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Supported by a third-party capacity sharing platform, manufacturers can share capacities with others to match the rapidly
changing demand. Both the capacity requestor and the capacity provider can choose to seek or wait for matches, forming different
trading strategies (capacity- and demand-driven strategies). Based on the game and chaos theories, this paper analyzes the
preference of the capacity provider, the capacity requestor, and the capacity platform operator on different trading strategies from
the aspects of profitability and stability. It finds that the platform operator values stability much more than profitability, although
the latter may reach higher optimal expected profits. (e preference of each supply chain member is influenced by the production
cost, potential market size, and the limited capacity of the capacity requestor. A stable system can result in higher long-run profits
than a profitable system. We further propose the all-win situation for the capacity provider, capacity requestor, and
platform operator.

1. Introduction

Manufacturing capacity sharing can efficiently solve the
problem of mismatch between demand and supply. Sup-
ported by a third-party capacity-sharing platform, the ca-
pacity requestor can more easily find the appropriate
capacity provider with available surplus capacity. (e reason
is that the third-party capacity-sharing platform links dis-
persed manufacturers and offers an effective manufacturing
solution to facilitate the match between capacity supply and
demand. On the manufacturing capacity sharing platform,
both the capacity requestor and the capacity provider can
choose either to actively seek a well-matched partner or to
wait for the inquiry, considering the trade-off between cost
and lead time.

If the capacity requestor acts as a waiter, it can announce
a request for quotation (RFQ) and release the information
about quotation duration, product category, processing
location, processing quantity, and delivery time, waiting for
the capacity provider’s quotation. Under this mechanism, it

can present the range of the acceptable price but lose the
first-mover advantage of pricing. Meanwhile, it may obtain
low-cost service but face a long production lead time. On the
contrary, if it chooses to be a seeker, it can keep searching
based on its specific needs until it finds a satisfactory well-
matched partner. Under this mechanism, it can decide on
the quantity and then affect the capacity-transfer price. (e
demand can be met at a relatively rapid speed, while the
corresponding cost may be high. Similarly, when the ca-
pacity provider chooses to be a waiter, it releases the in-
formation about its capacity and processing schedule and
waits to be selected. It can also seek capacity requestors based
on their RFQ so that it can hold the first-mover advantage of
pricing. In addition to the capacity requestor and the ca-
pacity provider, the platform operator as the rule maker can
facilitate the capacity-sharing transaction by offering rec-
ommendation services.

(e first-mover advantage also has great impact on the
profitability of the firm. Waiting for partners, the firm can
save information search costs but lose first-mover decision-
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making advantage to some extent. It may even put itself in a
fiercely competitive market. On the contrary, it is reasonable
that the firm actively seeks matches. Considering both the
capacity requestor and the capacity provider can choose to
be a waiter or a seeker, we consider two trading strategies,
that is, the demand- and the capacity-driven strategies. For
example, Figure 1 shows two trading strategies in the IN-
DICS international cloud platform (http://www.indics.com/
). Under the demand-driven strategy (DD), the capacity
requestor releases demand information and waits for the
capacity providers’ quotations. Under the capacity-driven
strategy (CD), the capacity provider releases capacity in-
formation and waits for the capacity requestor’s inquiry.(e
choice of trading strategies is influenced by many factors,
such as the urgency of demand, the degree of capacity
limitation, and the production cost.

While most of the existing literature focuses on prof-
itability, this paper emphasizes the importance of the
stability of the decision-making system. Stability and
profitability are interacted [1, 2]. Only in a stable system
can a firm obtain optimal decisions and expected profits. In
the actual case, decision-makers cannot obtain perfect
information about the market. For instance, it is difficult
for the operator of the CASICloud platform to gain all
information on participants and be completely rational. It
may be affected by heterogeneous behavioral factors when
making decisions. (ese bounded rational decision-makers
have to adjust their decisions according to the marginal
profits in each period. (erefore, the decision-making
process can be modeled as a nonlinear difference equation.
Based on chaos theory, the equilibrium points may be
unstable as system parameters change. (at is to say, the
decision-maker may not get the optimal solutions, or the
optimal solutions cannot bear the change of environment.
In such an unstable system, the bifurcation and chaos
phenomenon may occur. As a result, the decision-maker
should pay more attention to stability and pursue the
balance between profitability and stability.

In this paper, we focus on the decision-making process
in a capacity sharing supply chain, investigating which
trading strategy is preferable for the platform operator, the
capacity requestor, and the capacity provider, respectively.
Specifically, this paper explores the following problems:

(1) Which trading strategy is more profitable for a
perfect rational platform operator?

(2) What is the condition for the stability of the equi-
librium outcomes?

(3) Which trading strategy is more favorable for a
bounded rational platform operator?

(4) How does stability influence the accumulated profit
of the system?

(5) How to select the trading strategy for each partici-
pant in the capacity sharing?

(e academic contributions of this research are three-
fold. First, this paper investigates the profitability perfor-
mance and the stability performance of the capacity- and

demand-driven trading strategies in the manufacturing
capacity sharing platform. Second, this paper explores the
preference of platform operators on trading strategy under
both perfect rationality and bounded rationality. (ird, this
paper analyzes the trading strategy selection of both the
capacity provider and the capacity requestor and further
shows the all-win situation.

(e remainder of this paper is organized as follows. A
literature review is presented in Section 2. Section 3 de-
scribes the basic models and assumptions. We perform the
main analysis for the two market structures in Section 4 and
make a comparison in Section 5. (e study is extended for
all-win situation analysis in Section 6. Section 7 concludes
this study. All expressions and proofs are provided in
Appendix A and Appendix B.

2. Literature Review

(is paper studies the trade-off between profitability and
stability and the choice of trading strategies in a capacity-
sharing supply chain. In this paper, stability is measured
based on the chaos theory. (erefore, this paper is related to
two research streams in the literature: the manufacturing
capacity sharing and the application of chaos theory in the
supply chain.

2.1. Manufacturing Capacity Sharing. As an effective way to
solve the capacity limitation problem, capacity sharing has
attracted more and more attention from both academia and
practitioners in recent years. In the manufacturing industry,
Guo and Wu [3] investigated optimal strategies and firm
profitability of capacity sharing between competing firms
under both ex ante and ex post contracting. Renna and
Argoneto [4] propose a cooperative approach based on game
theory for a network of independent factories facing the
capacity-sharing issue. Considering that each firm has an
existing capacity and faces both fixed and variable costs in
purchasing additional capacity, Yang and Anderson [5]
compare the outcomes obtained in the scenarios where the
firms simultaneously (or sequentially) make their expansion
decisions and then simultaneously decide their production
decisions. Seok and Nof [6] propose the capacity sharing
model among independent and noncompetitive manufac-
turers. Wang et al. [7] built a resource allocation model
considering the credit of resource providers and adopted a
case study of validating the model’s effectiveness. Yang et al.
[8] propose a bipartite matching framework to study the
resource allocation among customers and manufacturers in
additive manufacturing under sharing economy. Li and
Jiang [9] investigate the definition, components, operational
logic, and classification of the enhanced self-organizing
agent in the context of the sustainable sharing factory to
enhance the utilization of the shared manufacturing
resources.

With the rapid development of the Internet, third-party
platform operator helps eliminate barriers to transactions,
making more and more small- and medium-sized
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enterprises (SMEs) join the capacity-sharing business. Qin
et al. [10] studied two competing manufacturers shared
capacities through a platform. With a revenue-sharing
contract, the profit of the firm with insufficient capacity
increased. Considering high- and low-value matchers, Basu
et al. [11] examined how the matchers should select each
other and how the platform should price its search and
authentication services. Zhao et al. [12] study the decision
and coordination for a capacity-sharing supply chain when
the platform charge fixed and quality-based transaction fee.
Ye et al. [13] investigate the competition between a man-
ufacturer and a sharing economy platform considering the
strategic consumers and sharing utility brought by the
sharing transaction. Szaller et al. [14] introduce a novel
mutualistic framework to support the strategic collaboration
of manufacturing facilities and enhance resource utilization.
Li et al. [15] propose a blockchain-based digital twin sharing
platform to protect the copyright and knowledge of a digital
twin in the sharing process to facilitate the manufacturing
resource integration.

To the best of our knowledge, very few literature focuses
on trading strategy choices in a capacity sharing supply
chain. We study how the platform operator sets a trading
strategy for the manufacturers making different products
with different production costs considering the profitability
and stability of the strategies and how the decisions affect the
choices of the manufacturers.

2.2. ,e Application of Chaos ,eory in Supply Chain.
Surana et al. [16] argued that supply chains should be treated
as complex adaptive systems, which were characterized by
nonlinear interactions and strong interdependencies be-
tween the entities. Jüttner et al. [17] commented that the
chaos effect would be an important research branch of
supply chain risk management because of the incomplete
information. (e well-known bullwhip effect is an example
of such chaos. Lei et al. [18] revealed the negative impacts of
the bullwhip effect in a supply chain chaos system and
provided an effective method, radial-basis function neural
network, to help reduce and mitigate the bullwhip effect. Ma
et al. [19] investigated the complexity and bullwhip effect of a
multichannel supply chain, finding that a moderate- or low-
price discount sensitivity kept the system stable, and a high
price discount sensitivity brought the system into the

twofold cycle or chaotic state. Besides, supply chains can
display some of the key characteristics of chaotic systems.
Chaos can be used as a metaphor to describe how a small
change can be amplified to have a large effect on the system.
In a chaos system, the variables are sensitive to initial
conditions. It means that any small deviation will be
magnified exponentially until there is no means of differ-
entiating the actual signal from the signal generated by the
error [20]. It finds that chaos theory principles can be used to
assist in the examination of forecasting, product design, and
inventory management challenges.

Chaos theory shows the potential to be a tool that can be
instrumental in helping explain why unpredictability occurs
within nonlinear systems. Ultimately this may assist man-
agers in making better supply chain management decisions,
benefiting organizations and customers by simultaneously
enhancing cost-effectiveness and improving customer ser-
vice levels [21]. Hwarng and Xie [22] investigated how
variability and chaos occur in a multilevel supply chain and
offered insights into how to manage relevant supply chain
factors to eliminate or reduce system chaos. It found that the
adjustment parameters for both inventory and supply line
discrepancies should be more comparable in magnitude so
that the degree of chaos in the supply chain system could be
reduced. Hwarng and Yuan [23] further examined the chaos
theory and its related methodology applied in the supply
chain under demand uncertainty. (e chaos theory has been
applied in the analysis of the multichannel supply chain
[24–27] and closed-loop supply chain [28, 29]. Facing the
negative impacts of chaos on the supply chain, Göksu et al.
[30] studied the synchronization and control of a chaotic
supply chain system. Using active controllers and linear
feedback controllers to synchronize and control the system,
they also verified the robustness of proposed synchroniza-
tion and control methods by computer simulations. Koca-
maz et al. [31] controlled a chaotic system with artificial
neural network (ANN) and synchronized two identical
chaotic supply chains with different conditions with adaptive
neuro-fuzzy inference system (ANFIS) based on controllers
and showed the effectiveness of the proposed approaches.

As chaos theory is often used to make stability analysis in
a dynamic nonlinear system, in this paper, the stability is
measured by modeling a dynamic decision adjustment
process based on chaos theory. Stability means that the

(a) (b)

Figure 1: (e cases of two trading strategies: (a) demand-driven case and (b) capacity-driven case.
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optimal equilibrium solutions and the corresponding profits
can be obtained after the decision adjustment based on a
specific rule.

3. Model Description

We consider three decision-makers in the capacity sharing
system, that is, a limited-capacity manufacturer (capacity
requestor), an excess-capacity manufacturer (capacity pro-
vider), and a platform operator. (e platform operator sets a
service charge cp to maximize its profit. (e capacity pro-
vider charges capacity-transfer price pt from the capacity
requestor and pays service charge cp to the platform operator
for qt per unit. (ere exists a co-opetitive game between the
capacity requestor and the capacity provider: on the one
hand, the capacity requestor cooperates with the capacity
provider by ordering capacities from the latter. On the other
hand, the two manufacturers make a quantity competition
(Cournot competition) for the end consumers in the retail
market.

We assume the capacity demand and supply are not
urgent. Both the capacity provider and the capacity re-
questor have two choices, to seekmatches actively or wait for
partners. We analyze the capacity- and the demand-driven
trading strategies. We also assume the capacity requestor has
specific demand and the capacity provider can adjust itself to
meet the specific demand. Under the capacity-driven trading
strategy, the capacity requestor actively seeks a capacity
provider frommany capacity providers waiting for the trade,
and the capacity-transfer price is determined by the order
placed by the capacity requestor, that is, pt � at − qt. Under
the demand-driven trading strategy, the capacity provider
actively seeks a capacity requestor from many waiting ca-
pacity requestors based on its capacity, and the order de-
pends on the prices set by the capacity provider, that is,
qt � at
′ − pt. To simplify the model and compare the results

obtained in the two scenarios, we unify the relationship
between pt and qt in two markets, that is, at � at

′ � 1. We
assume the seeker can successfully make a deal for capacity
sharing.

(e platform operator makes a decision before others.
(e lack of information about others’ decisions limits its
decision-making process. Hence, we consider the platform
operator to be bounded rational. It obtains the optimal
decision by adjusting decisions in each period. Based on
chaos theory, the platform operator, as well as the capacity
requestor and capacity provider, may face stability problems
in such a dynamic decision-making system.

As the capacity provider could share its remaining ca-
pacities after it decides on its own quantity, we consider the
capacity sharing business happens after the capacity pro-
vider’s quantity decision. As a result, the sequence of events
is presented in Figure 2. (e list of notations can be seen in
Table 1.

(e capacity requestor and the capacity provider’s
quantities are denoted by qb and qs, respectively. (e ca-
pacity requestor’s quantity consists of two parts: one part
made by itself and the other part borrowed from the capacity
provider. We assume the capacity requestor to make full use

of capacity k. As a result, qb � k + qt. We assume the
consumers are indifferent between the products made by the
two manufacturers. Hence, we model the market-clearing
price p with the following inverse demand function:

p � a − b qb + qs( , (1)

where a is the potential market size and b represents the
demand sensitivity coefficient. We normalize b � 1 to
simplify the analytical results.

(e customer surplus utility is given as follows:

C � a qb + qs(  −
1
2

q
2
b + q

2
s + 2bqbqs  − p qb + qs( . (2)

As the kinds of products vary widely, the manufacturing
costs of different products are distributed over a wide range.
We ignore the cost difference of the same products made by
the capacity requestor and capacity provider. Hence, the
capacity requestor and the capacity provider make their
products with the same production cost c. Meanwhile, the
cost of outsourcing manufacturing occurs when the capacity
provider shares capacity and products for the capacity re-
questor. As a result, the objective functions of the capacity
requestor and capacity provider are given by

max
qt

πb � (p − c)k + p − pt( qt,

max
pt,qs

πs � (p − c)qs + pt − c − cp qt.
(3)

Variable costs are the costs of labor or materials that
change with sales. Considering that the service cost per unit
is very low, we assume the variable cost for service to be zero.
(e platform operator’s profit function would then be

max
cp

πp � cpqt. (4)

4. Analysis of Basic Models

4.1. Capacity-Driven Case (CD Case). Under the CD case, a
capacity requestor with specific demand actively seeks the
capacity provider. (e matching is driven by the order of the
capacity requestor. (e limited capacity affects the order
quantities and then drives the prices. For simplicity of ex-
position and analytical tractability, we use a linear inverse
demand function to model the transfer price as pt � 1 − qt.
(e equilibrium outcomes are given in Proposition 1. Please
refer to the Appendix B for proofs of all propositions.

Proposition 1. Under CD case, the equilibrium outcomes
are: cCD

∗

p � (1/4)(1 − c − k), qCD
∗

t � (1/8)(1 − c − k), pCD∗
t �

(1 /8)(7 + c + k), and qCD
∗

s � (1/8)(8a − 3c − 11k − 5).

It is reasonable that a higher production cost c raises the
capacity-transfer price pt and then lowers the amount of
shared capacity qt, which forces the platform operator to
lower the service charge.(e impacts of k on the equilibrium
outcomes are consistent with those of c. It is also reasonable
that a higher capacity k owned by the capacity requestor will
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drive it to order less capacities from others, which raises the
capacity-transfer price andmakes the platform operator set a
lower service charge. (e optimal expected profits are given
in Appendix B, from which we can see the capacity re-
questor’s profit πCDb increases in k and the capacity pro-
vider’s profit πCD

s decreases in k.

Proposition 2. Under the CD case, the basic condition
guaranteeing that both the capacity requestor and the ca-
pacity provider join in the capacity-sharing business is
0< c + k< 1.

Proposition 2 shows that the CD trading strategy is
available for the capacity requestors with capacities to be
seriously limited and costs to be relatively low. Considering
the case without capacity sharing, it is not difficult to get that
the capacity requestor’s capacity will meet the demand when
k≥ (1/3)(a − c). Because of the cost advantages, some of the
manufacturers may borrow capacities even when they have
sufficient capacities. As a result, we do not treat
k> (1/3)(a − c) as a basic condition for the adoption of
capacity sharing. Only when k< 1 − c may both the capacity
requestor and the capacity provider participate in the ca-
pacity sharing business with the CD trading strategy. If the
capacity limit is not so serious, the capacity requestor is not
willing to borrow capacity because the profits obtained from
capacity sharing are not large enough to cover the cost. As

for the cost c, only when c< 1 − k may both traders par-
ticipate in the capacity-sharing business. If c is relatively
large, the corresponding capacity-transfer price will be too
high for the capacity requestor to bear. In a word, when the
capacity limitation is relatively serious or the cost is relatively
small, both the capacity requestor and the capacity provider
will consider participating in the capacity-sharing business
with the CD trading strategy.

Considering the bounded rationality of the platform
operator, the optimal service charge can only be got after
several adjustments. According to [32, 33], the platform
operator uses bounded rational expectation and adopts the
so-called myopic adjustment mechanism

c
CD
p (t + 1) � c

CD
p (t) + g

CD
· c

CD
p (t) ·

zπCD
p (t)

zc
CD
p (t)

, (5)

which minimizes the marginal profits of the platform op-
erator. We can see that the adjustment stops (i.e.,
cCDp (t + 1) � cCDp (t)) and the equilibrium point is obtained
when the marginal profits of the platform operator are
minimized to be zero. According to Jury [34], to guarantee
the system CD to be stable at the equilibrium solution c∗p, the
condition can be expressed as follows:

zc
CD
p (t + 1)

zc
CD
p (t)




< 1⇔ − 1< 1 +

1
4

g(− 1 + c + k)< 1. (6)

  

The capacity requestor
decides the order quantity

 

Capacity-driven
trading strategy 

Demand-driven
trading strategy 

The capacity provider
decides the transfer price.

The capacity provider
decides the selling

quantity.

The platform operator
sets service charge.

Figure 2: Sequence of events.

Table 1: List of notations.

Notation Definition
a Potential market size
b Demand sensitivity coefficient
c Production cost of the capacity provider and the capacity requestor
g Adjustment speed
k Capacity quantity owned by the capacity requestor
p Market-clearing price
qb Total quantity required by the capacity requestor
qt Capacity quantity ordered by the capacity requestor
pt Unit capacity-transfer price
cp Unit service charge, decision variable of the platform operator
C Customer surplus utility
πb Profit of the capacity requestor
πs Profit of the capacity provider
πp Profit of the platform operator
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Given c + k< 1, we have (1/4)g(− 1 + c + k)< 0, and the
condition can be written as 1 + (1/4)g(− 1 + c + k)> − 1.

Proposition 3. Under the CD case, the equilibrium point
cCD
∗

p is stable when g(1 − c − k)< 8.

Proposition 3 shows that a higher c, a higher k, and a
lower g are good for the system stability. Adopting CD
trading strategy, those capacity requestors manufacturing
high-cost goods or being with higher capacities will be more
likely to keep the supply chain system stable. Intuitively, a
higher adjustment speed can make the decision-maker reach
the equilibrium outcome more quickly and then obtain a
higher accumulated profit. It is true when the decision is far
away from the optimal one. However, when the decision has
been very closed to the optimal one, a higher adjustment
speed may lead the decision value to fluctuate around the
optimal one. Proposition 3 indicates that a relatively low
adjustment speed guarantees the stability of the system. (e
upper limit gmaxCD � (8/(1 − c − k)) can measure the sta-
bility performance of the system.(e larger the gmaxCD is, the
better the stability performance is. Similarly, the lower limit
cminCD � 1 − k − (8/g) and kminCD � 1 − c − (8/g) can be
solved out.

4.2. Demand-Driven Case (DD Case). Under the DD case, a
capacity provider tries to actively seek and match a capacity
requestor based on its specific supply capacity. (e capacity
provider holds the pricing power, and the demand is driven
by the price. For analytical tractability and comparability
with the CD case, we use a linear demand function to model
the order as qt � 1 − pt. By backward induction, in stage 3,
due to (z2πs/zp2

t ) � − 2, there exists a unique optimal pt.(e
best response function (BRF) of pt is

pt �
1
2

1 + c + cp + qs . (7)

(en the BRF of qt is

qt �
1
2

1 − c − cp − qs . (8)

In stage 2, the capacity provider decides on its own
quantity. Due to (z2πs/zq2s ) � − (3/2), the BRF of qs is

qs �
1
3

− 1 + 2a − c + cp − 2k . (9)

In stage 1, the platform operator determines the service
charge. A perfect rational decision-maker can get the unique
optimal c∗p since (z2πp/zc2p) � − (4/3). Substituting c∗p into
the BRFs of qt, pt, qs, we have the equilibrium outcomes
under DD case, as shown in Proposition 4.

Proposition 4. Under DD case, the equilibrium outcomes
are: cDD

∗

p � (1/4)(2 − a − c + k), qDD
∗

t � (1/6)(2 − a − c + k),
pDD∗

t � (1/6)(4 + a + c − k), and qDD
∗

s � (1/12)

(7a − 5c − 7k − 2).

(e impact of the production cost c on the equilibrium
outcomes under DD case is similar to those under CD. (e
difference is that the influence of k on the equilibrium
outcomes under the two models. (e reason is that in this
market, the amount of shared capacity is driven by the price.
(e capacity k affects the price and then indirectly affects the
quantity. (e capacity requestor with higher capacity has a
larger power bargaining with the capacity provider and then
gets a lower capacity-transfer price. For the capacity pro-
vider, it can set a higher price for the capacity requestors
with capacity limitations to be more serious. (e capacity-
transfer price further affects the quantities and the service
charge.

Proposition 5. Under the DD case, the basic condition
guaranteeing that both the capacity requestor and the ca-
pacity provider join in the capacity-sharing business is
a + c< 2 + k.

Proposition 5 indicates that DD trading strategy is
available for the low-cost capacity requestors with suffi-
ciently large capacities, that is, c< 2 − a + k or k> a + c − 2.
If k< a + c − 2, the capacity requestor will not consider DD
as an option. It makes sense that the capacity requestor
facing serious capacity limitation cannot wait for the ca-
pacity provider. If k<min a + c − 2, 1 − c{ }, it will actively
seek matches.

Similarly, the bounded rational platform operator ad-
justs service charge under the DD case following the below
rule:

c
DD
p (t + 1) � c

DD
p (t) + g

DD
· c

DD
p (t) ·

zπDDp (t)

zc
DD
p (t)

. (10)

(e condition guaranteeing the system to be stable at the
equilibrium solution c∗p is

zc
DD
p (t + 1)

zc
DD
p (t)




< 1⇔ − 1< 1 +

1
3

g(− 2 + a + c − k)< 1.

(11)

Given a + c< 2 + k, the condition (11) can be written as
1 + (1/3)g(− 2 + a + c − k)> − 1.

Proposition 6. Under the DD case, the equilibrium point
cDD
∗

p is stable when g(2 + k − a − c)< 6.

Proposition 6 indicates that under the DD case, a lower g

and k and a higher a and c are good for the system stability.
Different from the CD case, the platform operator may
prefer the capacity requestor with lower capacities, when it
can use a higher decision adjustment speed g without losing
the system stability. In order to keep the system stable, the
platform operator may make the low-capacity requestors
adopt DD trading strategy, make those high-capacity re-
questors adopt CD trading strategy. (e upper limit
gmaxDD � (6/(2 + k − a − c)), kmaxDD � a + c + (6/g) − 2, and
the lower limit cminDD � 2 + k − a − (6/g) can be solved out.
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5. Trade-off between Profitability and Stability

In this section, we compare the performance of systems CD
and DD on stability and profitability in order to study the
choice of trading strategy. According to Propositions 2 and
5, the one who can make a choice between CD and DD
should meet the basic condition given as follows:

c + k< 1,

a + c< 2 + k.
(12)

Note that cmax � min 1 − k, 2 + k − a{ }, only the firms
with production cost satisfying c< cmax and the limited
capacity requestor with a + c − 2< k< 1 − c have two choices
of CD and DD. In this section, we pay more attention to the
decision of the platform operator on CD and DD based on
the assumption that both the capacity provider and capacity
requestor meet the condition (12) and accept the arrange-
ment of the platform operator. (e assumption is relaxed in
Section 6 for the study on how all the decision-makers freely
choose trading strategies.

5.1. Comparison of Profitability. In this paper, profitability is
measured by the amount of profits obtained under different
trading strategies. (at is the maximum profit theoretically
obtained by a decision-maker. If all the decision-makers are
perfectly rational, the equilibrium solutions in Propositions
1 and 4 can be obtained. Comparing the expected profits
obtained under DD and CD trading strategies, we can get the
platform operator’s preference on trading strategies pre-
sented in Proposition 7.

Proposition 7. Under the assumption of perfect rationality,
there exist thresholds c

πp

th such that the following occurs:

πCD
p > π

DD
p , if max 0, c

πp

th < c< cmax,

πCD
p < π

DD
p , if 0< c<min c

πp

th , cmax .

⎧⎪⎨

⎪⎩
(13)

Proposition 7 indicates that a profit-maximizing plat-
form operator would like to make the high- and low-cost
firms adopt CD and DD trading strategy, respectively. If
− 1 + a − 2k< 0, we have the threshold c

πp

th > cmax, and then
πCDp < πDD

p is always true with c ∈ (0, cmax]. Similarly, if
2a +

�
3

√
> (

�
3

√
+ 2)k + 4, we have c

πp

th < 0, and πCDp > πDD
p is

always true. For example, making a � 1.5 and k � 0.2, we
have c

πp

th � 0.05 and cmax � 0.7, and the platform operator
prefers to make the firms with c< 0.05 accept DD and those
with 0.05< c< 0.7 accept CD, as shown in Figure 3(a).
Making a � 2 and k � 0.2, we have c

πp

th ≈ − 3.68< 0, and the
profits obtained by CD is always larger than that by DD, as
shown in Figure 3(b). Making a � 1.2 and k � 0.2, we have
− 1 + a − 2k< 0, c

πp

th ≈ 2.29, and cmax � 0.8, c
πp

th > cmax, and
then πCDp < πDDp is always true, as shown in Figure 3(c).

We only consider the most interesting case 0< c
πp

th < cmax.
In general, the platform operator is very important for the
trading and even monopoly the capacity-sharing markets,
making the capacity requestor and capacity provider accept

the trading strategies set by the platform operator. For
example, as a platform operator, the INDICS platform
(http://www.indics.com/) provides a capacity sharing plat-
form for the capacity requestor and capacity provider to
match each other. And the platform can induce their choices
by some specific methods. In the following paper, we assume
that the platform operator leads the choice of trading
strategies and both the capacity requestor and the capacity
provider accept the decisions. As a result, we are more
concerned about the decisions of the platform operator. In
the next section, we consider a more general case in which
the platform operator is bounded rational. (e choice of a
trading strategy will be more complex for the platform
operator, as well as the capacity requestors and capacity
providers, considering the stability of the system.

5.2. Comparison of Stability. We compare the stabilities of
two systems (denoted by CD and DD) according to Prop-
ositions 3 and 6. More specifically, we measure the stabilities
by the thresholds (i.e., gmaxDD , gmaxCD , cminDD , and cminCD),
which divide the system into stable and unstable states. For
example, from the perspective of g, the systemDD is stable if
0<g<gmaxDD . (e system CD is stable if 0<g<gmaxCD . (e
system CD has better stability than DD if gmaxCD >gmaxDD
because the System CD has a larger range of g keeping the
system stable. Similarly, from the perspective of c, the system
under CD trading strategy is stable if cminCD < c< 1 − k. (e
system under DD trading strategy is stable if
cminDD < c< 2 + k − a. (e system CD has a better stability
than DD if cminCD < cminDD . As the relationship between
gmaxCD and gmaxDD is also influenced by the parameters c, a,
and k, we can compare the stability of two systems by
comparing gmaxCD with gmaxDD from the perspective of c,
which is given in Proposition 8.

Proposition 8. Under the assumption of bounded ratio-
nality, there exists a threshold c

gmax
th such that the following

occurs:

gmaxCD >gmaxDD , if 0< c<min c
gmax
th , cmax ,

gmaxCD <gmaxDD , if max 0, c
gmax
th < c< cmax.

⎧⎪⎨

⎪⎩
(14)

For the high-cost firms, accepting DD leaves better
stability for the platform operator than accepting CD. (e
bounded rational platform operator is suggested to rec-
ommend the firms with high production costs to adopt DD
trading strategy for better stability performance and rec-
ommend the firms with low production costs to adopt CD
trading strategy.

If the capacity requestor’s capacity is sufficiently larger,
that is, k> ((a − 1)/2), we have c

gmax
th > cmax , and the system

CD always has better stability than DD. As the capacity is
limited when k< ((a − 1)/3), this case only happens on the
firm with sufficient capacity borrowing capacity from others.
For the firms facing a serious capacity problem, that is,
k< (1/7)(4a − 5), we have c

gmax
th < 0. For these firms, DD
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always has better stability than CD, regardless of how much
the production cost is.

Making numerical simulations helps better understand
the importance of stability and the difference between the
two systems. Setting default values of the parameters a, c, k,
and g as shown in Table 2, we have cmax � 0.7, and only the
firms with c< 0.7 can participate in capacity sharing under
DD and CD trading strategies according to the basic con-
dition equation (12). We can also get the thresholds de-
termining whether or not the system CD or DD is stable,
which are also shown in Table 2.

Actually, in an unstable system, the decision-maker
could neither reach the equilibrium nor obtain maximum
profit. Take the CD case for example. As shown in Table 2,
we can see that the threshold gmaxCD � 13.33 and any
g<gmaxCD makes the system stable. As a result, we make g �

11, 14, 17 to build the stable, period-doubling, and chaos

system and then draw the time series of cp, qs, and qt with
respect to g to show the decision adjustment processes in
different systems, as shown in Figure 4.

Observe that, when g � 11, the system is stable, and the
decision can be stably optimized after several adjustments.
When g � 14, the system is double-cycle, and the decision
sways between the peaks and troughs. When g � 17, the
system is chaos, and the decision seems to be disordered
after several adjustments.

To better show how the parameters g, c, and k affect the
optimal decisions and the difference in stability performance
of systems CD and DD, we draw the bifurcation diagrams
shown in Figure 5, which shows the equilibrium decision cp

after several adjustments and iterations with respect to g, c,
and k.

Take Figure 5(a) for example. First, when g stays at a
relatively low level (i.e., lower than gmaxDD or gmaxCD), cp
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Figure 3: Profit comparison: (a) a � 1.5 and k � 0.2; (b) a � 2.0 and k � 0.2; and (c) a � 1.2 and k � 0.2.
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tends to be a unique optimal solution. When g is larger than
the thresholds gmaxDD (or gmaxCD), the decision-maker cannot
obtain any unique solution. Instead, the decisions will swing
between two or more values at both sides of the optimal one.
If g increases to be larger than a threshold, the system will go
into chaos, and the decision cp will become chaotic. We can
also see the different performance of stability between
systems CD and DD. As gmaxDD <gmaxCD shown in Table 2,

the system CD can be stable with a larger range
g ∈ (gmaxDD , gmaxCD) comparing with the system DD.

Apart from the platform operator, the capacity requestor
and the capacity provider cannot get stable decisions either
in an unstable system. Driven by the service charges, the
decisions of the capacity requestor and capacity provider
may also change from being stable to unstable. Figure 6
shows that the decisions of the capacity requestor and

Table 2: Values of the capacity-sharing system parameters.

Parameters a c k g cminDD cminCD gmaxDD gmaxCD cminDD cminCD kmaxDD kminCD

Values 1.5 0.2 0.2 20.0 0.4 0.4 12.0 13.3 0.2 0.1 0.0 0.4

2 4 6 8 10 12 14 16 18 20
0.06

0.08

0.1
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t
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Figure 4: Time series for different states (g � 11, 14, 17) under CD: (a) cp, (b) qs, and (c) qt.
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capacity provider will also be influenced by the parameters g

and c. (e bifurcation points of qt and qs are consistent with
those of cp.

From Figures 4–6, we can see that only in a stable system
can the platform operator and the capacity requestor and the
capacity provider get unique optimal solutions. Observing
the ranges A and B in Figure 6, although DDmay be a profit-
maximizing trading strategy, it may not be chosen if g lo-
cates in these two ranges. (is leads to the study on the
trade-off between profitability and stability.

5.3. Trade-Off. Interestingly, Propositions 7 and 8 indicate
that the platform operator can get higher expected profits
making the high-cost capacity requestor and capacity pro-
vider accept CD trading strategy, while this may cause a
worse stability performance of system CD. (e profitability

and stability of the system are contradictory from the
perspective of c. Stability is much more important than
profitability as we have proved that the platform operator
can neither reach equilibrium nor obtain optimal expected
profits in an unstable system. In short, the decision-making
principle is to follow the order of the objects as follows:

(e maximum profit in a stable system> the sub-
maximum profit in a stable system> the maximum profit in
an unstable system> the submaximum profit in an unstable
system.

It is not difficult to understand that “the maximum profit
in a stable system” is always better than “the submaximum
profit in an unstable system.” Why should the platform
choose “the submaximum profit in a stable system” rather
than “the maximum profit in an unstable system”? To an-
swer this question, we have introduced the negative impact
of unstable factors on decisions and profits. Besides, we also
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Figure 5: Bifurcation diagrams for the decisions of the platform operator: (a) cp w.r.t. g and (b) cp w.r.t. c.
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need to give analytical decision support for the platform.
According to Propositions 7 and 8, the trade-off between
profitability and stability is closely related to production
cost. Hence, the order of the thresholds of c is very important
for the choice of trading strategies. According to the order of
these thresholds, we present four scenarios shown in Table 3.

(e final decisions may be quite different due to the
different orders of the thresholds in each scenario. As the
order of these thresholds depends on k and a, we present
four scenarios with respect to k and a, as shown in Table 4.

(e order of thresholds of c depends on the level of
capacity k. Observing that, when the capacity is seriously
limited, that is, k1 < k< k3, we have scenario 1 in which the
system DD has a better stability performance than CD, that
is, cminDD < cminCD . If k increases to be located in
max k1, k3 < k< k2, system CD has a better stability per-
formance than DD, as shown in scenario 2. As a result, the
threshold max k1, k3  determines whether which system has
a better stability performance. In these two scenarios, the
thresholds cminDD and cminCD locate in the area where the
optimal expected profits πCDp > πDDp . If k increases to be
k1 < k<min k4, k5 , as shown in scenario 3, the thresholds
cminDD and cminCD will locate on each side of the threshold c

πp

th .
In scenario 4, k increases to be k4 < k< k5, and both the
thresholds cminDD and cminCD locate in the area where the
optimal expected profits πDD

p > πCDp . Considering the prof-
itability and stability of the CD and DD, we have the optimal
solutions in different scenarios based on the decision-
making principle, as shown in Table 5.

Proposition 9. ,e best choices of trading strategy for the
platform are presented in Table 5.

In Table 5, there is neither a satisfactory solution nor an
optimal solution for the “unstable” cases in which the
production cost is relatively low. For the case with “maxi-
mum, CD (or DD),” the final decision is CD (or DD), and
the decision maximizes the profit, meaning that the decision
CD (or DD) has better profitability and stability compared
with DD (or CD). For the case with “submaximum, CD (or
DD),” the final decision is CD (or DD), which is not an
optimal solution but a satisfactory one guaranteeing the
system stability and higher accumulated profits.

Take the submaximum case in scenario 3 in Table 5 for
example. We need to build the condition cminCD < c< c

πp

th in
scenario 3. Making a � 1.5, g � 16, we have a3 ≈ 2.05 and
a< a3. Observe in Table 4. We need to build k2 < k< k4. We
then obtain k2 � 0.217 and k4 � 0.221 and set k � 0.218 to
satisfy k2 < k< k4 and match scenario 3 according to Table 4.
(en we have c

πp

th ≈ 0.304, cminDD � 0.343, and cminCD � 0.282.
Set c � 0.29 to meet the condition cminCD < c< c

πp

th . Based on
Proposition 8, we know that when c< c

πp

th , the optimal ex-
pected profits πCDp < πDD

p . However, as shown in Table 5, the
final decision is CD because of the system stability. Only in
the stable system can the platform get stable profits. Figure 7
shows why CD is chosen by the decision-maker, in which we
substitute the values above into the model and draw ac-
cumulated profits obtained in stable system CD and unstable
system DD. A closer look at line DD reveals the fluctuation

caused by the decisions fluctuating at both sides of the
optimal one in each decision-making cycle.

(e above discussion has revealed that the thresholds
cminCD and cminDD are very important for the choice of trading
strategies considering the stability of the system. A lower
min cminCD , cminDD  is beneficial for the system’s stability.
Observe that (zcminCD/zg) � (8/g2)> 0 and
(zcminDD/zg) � (6/g2)> 0. (e platform operator can lower
the threshold min cminCD , cminDD  by slowing down g. When
g � (8/(1 − k)), we have cminCD � 0, and then the system will
be always stable under CD trading strategy; when
g � (6/(2 − a + k)), we have cminDD � 0, and then the system
will be always stable under the DD trading strategy. If the
platform operator sets g � min (8/(1 − k)), (6/(2 − a + k)){ },
it can make a decision just by taking the profitability into
consideration. Although a lower g is beneficial for the
system stability, it also affects the accumulated profits of the
decision-maker because a lower g will delay the time
reaching the optimal decision. In Figure 8, we present the
impacts of g on accumulated profits.

According to Figure 8(a), comparing the lines with g �

gmaxCD � 13.3 and g � 19, if a lower g is necessary for the
system stability, it keeps the system stable and results in
higher accumulated profits. Comparing the lines with g �

gmaxCD � 13.3 and g � 0.1, if both g keep the system stable, a
higher one helps reach the optimal solution more quickly
and results in higher accumulated profits. Similar conclu-
sions can be made for the DD case, as shown in Figure 8(b).

6. Extension: The All-Win Situation

In this section, we relax the assumption of absolute ac-
ceptance of the capacity requestor and the capacity provider
and consider that they can freely choose from CD and DD or
leaving from capacity sharing. To simplify the model, we
consider a special case in which the capacity requestor does
not have any capacity, that is, k � 0. It is very common to see
these firms in reality. For example, Nike does not own any
manufacturing facilities and outsource its production.
Contract factories in Vietnam, China, and Indonesia
manufacture approximately 43%, 28%, and 25% of total Nike
brand footwear, respectively (https://csimarket.com/stocks/
suppliers_glance.php?code�NKE). Besides, we assume the
platform adjusts the service charge with a sufficiently low
speed. (at is, the system can be stable so that the platform
can make decisions just for better profitability. In this special
case, the basic condition for both the capacity requestor and
the capacity provider participating in CD and DD is 0< c< 1
and 0< a + c< 2.

Table 3: Four scenarios and the corresponding order of the
thresholds of c.

Scenario (e order of the thresholds of c

1 0< c
πp

th < cminDD < cminCD < cmax
2 0< c

πp

th < cminCD < cminDD < cmax
3 0< cminCD < c

πp

th < cminDD < cmax
4 0< cminCD < cminDD < c

πp

th < cmax
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Table 4: Four scenarios and the corresponding parameter value range.

k1 < k< k3 k1 < k< k2 k3 < k< k2 k2 < k< k5 k2 < k< k4 k4 < k< k5

a≤ a1 Scenario 1 Scenario 2
a1 < a< a2 Scenario 2
a< a3 Scenario 3 Scenario 4
a3 < a< a2 Scenario 3
Note. (e exact expressions of k1, k2, k3, k4, and k5 are given in Appendix A.

Table 5: (e final decisions and the corresponding parameter value range in four scenarios.

Scenario 1 0< c< c
πp

th c
πp

th < c< cminDD cminDD < c< cminCD cminCD < c< cmax
Unstable Unstable Submaximum, DD Maximum, CD

Scenario 2 0< c< c
πp

th c
πp

th < c< cminCD cminCD < c< cminDD cminDD < c< cmax
Unstable Unstable Maximum, CD Maximum, CD

Scenario 3 0< c< cminCD cminCD < c< c
πp

th c
πp

th < c< cminDD cminDD < c< cmax
Unstable Submaximum, CD Maximum, CD Maximum, CD

Scenario 4 0< c< cminCD cminCD < c< cminDD cminDD < c< c
πp

th c
πp

th < c< cmax
Unstable Submaximum, CD Maximum, DD Maximum, CD
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Figure 8: Accumulated profits of the platform operator with different g: (a) a � 1.5, c � 0.2, k � 0.2 in system CD and (b) a � 1.5, c �

0.2, k � 0.2 in system DD.
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6.1.Who Benefits from the Capacity Sharing? (e analysis on
whether or not the participants can benefit from the capacity
sharing is the premise of the analysis of the choice of trading
strategies. When both the capacity requestor and the ca-
pacity provider can freely choose whether or not to par-
ticipate in capacity sharing, they will make a comparison on
profits obtained with and without capacity sharing.

Proposition 10. Both the capacity requestor and the capacity
provider can benefit from being a seeker in capacity-sharing
business; the capacity requestor can also benefit from being a
waiter when the potential demand is relatively large, i.e.,
a> 1; the capacity provider can also benefit from being a
waiter when the production cost is relatively small, i.e.,
0< c<min 4a − 3, 5 − 4a{ }.

For the capacity requestor, it can benefit from borrowing
capacities from other firms, even from its rival, when it seeks
partners proactively. It can also benefit when being a waiter
on the condition that the potential demand is relatively large.
Hence, if the potential demand is relatively larger, it defi-
nitely gets more profits from capacity sharing regardless of
the trading styles. For the capacity provider, it will also
benefit from being a seeker and sharing capacities with the
partners. For the low-cost capacity providers, they can also
get more profits by being a waiter. Note that 5 − 4a is lower
than 4a − 3 when a> 1. If a> 1 and 0< c< 5 − 4a; both can
benefit from capacity sharing regardless of the trading styles.
(erefore, apart from the basic condition shown in Prop-
osition 2 and 5; the following conditions should be further
met for each trading strategy adoption because a match is
successful only if both match-seekers accept the match [11]:

(1) DD: a> 1
(2) CD: 0< c<min 4a − 3, 5 − 4a{ }

(3) CD and DD: a> 1 and 0< c< 5 − 4a

6.2. ,e Choices of Trading Strategies

Proposition 11. Comparing the profits obtained under CD
and DD trading strategies, the following occurs:

(1) ,e capacity provider: πDD
s > πCDs

(2) ,e capacity requestor:
πDD

b < π
CD
b if max 0, c1 > c> 5 − 4a

πDD
b < π

CD
b otherwise



(3) ,e platform operator:
πDDp > π

CD
p if max 0, c2 < c< 5 − 4a

πDDp > π
CD
p otherwise

⎧⎨

⎩

Proposition 11 indicates that the capacity provider can
always get more profits under DD than the CD trading
strategy. It means that the capacity provider can always
benefit from seeking capacity requestors for matches, even
compared with the extreme case in which only one capacity
provider acts as a waiter. (erefore, the capacity provider
should actively seek the capacity requestors. For the capacity

requestors, the high-cost ones prefer to wait for capacity
providers; those low-cost ones prefer to seek capacity
providers. A profit-maximizing platform operator should
recommend the high-cost firms to accept CD trading
strategy and recommend those low-cost firms to accept DD
trading strategy.

As the capacity provider will always choose DD, it may
be the only all-win choice. Based on Proposition 11, we have
the following proposition.

Proposition 12. Note that c2 > c1, the only all-win situation
DD happens on the firms with production cost satisfying
max 0, c1 < c< c2.

(eoretically, only the firms with production cost sat-
isfying max 0, c1 < c< c2 can achieve an all-win situation, as
shown in Figure 9. (erefore, when the production cost is in
a moderate range, the capacity provider, the capacity re-
questor, and the platform operator can all benefit from a
demand-driven trading strategy, that is, the capacity re-
questor release the demand information, waiting for the
capacity providers’ quotation.

According to the above analysis, if the capacity re-
questor’s capacity is seriously limited and the production
cost is relatively low, the CD trading strategy can be a good
option for the capacity requestor to search for the capacity
provider. If the capacity requestor’s capacity is relatively
large and the production cost is not high, the capacity
requestor can choose to adopt the DD trading strategy to
wait for the capacity provider. When the capacity re-
questor’s capacity is within a medium range and the cost is
comparatively moderate, the capacity requestor and the
capacity provider can choose between the CD and DD.
Under this situation, the capacity requestor with medium
capacity and relatively high cost had better choose DD
strategy for better profitability, while the capacity pro-
vider always gains more profits under the DD trading
strategy.

(e platform can induce choices of the capacity re-
questor and the capacity provider by some specific methods.
For a profit-maximizing platform operator, it is advisable to
suggest the firms with relatively high production costs and
with relatively low costs to adopt the CD trading strategy and
DD trading strategy, respectively. (erefore, an all-win
situation under the DD trading strategy exits for the capacity
provider, the capacity requestor, and the platform operator
when the production cost is within a certain range. When
taking the bounded rationality of the platform operator into
account, if the platform operator is bounded rational and
highlights the stability of the system, it is wise to recommend
the firms with a relatively high cost to accept DD trading
strategy. (e analysis has shown that the stability perfor-
mance will be put as the first consideration since the trading
strategy with better stability can result in higher long-run
profits.(erefore, we propose the decision-making principle
for the platform operator to provide insights for its rec-
ommendation and analyze the best choice in different
situations.
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7. Conclusions

In this paper, we model two trading strategies in a capacity-
sharing supply chain based on the behaviors of the capacity
requestor and the capacity provider. We investigate a
bounded rational platform operator’s preference from these
two trading strategies by comparing the profitability per-
formance and stability performance based on the chaos
theory. Furthermore, we analyze the preference of the ca-
pacity provider and the capacity requestor on the trading
strategy and discuss the all-win situation.

(e results show that for a profit-maximizing platform
operator, it would like to recommend firms with high
production costs and firms with low production costs to
adopt CD and DD trading strategies, respectively. In con-
trast, for a bounded rational platform operator, it will obtain
better stability by recommending the firms with high

production costs to accept the DD trading strategy. Com-
prehensively, the trading strategy with better stability per-
formance should be put as the first consideration since the
trading strategy with better stability can result in higher
long-run profits. (e choice of trading strategy is influenced
by the production cost, the capacity owned by the capacity
requestor, and the potential market size. (e capacity
provider can always obtain higher profits under the DD
trading strategy rather than CD.(e capacity requestor with
high production cost prefers to choose the DD trading
strategy, while the one with low production cost prefers to
choose the CD strategy.(e DD trading strategy will achieve
the all-win situation only when the production cost satisfies
certain conditions.

In this paper, we investigate the capacity-sharing
transaction with considering little distinction in the
manufacturing process of the capacity provider and the

all-win
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Figure 10: (e existence of both scenarios: (a) the case c< 5 + 7k − 4a w.r.t. a, c, and k and (b) the case c> 5 + 7k − 4a w.r.t. a, c, and k.
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capacity requestor and three members in the capacity-
sharing supply chain. We will further take the difference in
production costs into account and explore the many-to-
many relationships of capacity providers and capacity re-
questors for further research.

Appendix

A. Exact Expressions of Thresholds
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− 2(− 2 +

�
3

√
)a,

k2 �
1
2

− 1 + a −
4

(2 +
�
3

√
)g
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√
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,
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3

√
+ 3g

g
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(A.1)

B. Proof of Propositions

Proof. of Proposition 1.
By backward induction, in stage 3, the capacity requestor

decides on the order quantities from the capacity provider.
As (z2πt/zq2t ) � − 2, the BRF of qt is

qt �
1
2

− 1 + 2a − c − 3k − 2qs( . (B.1)

(en we have the BRF of pt is

pt �
1
2

3 − 2a + c + 3k + 2qs( . (B.2)

In stage 2, the capacity provider determines its own
production quantity qs, which maximizes the capacity
provider’s profits as (z2πs/zq2s ) � − 2. (e BRF of qs is

qs �
1
4

− 3 + 4a − c + 2cp − 5k . (B.3)

In stage 1, since (z2πp/zc2p) � − 1, a perfect rational
platform gets the unique optimal service price c∗p.
Substituting c∗p into the BRFs of qt, pt, and qs, we can get the
equilibrium outcomes given in Proposition 1.

In addition, the equilibrium profits are

πCD
b �

1
64

1 + c
2

+ 38k + 25k
2

− 2c(1 + 19k) ,

πCD
s �

1
64

− 15 + 17c
2

− 32a(− 1 + c − k) − 66k

− 47k
2

+ c(− 2 + 34k),

πCD
p �

1
32

(− 1 + c + k)
2
.

(B.4)

πCDb increases in k because (z2πCDb /zk2) � (25/32) and
the stationary point k � (19/25)(c − 1)< 0.

πCDs decreases in k because (z2πCD
s /zk2) � − (47/32) and

the stationary point k � (1/47)(16a + 17c − 33)< 0.

Proof. of Proposition 2.
8a> 5 + 3c + 11k guarantees qCD

∗

s > 0. c + k< 1 guaran-
tees cCD

∗

p > 0 and qCD
∗

t > 0. Note that when a> 1 + k, 0< c +

k< 1 is sufficient condition for 8a − 3c> 11k + 5.

Proof. of Proposition 4.
(e proof is straightforward by solving the optimization

problem (4). In addition, the equilibrium profits are

πDDb �
1
12

− 4 − 2a
2

+ c(2 − 3k) − 8k − 9k
2



+a(6 − 2c + 11k)),

πDDs �
1
48

4 + 13a
2

+ 13c
2

+ 4k + 13k
2



− 2a(2 + 11c + 13k) + c(− 4 + 22k)),

πDDp �
1
24

(− 2 + a + c − k)
2
.

(B.5)

πDDb increases in k because (z2πDD
b /zk2) � − (3/2) and

the stationary point k � (1/18)(− 8 + 11a − 3c)> a − 1.
πDDs decreases in k because (z2πDD

s /zk2) � (13/24) and
the stationary point k � a + (1/13)(− 11c − 2)> a − 1.

Proof. of Proposition 5.
From Proposition 4, we can see that 7a − 5c − 7k − 2> 0

guarantees qDD
∗

s > 0 and a + c< 2 + k guarantees cDD
∗

p > 0,
qDD
∗

t > 0, and pDD∗
t > 0. As a> 1 + k, a + c< 2 + k is sufficient

condition for 7a − 5c − 7k − 2> 0, only when k> a + c − 2
may both the capacity requestor and the capacity provider
participate in the capacity-sharing business with DD trading
mechanism. As for the cost c, only when c< 2 − a + k may
both participate in the capacity-sharing business with DD
trading mechanism.
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Proof. of Proposition 7.
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We can get πCDp > πDDp when
c< c
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If − 1 + a − 2k> 0, we have ((− 4 +
�
3

√
+ 2a− (2 +

�
3

√
)k)

/(− 2 +
�
3

√
)) <min 1 − k, 2 + k − a{ } � cmax. □

Proof. of Proposition 8.
Since

gmaxDD − gmaxCD � (2(− 5 + 4a + c − 7k)/(− 2 + a + c −

k)(− 1 + c + k)) and − 2 + a + c − k< 0, and − 1 + c + k< 0, we
can get when − 5 + 4a + c − 7k> 0, gmaxD D − gmaxCD > 0, and
when − 5 + 4a + c − 7k< 0, gmaxDD − gmaxCD < 0. (e thresh-
old is c

gmax
th � 5 + 7k − 4a.

To prove the existence of both scenarios, we draw
Figure 10:

Proof. of Proposition 9.
(e optimal decision changes with respect to c, which

determines not only the stability performance but also
profitability performance. Take scenario 1 for example.
Table 2 gives the orders of the thresholds of c, that is,
0< c

πp

th < cminDD < cminCD < cmax.

(1) When c locates in the range (0, c
πp

th ) or (c
πp

th , cminDD),
both system CD and DD are unstable; then none of
the strategies is optimal.

(2) When c locates in the range (cminDD , cminCD), the
system DD is stable, but CD is unstable. (en the
only stable DD is selected, although the profit under
DD is lower than that under CD (i.e., submaximum),
as πDDp < πCDp when c> c

πp

th .
(3) When c locates in the range (cminCD , cmax), both

system DD and CD are stable. (en CD is selected as
πDDp < πCDp when c> c

πp

th .

In scenarios 2, 3, and 4, the optimal decisions are ob-
tained in the same way; here, we omit the proof process.

Proof. of Proposition 10.

πDDb − πnob � −
1
6

(− 1 + a)(− 2 + a + c),

πDDs − πnos �
1
48

(− 2 + a + c)
2
,

πDDp − πnop �
1
24

(− 2 + a + c)
2
,

πCD
b − πnob �

1
64

(− 1 + c)
2
,

πCD
s − πnos �

1
64

− 15 + 32a − 16a
2

− 2c + c
2

 ,

πCD
p − πnop �

1
32

(− 1 + c)
2
.

(B.8)

Facing DD, the capacity provider and platform always
benefit from capacity sharing under DD; the capacity re-
questor can benefit when a> 1.

Facing CD, the capacity requestor and platform always
benefit from capacity sharing under CD; the capacity pro-
vider can benefit when (1/4)(3 + c)< a< (1/4)(5 − c) or
0< c<min 4a − 3, 5 − 4a{ }. If a> 1, we have 0< c< 5 − 4a

benefit, 5 − 4a< c< 1 lose. If a< 1, we have 0< c< 4a − 3
benefit and 4a − 3< c< 1 lose.

We can see that there is always one between 4a − 3 and
5 − 4a, which is lower than 1. (erefore, the upper bound of
c will be 4a − 3 or 5 − 4a, instead of the basic condition in
Proposition 2. If a> 1, we have 5 − 4a< 4a − 3, and the
upper bound is 5 − 4a. Similarly, if a< 1, we have
5 − 4a> 4a − 3, and the upper bound is 4a − 3.
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In CD and DD case, the upper bound 5 − 4a also meets
the basic condition c<min 1, 2 − a{ } shown in Propositions 2
and 5 with k � 0.

Proof. of Proposition 11.
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Note that c1 � (1/3)(19 − 4
��
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(a − 1) − 16a) and
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�
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√
(a − 1) − 4a; it is not difficult to prove
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Proof. of Proposition 12.
Using subtraction, we can get the following result.

c2 − c1 � −
2
3

(− 2 + 3
�
3

√
− 2

��
10

√
)(− 1 + a)> 0. (B.11)
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[30] A. Göksu, U. E. Kocamaz, and Y. Uyaroğlu, “Synchronization
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