculated by

δi(i) �
Δmin + δΔmax

Δi(i) + δΔmax
. (2)

-e grey correlation between indices equals the mean of
the correlation coefficients obtained by (2):

ei �
1

M
􏽘

M

l�1
δi(l). (3)
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2.2. Coupling Development Evaluation. With different at-
tributes and relations, regional logistics system and regional
economic system constitute a composite system of regional
logistics-regional economy. -e development states of the
two systems determine the development coordination be-
tween them. Let ZFi be the i-th system; let YSi, STi, and GNi
be the environmental, structural, and functional elements of
ZFi, respectively. -e correlations, IR, between systems or
within each system are diverse, interactive, hierarchical, and
dynamic. -ese are natural multidimensional attributes
within the systems. Let h be the period measuring the time
variation in each system. -en, whether the coordination

degree between elements is reasonable can be characterized
by

STZF � ZF1,ZF2,ZF3 · · ·ZFm, IR, h􏼈 􏼉, (4)

where m is the number of systems (m≥ 2); ZFi∈{YSi, STi,
GNi}.

Let ZFi(h) be the sum of composite scores between
systems in period h; ZFm(h− 1) be the composite score of ZFi
in period h− 1; and YSm(h) be the composite effect of ex-
ternal environment on ZFi. -en, the relationship between
systems can be measured by

ZFi(h) � gi ZF1(h),ZF2(h),ZF3(h), . . . ,ZFm(h),ZFm(h − 1),YSm(h)􏼂 􏼃

(i � 1, 2, ..., m).
(5)

Let εi(h) be the development state factor of each system
in period h; ZF(h) be the composite development state of the
composite system in period h; and θi(h) be the weight of
εi(h). According to the definition of the coordination degree
of the composite system, the coordinated development of the
composite system can be quantified by

max ZF(h) � 􏽘
m

i�1
θiεi(h). (6)

Formula (6) shows that the better the development state
and the higher the benefit of a system, the greater the value of
εi(h). Meanwhile, θi(h) characterizes the development state
of that system on the composite system. On this basis, the
order parameters of regional logistics system and regional
economic system were configured. If the selected order
parameters boost the benefits of the composite system, then
the composite system has a positive effect; otherwise, the
composite system has a negative effect.

Let PA(Vij) be the effective contribution of the order
parameter Aij to the corresponding system, and let ULij and
LLij be the upper and lower bounds of the critical point of the
order parameter Aij at the stable state of the composite
system, respectively; i.e., LLij≤Aij≤ULij. -en, the contri-
bution of an order parameter to the development of the
composite system can be described by

PA Vij􏼐 􏼑 �

Aij − ULij

LLij − ULij

i � [1, k],

LLij − Aij

LLij − ULij

i � [1, m].

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

3. Construction of Prediction Model

3.1. GM (1, 1) Model. Figure 1 shows the cargo throughput
and its growth rate at regional logistics centers.-e scientific
prediction of regional logistics heat is premised on the index
system of the coupling development level between regional

logistics system and regional economic system. -erefore, it
is particularly important to select a suitable prediction
method and understand the relevant issues of regional lo-
gistics heat. Based on correlation space and smooth discrete
function, grey system theory defines grey derivative and grey
differential equation and further establishes a dynamic
model in the form of differential equation based on discrete
data series. Based on the grey relational analysis results in the
previous section, and the small sample size and nonlinearity
of regional logistics heat, this paper combines GM (1, 1) with
BP neural network into a composite prediction model to
forecast the regional logistics heat, in the light of the cou-
pling development between regional logistics system and
regional economic system.

-e applicability of GM (1, 1) model can be verified by
the ratio test on the known series. -e ratio of the initial
values of index data a(0) � (a(0) (1), a(0) (2), . . ., a(0) (m)) can
be calculated by

μl �
a

(0)
(l − 1)

a
(0)

(l)
, l � 2, 3, . . . , m. (8)

If the index data meet the interval

A � e
− 2/m+1

, e
2/m+1

􏼐 􏼑, (9)

series a(0) can be calculated by setting up a GM (1, 1)
prediction model. Otherwise, the index data need to be
converted by the rule

b
(0)

(l) � a
(0)

(l) + d,

l � 1, 2, . . . , m,
(10)

through accumulative generating operation (AGO) on the
original series a(0) � (a(0) (1), a(0) (2), . . ., a(0) (m)):

a
(1)

(h) � 􏽘
h

l�1
a

(0)
(l),

l � 1, 2, . . . , m.

(11)
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Let DQ be the development coefficient that measures the
trends of target series a′(0) and a′(1), and let v be the grey
action of the variation in index data. -en, the first-order
linear differential equation can be constructed based on a(1):

da
(1)

dh
+ DQ · a

(1)
� v. (12)

Solving the differential equation by least squares method
W∗ � (DQ, v)T � (OTO)−1OTBm, we can obtain the desired
DQ and v:

a
(1)

(h + 1) � a
(0)

(1) −
v

DQ
􏼨 􏼩e

−DQ·t
+

v

DQ
. (13)

By taking average of cumulative index data, the vector O
and constant term vector Bm can be obtained as

O �

−
1
2

a
(1)

(1) + a
(1)

(2)􏽨 􏽩 · · · 1

−
1
2

a
(1)

(2) + a
(1)

(3)􏽨 􏽩 · · · 1

⋮ ⋱ 1

−
1
2

a
(1)

(m − 1) + a
(1)

(m)􏽨 􏽩 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bm �

a
(0)

(2)

a
(0)

(3)

⋮

a
(0)

(m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

-en, a(1) (h+ l) can be solved by substituting DQ and v

into (11). To obtain the actual prediction a’(0) (h+ l) in period
h+ 1, the data imported to the prediction model must go
through the inverse AGO (IAGO), because the model has
undergone AGO:

a′(0)
(h + 1) � a′(1)

(h + 1) − a′(1)
(h). (15)

Substituting the solution of a(1) (h+ l) to (15), the re-
gional logistics heat can be predicted as

a′(0)
(h + 1) � 1 − e

DQ
􏼐 􏼑 a

(0)
(1) −

v

DQ
􏼢 􏼣e

−DQ·h
. (16)

-e standard deviation ZB1 of the residual series can be
calculated by

ZB1 �

���������������

􏽐
m
l�1 σ(0)

(l) − 􏽢σ(0)
􏼐 􏼑

1

m − 1

􏽳

.
(17)

-e standard deviation ZB2 of the original index data
series can be calculated by

ZB2 �

���������������

􏽐
m
l�1 a

(0)
(l) − 􏽢a

(0)
􏼐 􏼑

2

m − 1

􏽳

,
(18)

where

􏽢a �
1
m

􏽘

m

l�1
a

(0)
(l) ,

􏽢σ �
1
m

􏽘

m

l�1
σ(l).

(19)

-e posterior error can be calculated by

HE �
ZB1

ZB2
. (20)

-e small error probability can be calculated by

GV � GV σ(0)
(l) − 􏽢σ(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 0.67S2􏼚 􏼛, (21)

where

σ(0)
(l) � a

(0)
(l) − a′(0)

(l)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (22)

-e accuracy of the prediction model can be divided into
different levels according to indices HE and GV.

3.2. BP Neural Network. Figure 2 shows the structure of BP
neural network. -is paper sets up a BP neural network via
the following steps.

Firstly, the connection weights of the neural network
were randomly assigned in the interval of (0, 1). -en, the
objective training error ξ, training accuracy ε, andmaximum
number of learning iterations N were configured. -en, the
input samples LEl � (LEl1, LEl2, . . ., LElm) and the expected
output samples O0 � (Ol

1, Ol
2, . . ., Ol

m) were provided to the
established neural network.

Let ωij be the connection weight between the input layer
and the hidden layer and φj be the output threshold of each
hidden layer node. -en, the output dj of each hidden layer
node can be calculated from the input rj of that node, using
the activation function g:

rj � 􏽘
m

i�1
ωijLEi − ωj,

dj � g rj􏼐 􏼑, j � 1, 2, . . . , t.

(23)

Let ujh be the connection weight between the hidden
layer and the output layer and ηh be the output threshold of
each output layer node. -en, the input SRh of each output
layer node can be given by
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Figure 1: Cargo throughput and its growth rate at regional logistics
centers.
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SRh � 􏽘
m

j�1
ujhdj − ηt. (24)

-e output SCh of each output layer node can be cal-
culated by

SCh � g SRh( 􏼁,

h � 1, 2, . . . , w.
(25)

-e error function can be given by

ζ �
1
2

􏽘

w

h�1
ξh − ch( 􏼁

2
. (26)

Based on the calculated error, the partial derivative of the
error function for output layer nodes could be obtained.
-en, the neural network error will be backpropagated to the
input layer. According to the error signal, each layer will
update its weight. -us, the errors of all layers could be
iteratively adjusted. -e iteration will stop when the error
falls below the preset training accuracy, or the number of
training iterations reaches themaximum number of learning
iterations.

3.3. Composite Prediction Model. Considering the com-
plexity of regional logistics system, it is very difficult to
obtain historical development data over a long time. If GM
(1, 1) and BP neural network could be combined, the
composite prediction model would fit well with the features
of regional logistics heat problem.

To improve the prediction effect of the composite model,
it is important to assign a suitable weight to GM (1, 1) and to
BP neural network. Let θi be the weight of the i-th prediction
method; ζh be the error of the composite series at time h; and

ζi(h) be the error corresponding to the i-th prediction
method at time h. -en, we have

ζh � K(h) − a(h) � 􏽘
I

i�1
θiζ i(h). (27)

To minimize the sum of squared errors (SSE) FH, a
constrained objective function QFH can be established:

MinFH � 􏽘
m

h�1
ζ2h

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽘

m

h�1
􏽘

I

i�1
θiζ i(h)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (28)

where θi satisfies the following equation:

􏽘

I

i�1
θi � 1, 0≤ θi ≤ 1. (29)

-en, the composite prediction model for regional lo-
gistics heat can be expressed as

bh � θ1K1(h) + θ2K2(h) + . . . + θIKI(h). (30)

3.4. Markov Chain Analysis. -e Markov chain can predict
the state of index data on regional logistics and economic
systems at the next moment, according to the state and trend
of the data, and mirror the fluctuations and instability of the
index data. Taking the prediction error of regional logistics
heat as a random variable, this paper estimates the deviation
interval of the prediction by the GM (1, 1)–BP neural
network composite model, using the Markov chain pre-
diction model.

If the past is not correlated with a future random process
{Ai(θ), h∈ψ}, i.e., the future (A(hm+1)< a) is independent of
the past (A(hm+1)� am+1, . . ., A(h1)� a1); then, {Ai(θ), h∈ψ}
has Markov property, and {Ai(θ), h∈ψ} can be called a
Markov process. For any h1< h2< . . .< hm+1, hi∈ψ,
1≤ i≤m+ 1, the conditional distribution of A(hm+1) relative
to A(h1), A(h2), . . ., A(hm) can be given by

GV A hm+1( 􏼁≤ a|A hm( 􏼁 � am, . . . , A h1( 􏼁 � a1( 􏼁

� GV A hm+1( 􏼁≤ a|A hm( 􏼁 � am( 􏼁.
(31)

Time and state are discrete Markov processes, forming a
Markov chain of random variables. -e chain is stochastic
and stationary, with no after-effect. Let GVch be the prob-
ability that the previous state transfers to the current state h
under condition c. -en, the transfer can be described by the
transfer probability GV:

GVch � GV ai � h|ai−1 � c􏼈 􏼉. (32)

-e predicted regional logistic heat has multiple states,
ST1, ST2, . . ., STm, at different moments. -erefore, many
different situations may occur during the state transfer. -e
conditional probabilities under different situations consti-
tute a transfer probability matrix. Let GVij be the state
transfer probability from state STi to state STj. -en, the
transfer probability matrix GV can be described as

i
LE1 SR1

LE2
SR2

LEm

j h

SRn

Input layer
Hidden 

layer
Output 

layer

Forward propagation

Reverse propagation

Figure 2: Structure of BP neural network.
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GV �

GV11 GV12 · · · GV1m

GV12 GV22 · · · GV2m

⋮ ⋮ ⋮ ⋮

GVm1 GVm2 · · · GVmm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

-e elements GVij in matrix GV need to satisfy

0≤GVij ≤ 1,

􏽘

m

j�1
GVij � 1, (i � 1, 2, . . . , m).

(34)

Since Markov chain has no after-effect, a multistep state
transfer probability matrix can be obtained as

A
(m+1)

� GV · A
(m)

,

A
(m)

� GV(m)
A

(0)
.

(35)

4. Experiments and Results Analysis

-e research data comes from the panel data on Yangtze
River Economic Belt in 2000–2020. Table 1 presents the
calculated results on the grey correlations between regional
logistics and economy. -e established GM (1, 1) prediction
model was tested by fitting the historical index data on the
coupling development between regional logistics and eco-
nomic systems in 2000–2020. Based on the predicted re-
gional logistics heat, the fitting effect is shown in Figure 3.
-e prediction error of GM (1, 1) prediction model was
0.0984. -e results of posterior error test were
ZB1 � 1957421, ZB2 �15144284, posterior error was
HE� 0.145, and small probability error was GV> 0.9.
-erefore, the proposed GM (1, 1) prediction model has a
high accuracy and, to a certain extent, reflects the future
trend of logistics heat scale in the study area.

Figure 4 displays the change curve of training error of BP
neural network. -e training error curve started to converge
at around the 300th iteration. When the prediction accuracy
of regional logistics heat reached 8.94 ∗ 10−7, the preset
prediction accuracy was achieved, and the iteration termi-
nated. Table 2 presents the prediction results and errors of
our composite prediction model, which makes full use of the
predictions by GM (1, 1) and BP neural network. -e two
prediction models were integrated by least mean squares
(LMS) method. In addition, L1 or L2 term was added to the
loss function of the neural network, such that the network
would try to minimize these terms. -rough the additional
L1 or L2 regularization, the network would limit the weight
increment, because weight is a part of the loss function.
Besides, the network became more generalizable, because it
always tries to minimize the loss function. -e weights of
GM (1, 1) and BP neural network were set to 0.1945 and
0.8055, respectively, aiming to minimize the MSE of the
fitted prediction error.

To demonstrate its feasibility and effectiveness, our
composite model was compared with GM (1, 1) prediction
model and BP neural network in terms of the prediction of

regional logistics heat in 2010–2020. Table 3 compares the
prediction results and errors of the three models. It can be
seen that the composite model achieved the smallest error,
the highest accuracy, and the most stable results.

Table 1: Grey correlations between regional logistics and economy.

Logistics indices LE11 LE12 LE13
LE1 0.6452 0.2356 0.6827
LE2 0.4589 0.1869 0.5403
LE3 0.3932 0.3562 0.3426
LE4 0.4241 0.1725 0.4075
LE5 0.8318 0.2314 0.6421
LE6 0.2876 0.3265 0.3028
LE7 0.2163 0.3476 0.2212
LE8 0.5231 0.1806 0.5063
LE9 0.4962 0.1963 0.4256
LE10 0.4035 0.2418 0.4136
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Figure 3: Training results of GM (1, 1) model.
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-is paper treats the range of regional logistics heat as a
random variable. -e regional logistics heat is stochastic and
stationary, with no after-effect. Based on the prediction
errors of the three models above, the prediction results were
divided by intervals of equal probability, such that the
number of transfers between state intervals is reasonable,
and the transfer rules are accurate. -e state intervals of the
specific prediction results were ST1[4%, 8%], ST2[2%, 4%),
ST3[2%, 0.5%), ST4[−0.5%, −2%), ST5[−2%, −4%), and
ST6[−4%, −8%). Table 4 shows the prediction results on
regional logistics heat and their errors and states.

Based on the states of the prediction results, the fitted
results of the composite prediction model could be compiled
into a one-step transfer Markov chain (Figure 5).

From the no-after-effect property of Markov chain, the
multistep state transfer probability matrix can be obtained to
reflect the variation in regional logistics heat. According to
the states of prediction results in the years before the target
years, the states of prediction results in the target years,
number of transfer steps, and state transfer matrix could be
derived by the prediction principle of Markovmodel. Table 5
shows the Markov chain analysis results of the composite
prediction model.

As shown in Table 5, the state transfer probabilities in
2021–2023 mostly fell into the two intervals ST3 and ST4. In
2021, 2022, and 2023, the regional logistics heat was
4.577 ∗ 104, 4.948 ∗ 104, and 5.689 ∗ 104, respectively.
-rough Markov chain analysis, the maximum probability
intervals of the composite prediction model in the three
years were [5.015 ∗ 104, 5.215 ∗ 104], [5.205 ∗ 104,
5.626 ∗ 104], and [5.694 ∗ 104, 6.079 ∗ 104], respectively.
-e ground truth of 2021 fell within [5.015 ∗ 104,

5.215 ∗ 104], testifying the credibility of the predictions for
2022–2023.

According to the evolution trend of regional logistics
demand predicted by ourmodel, the cargo throughput in the
study area will increase continuously. -e outbreak of

Table 2: Prediction results and errors of our composite model.

Year Ground truth Prediction MSE
2015 49735 49871.6152 0.275
2016 51647 52995.1563 0.261
2017 51596 52351.9481 0.017
2018 54273 54615.1506 0.006
2019 61542 62362.4857 0.013
2020 65131 65851.8416 0.011

Table 3: Prediction results and errors of different models.

Year Ground truth
GM (1, 1) BP neural network Composite model

Prediction MSE Prediction MSE Prediction MSE
2010 8635 8672.25 0.431 8689.71 0.634 8676.64 0.482
2011 10478 12603.72 20.287 9919.56 −5.330 11632.12 11.015
2012 12534 17521.83 39.794 10819.24 −13.681 11941.36 −4.728
2013 14912 18654.31 25.096 11728.61 −21.348 12896.65 −13.515
2014 16253 20156.74 24.019 14849.68 −8.634 15794.72 −2.820
2015 18165 22513.95 23.941 16952.75 −6.674 18984.24 4.510
2016 22789 23891.56 4.838 24195.63 6.172 23673.36 3.881
2017 26453 25234.79 −4.605 28442.12 7.519 27984.21 5.788
2018 31916 27919.32 −12.522 29891.48 −6.343 28561.25 −10.511
2019 32453 30917.08 −4.733 34972.61 7.764 33849.64 4.304
2020 36351 32156.26 −11.540 37156.25 2.215 36894.76 1.496

Table 4: Prediction results on regional logistics heat and their
errors and states.

Year Ground truth
Composite prediction

model
Relative error State

2000 1536 −0.236 ST5
2001 2109 −7.205 ST6
2002 3512 1.895 ST3
2003 4173 7.823 ST1
2004 5236 2.215 ST2
2005 6014 3.546 ST2
2006 6531 −3.592 ST5
2007 7983 4.194 ST1
2008 8324 3.682 ST2
2009 8542 2.918 ST2
2010 8635 1.812 ST3
2011 10478 −7.613 ST6
2012 12534 −4.782 ST6
2013 14912 −3.319 ST5
2014 16253 −3.842 ST5
2015 18165 −1.389 ST4
2016 22789 −0.914 ST4
2017 26453 −0.237 ST4
2018 31916 −1.589 ST4
2019 32453 −1.791 ST4
2020 36351 −2.985 ST5
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COVID-19 has caused the postponement or cancellation of
most large-scale logistics activities and a drastic drop in
foreign capital utilization in the short term. -ese negative
effects will greatly impact the logistics service in the study
area.

5. Conclusions

-is paper introduces grey relational analysis and neural
network into the prediction of regional logistics heat and the
analysis of the coupling between regional logistics system
and regional economic system. Specifically, an index system
was constructed to measure the coupling development level
between the two systems and to evaluate the grey correla-
tions between the indices. -en, the coordination degree of
the coupling development between the two systems was
evaluated. Next, a composite prediction model for regional
logistics heat was constructed by coupling GM (1, 1) with BP

neural network. -e Markov chain prediction model was
employed to estimate the deviation intervals of the com-
posite predictions. -rough experiments, the change curve
of the training results of GM (1, 1) and the change curve of
the training errors of BP neural network were plotted; the
prediction results and errors were obtained for the proposed
composite prediction model and compared with those of
other prediction models. -e comparison shows that the
composite model achieved the smallest error, the highest
accuracy, and the most stable results.

Due to the limitation of paper length and research
ability, our research could be further expanded in many
aspects. If conditions permit, the authors will split logistics
heat into express delivery, logistics park, etc. and explore the
factors affecting each component. -e index system could
also be enhanced and improved to cover more time profiles,
yielding richer conclusions.
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d’Information, vol. 24, no. 5, pp. 525–530, 2019.

[14] L. Maier, M. Hartmann, S. Tischer, and O. Deutschmann,
“Interaction of heterogeneous and homogeneous kinetics
with mass and heat transfer in catalytic reforming of logistic
fuels,” Combustion and Flame, vol. 158, no. 4, pp. 796–808,
2011.

[15] D. Herbadji, N. Derouiche, A. Belmeguenai, A. Herbadji, and
S. Boumerdassi, “A tweakable image encryption algorithm
using an improved logistic chaotic map,” Traitement du
Signal, vol. 36, no. 5, pp. 407–417, 2019.

[16] S. L. Lan and R. Y. Zhong, “Coordinated development be-
tween metropolitan economy and logistics for sustainability,”
Resources, Conservation and Recycling, vol. 128, pp. 345–354,
2018.

[17] L. Wang, “Research on the impact of e-commerce to logistics
economy: an empirical analysis based on Zhengzhou airport
logistics,” International Journal of Security and Its Applica-
tions, vol. 9, no. 10, pp. 275–286, 2015.

[18] L. Zhou and Q. Zhang, “Mode and network layout of biomass
resource recycling logistics in China under cyclic economy,”
International Journal of Applied Environmental Sciences,
vol. 8, no. 6, pp. 751–762, 2013.

[19] U. Lacoa, G. Velarde, M. Kay, E. Blanco, and D. E. Saloni,
“Design and development of logistics models for residential
and commercial biomass pellets for heat and power gener-
ation in the US,” BioResources, vol. 12, no. 1, pp. 1506–1531,
2017.

[20] K. Ishii, T. Furuichi, A. Fujiyama, and S. Watanabe, “Logistics
cost analysis of rice straw pellets for feasible production ca-
pacity and spatial scale in heat utilization systems: a case study

in Nanporo town, Hokkaido, Japan,” Biomass and Bioenergy,
vol. 94, pp. 155–166, 2016.

[21] Y. Wang, X. Zhu, T. Lu, and A. Jeeva, “Eco-efficient based
logistics network design in hybrid manufacturing/remanu-
facturing system in low-carbon economy,” Journal of In-
dustrial Engineering and Management, vol. 2013, pp. 200–214,
2013.

[22] O. Pirogova, M. Makarevich, O. Ilina, and V. Ulanov, “Op-
timizing trading company capital structure on the basis of
using bankruptcy logistic models under conditions of econ-
omy digitalization,” IOP Conference Series: Materials Science
and Engineering, vol. 497, no. 1, Article ID 12129, 2019.

Discrete Dynamics in Nature and Society 9


