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Catastrophe risks lead to severe problems of insurance and reinsurance industry. In order to reduce the underwriting risk, the
insurer would seek protection by transferring part of its risk exposure to the reinsurer. A framework for valuing multirisk
catastrophe reinsurance under stochastic interest rates driven by the CIR model shall be discussed. To evaluate the distribution
and the dependence of catastrophe variables, the Peaks over +reshold model and Copula function are used to measure them,
respectively. Furthermore, the parameters of the valuing model are estimated and calibrated by using the Global Flood Date
provided by Dartmouth College from 2000 to 2016. Finally, the value of catastrophe reinsurance is derived and a sensitivity
analysis of how stochastic interest rates and catastrophe dependence affect the values is performed via Monte Carlo simulations.
+e results obtained show that the catastrophe reinsurance value is the inverse relation between initial value of interest rate and
average interest rate in the long run. Additionally, a high level of dependence between catastrophe variables increases the
catastrophe reinsurance value. +e findings of this paper may be interesting to (re)insurance companies and other financial
institutions that want to transfer catastrophic risks.

1. Introduction

Nowadays, catastrophe events, such as floods, earthquakes,
hurricanes, storms, and man-made disasters claiming many
lives and causing great property loss, are of low-probability
but relatively great destructiveness. For example, Hurricane
Andrew in the US caused economic losses of 30 billion in
1992 and at least 69,000 people were killed in Wenchuan
earthquake that occurred in Sichuan Province of China.
What is worse is that, in recent years, the catastrophe events
in terms of both frequency and magnitude reveal a rising
trend. +ese severe and unpredictable catastrophic losses
place enormous financial stress on insurance businesses and
even might lead them to bankruptcy. In order to hedge and
transfer the catastrophe risks, insurance companies need to
purchase catastrophe exceeding loss cover from reinsurers.

Reinsurers can help the insurers reduce the underwriting
risks. A key question is how one should value the rein-
surance contracts. Many papers have been conducted for the
valuing of catastrophe reinsurance. +e early valuing model

is due to Strickler [1] (see also [2]), in which a constant
deterministic rate of catastrophes is assumed, and it is
limited to catastrophes claiming at most 1500 lives. To
overcome these shortcomings of the valuing model used in
[1], Ekheden and Hössjer [3] established a new model based
on compound Poisson process to value the catastrophe
excess of loss cover. Another common technique applied to
value reinsurance contracts is based on simulation approach;
for example, see [4–7] and the references therein. Particu-
larly, Leppisaari [4] improved the method applied in [3] and
suggested a microsimulation to value life catastrophes. In
[7], Daykin et al. proposed a so-called frequency severity
method that uses the technology of simulating for both the
number and size of individual claims.

We also point out that catastrophe bond is an innovative
financial instrument, by which the insurers transfer the risk
of a possible large payment created by catastrophic events to
the capital market. Applying stochastic control theory and
Hamilton-Jacobi-Bellman equations, Egami and Young [8]
studied the optimal proportional reinsurance for reinsurer.
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Based on this result and the principle of equivalent utility,
the authors further obtained the indifference price of ca-
tastrophe bond. Giuricich and Burnecki [9] calculated the
value of catastrophe bond under a left-truncated heavy-
tailed model. In [10], Romaniuk analysed the behavior of
insurance portfolio containing catastrophe bond by using a
fuzzy number to model its value. For more information on
this direction, we refer the interested readers to [11–14] and
the references therein.

As we can see from the works described above, the
existing literatures mainly focused on the univariate catas-
trophe reinsurance valuing. However, one catastrophe ac-
cident frequently causes not just one kind of claim in our life.
In [15], Chan et al. described situations where an unexpected
claim event might induce more than one type of claim. In
that article, a typical example of motor insurance was shown,
in which an accident could cause claims for vehicle damage
and bodily injuries. Clearly, a similar phenomenon also
exists in natural catastrophe insurance. Up to now, there
have been a number of ruin theory actuaries studying
multirisk claims [16–20]. As far as we know, there has not
been any research on valuing of catastrophe reinsurance of
multirisk claims, which is just our purpose here. In addition,
most prior studies for catastrophe reinsurance valuing did
not take into account the factor of the interest rate.

Compared with previous works, in the present paper,
our main contributions to the field of catastrophe rein-
surance valuing are twofold. First, in order to develop a
framework for valuing of multirisk catastrophe reinsurance
contract, we use Copula function to describe the dependence
of catastrophe variables. +is method is utilized for the first
time in the catastrophe reinsurance contract area. Second,
we apply the Cox–Ingersoll–Ross (CIR) model to depict the
characteristics of interest rates market, thereby providing
more accurate value of catastrophe reinsurance contract.

+e remainder of the paper is organized as follows:
Section 2 briefly describes the framework of CAT claim
model and stochastic interest model. Section 3 presents an
empirical analysis. Section 4 is devoted to Monte Carlo
simulation and sensitivity analysis. Finally, Section 5 offers
conclusions for this research.

2. Valuation Framework

2.1. Modeling Assumptions. We consider a catastrophe re-
insurance contract with maturity T years. Let Xi, i �

1, 2, . . .} and Yi, i � 1, 2, . . .  be two sequences of inde-
pendent and identical distribution random variables with
cumulative distribution functions FX and FY, respectively.
We treat Xi and Yi as the values of two kinds of catastrophic
losses during the i-th catastrophic event.Let N(t), t≥ 0{ } be
a Poisson process with intensity λ> 0. For each t ∈ [0, T], the
value of the process N(t) is equal to the number of cata-
strophic events until the moment t. Assume that N(t){ },
Xi , and Yi  are mutually independent.

2.2. Valuation(eory. By the fundamental theorem of asset
pricing, the expected catastrophe reinsurance value P can be
given as

P � E 

N(T)

i�1
f Xi, Yi( exp − 

ti

0
r(s)ds ⎡⎣ ⎤⎦. (1)

Here, r(s) denotes a single-factor spot interest rate,
f(Xi, Yi) � max c1Xi + c2Yi − D, 0  is generally called the
ceded loss function (coverage function) in the literature,
while D denotes the catastrophe reinsurance attachment
point, and c1 and c2 are the claim coefficients. It then follows
that 

N(T)
i�1 f(Xi, Yi)exp(− 

ti

0 r(s)ds) is exactly the present
value of total claims within the period [0, T]. However, we
have to use theMonte Carlo simulation technique to seek the
numerical solution for P due to the fact that the explicit
solution is difficult to calculate.

2.3. Interest RateModel. In the past two decades, economists
have put forward a large number of interest rate models,
which can be roughly divided into single-factor interest rates
and multifactor interest rates. In the study of catastrophe
reinsurance, we focus our attention on the effect of interest
rate on the reinsurance values. As a consequence, single-
factor interest rate models are selected. In particularly, the
basic single-factor interest rate models are Merton model,
Vasicek model, and CIR model. +e CIR model can not only
describe the mean-reverting characteristic of interest rate
but also guarantee nonnegative interest rate; see [21].
Meanwhile the Merton model cannot describe the interest
rate mean-reverting process, and the Vasicek model cannot
ensure that the interest rate is constantly a positive number.
+erefore, this paper assumes that the spot interest rate
follows the CIR model. +is interest rate model can be
denoted by the following equation:

dr(t) � α(μ − r(t))dt + β
����
r(t)


dW(t), (2)

where α> 0 is the speed of mean-reverting, μ> 0 is a mean of
interest rate in the long run, β> 0 is the volatility of the
interest rate, and W(t) is a standard Brownian process.

2.4. Extreme Value(eory andModeling. In this subsection,
we will apply extreme value theory to depict the heavy tail
property of extreme events related to historical observations.
Specifically, extreme value theory is mainly used to study the
extreme value distribution and its characteristics of random
variables. It has outstanding pertinence to the heavy-tailed
distribution. In particular, one of its advantages is that the
extreme theory does not require any assumption on the
overall distribution, and it directly uses sample data to
deduce the tail characteristics of distribution. +ere are two
main extreme models in the practical application of finance
and insurance claims. One is called the Generalized Extreme
Value (GEV) distribution, which focuses on the statistical
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behaviour of maxima within one group. However, the
greatest drawback of GEV approach is that it is terribly
wasteful with observations, especially considering the fact
that the extreme events are rare by definition. Some data that
are possibly informative about the extreme behaviour of the
process are discarded completely in the GEV model. +e
other model of extreme theory is called Generalized Pareto
Distribution (GPD) (see [22]). A great improvement of this
model is to take into consideration not only the maxima but
also more other extreme observations. Hence, the GPD
model incorporates more data into the inference and less
observations are omitted. For the sake of this, we choose the
GPD model to analyse the catastrophe events in this paper.

Let x∗ denote the upper end-point of F. In the case of
GPD model, for given large u<x∗, we call u a threshold and
all the observations above the threshold are used in the
analysis. Additionally, Xi − u is called excess. It is easy to see
that

Fu(y) � P(X − u≤y|X> u) �
F(u + y) − F(u)

1 − F(u)
, y≥ 0,

(3)

which implies that

F(x) � (1 − F(u))Fu(x − u) + F(u), x≥ u. (4)

According to Balkema and Pickands [23, 24], for large u ,
the excess distribution Fu(y) in equation (4) can be ap-
proximated by GPD; that is,

Fu(y) ≈ Gξ,σ(y) �

1 − 1 + ξ
y

σ
 

−1/ξ
, if ξ ≠ 0;

1 − exp −
y

σ
 , if ξ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where ξ and σ are the shape parameter and the scale pa-
rameter, respectively.

+en, substituting (5) into (4), we may obtain the fol-
lowing for x> u:

F(x) �

(1 − F(u)) 1 − 1 + ξ
x − u

σ
   + F(u), if ξ ≠ 0;

(1 − F(u)) 1 − exp −
x − u

σ
   + F(u), if ξ � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

3. Parameter Estimation of the Valuing Model

3.1.DataAnalysis. We take for our study the Global Archive
of Large Flood Events, provided by Dartmouth College. Our
focus is the observations of damage areas and deaths in
China between 2000 and 2016. Typically, the cases where at
least three lives are lost in a single event are often considered
to be catastrophe (see [3]). By this way, a total of 126 pairs of
observations for damage areas and deaths are picked out.

We need first to detect the tail behaviour of catastrophe
loss data before applying extreme value theory. In general,
we may use the kurtosis or exponential Q-Q plot of data to
judge the heavy-tailed characteristic. Firstly, we find that the
kurtoses of damage areas and deaths are 32.088 and 25.478,
respectively, which are both larger than three. Secondly,
Figure 1 obviously shows the tail of exponential Q-Q plots
appearing in a convex shape.+us, it is reasonable to assume
that the sample data are of heavy-tailed character.

3.2. Parameter Estimation of the POT Model. In this sub-
section, we construct the marginal distributions of the two
loss variables and take the case of damage areas as an ex-
ample for our analysis. +e other case of deaths can be
discussed in the same way. Recall that the damage areas are
denoted by random variable X. In the POT model, if the
observation values excessed the threshold uX, the exceeding
part could be described by GPD. For the other observation
values, the empirical distribution function is suitable. +us,
we can write the distribution of damage areas as

FX(x) �
FX uX(  + 1 − FX uX(  GξX,σX

x − uX( , if uX ≤ x,

FX(x), if uX > x.

⎧⎨

⎩ (7)

where FX(·) is the empirical distribution function of X.
As is known, the threshold selection obviously plays a

paramount role in the GPDmodel. Choosing an appropriate
threshold for the threshold model involves a trade between
the variance of model and the systematic bias. Taking a larger
threshold means fewer data can be adapted in the inference,
which leads to larger variance in the estimation. On the other
hand, choosing a lower threshold implies that more data are
available to estimate in the analysis, consequently decreasing
the variance of the results. However, choosing the threshold

too low will lead to invalidity of the GPD approximation of
the excess distribution. +erefore, how to choose an ap-
propriate threshold for the model is a main challenge. In
practical applications, there are two ways to choose
threshold. +e first way is based on the mean residual plot.
Generally, the threshold is justified if the mean excess plot
becomes roughly linear, which starts from certain threshold
level. For more details, see Embrechts et al.’s work [25].
Figures 2 and 3 display the mean excess plots of catastrophe
damage areas and deaths, respectively. From Figure 2, we see
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that the plot curves up until around the value of 48 and
straightens after that. Based on the mean excess plot, one
might select the value of 48 as a threshold.

In order to check the validity of the threshold, we select a
series of threshold values and employ the maximum like-
lihood estimation to get a series of parameters. Clearly,
Figure 4 indicates that shape parameter ξ and scale pa-
rameter σ are stable around the threshold of 48. By using
similar arguments to the above and referring to Figures 3
and 5, an appropriate threshold value of deaths is 88.

After calculating the threshold values, the maximum
likelihood method will be adopted to estimate the rest of the
parameters. Estimates are given in Table 1.

+e diagnostic plots for assessing the accuracy of the
POT model fitted to the damage areas and deaths are shown
in Figures 6 and 7 , respectively. Observing the probability
plot and Q-Q plot in Figure 6, each set of plotted points is
near-linear. +ere it should be noted that a largest catas-
trophe, the 2009 summer severe flood in Sichuan Province, is
extreme in the China history. Due to this fact, one concludes
that the diagnostic plots give a good fit for the damage areas.
Similar analysis can be conducted for deaths from Figure 7.

3.3. Selection of Copula Function and Parameters Estimation.
Copula function is called joint function, which plays the role
in the relationship between multivariate distribution func-
tion and its marginal distributions. Copula function can be
classified into two categories, namely, elliptic Copula family
and Archimedean Copula family. +e latter is an important
Copula family that has a wide range of applications. +ere
are a number of reasons for its popularity, such as the great
variety of families and the many nice properties; see [26, 27]
for a detailed description. +erefore, we shall adopt three
common Archimedean Copula functions (Clayton Copula,
Gumbel Copula, and Frank Copula) to construct related
studies.

First of all, we plug the parameters of the POTmodel in
Table 1 into equation (7).+en, the distribution series ui, vi 

whose values belong to [0, 1] can be obtained via probability
integral transform. By using the box-test, we can discover
that the series after transforming are independent. Fur-
thermore, let the series ui, vi  be the observations of Copula
and carry out parameters’ estimation by the maximum
likelihood method. Since different kinds of Copula functions
possess different dependent patterns, it is very significant to
pick out the suitable Copula function to depict dependence
structure. To proceed, we employ both Kolmogorov-Smir-
nov (K-S) test and Q-Q plot to test the appropriateness of
Copula model selection. It is worth pointing out here that
the K-S test is available without any assumption on the
distribution of data. +e results from Figure 8 indicate that
Clayton Copula provides a better fit for the data compared to
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Figure 1: Exponential Q-Q plot of damage areas (a) and exponential Q-Q plot of deaths (b).
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Figure 2: Mean excess plot of damage areas.
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Figure 3: Mean excess plot of deaths.
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the other Copula functions. Moreover, Table 2 shows that
the K-S test statistics of Clayton Copula at the 0.01 signif-
icance level is 0.0443 and its p value is 0.9563, fromwhich we
further know that only Clayton Copula passes the K-S test.

4. Numerical Example and Simulation

4.1. Simulation and Valuing for the Catastrophe Reinsurance
Model. In this subsection, we will concentrate on deter-
mining the value of flood reinsurance. Before estimation,
some related parameter values need to be set. According to
the relative data of the real insurance market, the basic
parameter values are given in Table 3.

Recalling that the explicit solution of (1) is difficult to
compute, we estimate the value of reinsurance by Monte
Carlo simulation technique. +e steps of simulation can be
explicitly outlined as follows:

(1) Simulate the interarrival times τj, j≥ 1  from an
exponential distribution with mean value 1/λ, pro-
vided that the occurrence of events is a Poisson
process with intensity λ. Denote the number of
events by M � M(T) � M((0, T]). If M � 0, let total
loss be 0 and continue to the next simulation; oth-
erwise, denote the times of events by tj; namely, tj �


j
i�1 τi (j � 1, 2, . . . , M).

(2) Generate M pairs of random numbers (wi, vi) from
Clayton Copula function.

(3) From marginal distribution, calculate the observa-
tions about losses and deaths. +ey are denoted by
xi, yi ; that is, xi � F−1

X (wi) and yi � F−1
Y (vi).

(4) Simulate the interest rate path within (0, T]. In this
end, divide (0, T] into 10000T equal parts and re-
place (2) by the following discretization scheme:

r(i) − r(i − 1) � α(μ − r(i − 1))dt

+ β
�������
r(i − 1)


εi, i � 1, 2, . . . , 10000T,

(8)

where r(0) � r0 and εi ∼N(0,△t) with △t � 10−4.
Next, generate the numbers ε1, ε2, . . . , ε10000T from
an N(0,△t) distribution, and then plug them into
equality (8). Based on this iteration method, we may
obtain one simulation of interest rate path and
further derive the discount factor which now can be

approximately expressed by e
− 

tj

0
r(t)dt ≈ e− 

M

i�1 r

(ti)△t.
(5) Substitute the results of procedures (1)–(4) into (1),

and then a simulation result of the value of catas-
trophe reinsurance is obtained.

(6) Repeat the procedures (1)–(5) for K times, and
calculate the mean value.

To determine the value, we run 105 simulations and find
that the catastrophe reinsurance value P � 87.605 million
dollars.

4.2. Sensitivity Analysis for the Catastrophe Reinsurance

4.2.1. (e Effects of Initial Interest Rate Value r0. Value of
catastrophe reinsurance decrease if the initial value of in-
terest rate r0 increases, as indicated in Table 4.+is obviously
satisfies the rule of the real interest rate markets. +e higher
the initial value of interest rate is, the less the interest value
after interest rate discount is. On the other hand, average
interest rate in the long run μ also shows the inverse relation
with catastrophe reinsurance value. +is effect is especially
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Figure 4: Figure of calibration scale and shape parameters of damage areas.
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Figure 5: Figure of calibration scale and shape parameters of deaths.

Table 1: POT parameters’ estimates.

Parameters ξ σ u Nu

Damage areas 0.2040 70.0527 48 16
Deaths 0.4953 95.0446 88 25
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Figure 8: Q-Q plots of Clayton Copula (a), Gumbel Copula (b), and Frank Copula (c).
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pronounced in the case of a longer period of time. In view of
that, the computation results of the value of catastrophe
reinsurance with different μ are similar to those in the case of
r0, and the computation results between μ and reinsurance
value are omitted for simplicity.

4.2.2.(e Effect of Dependence θ. +e relationship between θ
and the value of catastrophe reinsurance is explicitly shown
in Table 5.+e value increases with θ. A possible explanation
of the results may be related to the fact that a larger θ implies
more dependence; that is, the dependence between catas-
trophe damage areas and deaths increases. In other words,
the probability of claim exceeding the attachment point
becomes bigger. Consequently, the value of reinsurance is
expected to rise. However, due to the extreme heavy tail of
the GPD, the results in the extreme right tail are not exactly
the same each time. In all, we can confirm that the de-
pendence among catastrophe reinsurance claims has sig-
nificant effect on the value.

5. Conclusions

+is study is the first to value multirisk claims catastrophe
reinsurance contract under the stochastic interest rate. In
view of the heavy-tail features and dependence of the ca-
tastrophe variables, POT model and Copula model are
combined to describe them.Moreover, we also apply the CIR
model to depict the characteristic of interest rates market.
Consequently, using Monte Carlo simulations, we give the
value of multirisk catastrophe reinsurance contract and
perform a sensitivity analysis. +is new framework estab-
lished in this paper for valuing multirisk claims catastrophe
reinsurance contract may be interesting to (re)insurance
companies and other financial institutions that want to
transfer catastrophic risks. We also remark that although
this paper mainly focuses on the flood hazard, this frame-
work also works for other catastrophe hazards. +e
framework put forward in this paper not only enriches
existing research on catastrophe reinsurance values but also
provides theoretical guidance for insurers to value the

Table 2: Parameter estimates of Copula function and K-S test results.
Copula function Clayton Copula Gumbel Copula Frank Copula
θ value 0.5485 1.3440 2.6690
K-S value 0.0443 0.1627 0.6221
p value 0.9563 0.0022 ≤ 0.01

Table 3: Basic parameter values.

Text interpretation Symbol Value
Initial interest rate value r0 0.03
Speed of mean-reverting α 0.04
Long run interest rate mean μ 0.03
Volatility of the interest rate β 0.02
Attachment point D 368.49 million dollars
Maturity time (year) T 1
Claim coefficient of damage areas (sq. km) c1 1 million dollars
Claim coefficient of deaths (one person) c2 0.3 million dollars

Table 4: Effect of initial interest rate value.

r0 0.03 0.06 0.09
P 87.605 86.304 83.057

Table 5: Effect of dependence θ.
Quantile Mean 0.5 0.75 0.9 0.95 0.99 0.9999
θ � 0.5485 87.605 11.656 10.368 250.793 378.791 779.679 7100.907
θ � 2.5485 93.532 13.952 112.451 264.075 403.031 805.368 6051.593
θ � 4.5485 96.980 14.739 117.958 275.371 414.009 844.241 7098.610
Note: the simulation times are 100,000.
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multirisk catastrophe reinsurance, which has an important
reference value.

+e sensitivity analysis performed in this paper indicates
that the catastrophe reinsurance value has an inverse relation
with initial value of interest rate and average interest rate in
the long run. In addition, a high level of dependence between
catastrophe variables increases the catastrophe reinsurance
value, from which we conclude that interest rate structure
and the dependence between different kinds of catastrophe
variables play important roles in valuing the catastrophe
reinsurance contract.

Data Availability
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floods/Archives/index.html.
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