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In view of the shortcomings of the whale optimization algorithm (WOA), such as slow convergence speed, low accuracy, and easy
to fall into local optimum, an improved whale optimization algorithm (IWOA) is proposed. First, the standardWOA is improved
from the three aspects of initial population, convergence factor, and mutation operation. At the same time, Gaussian mutation is
introduced. *en the nonfixed penalty function method is used to transform the constrained problem into an unconstrained
problem. Finally, 13 benchmark problems were used to test the feasibility and effectiveness of the proposed method. Numerical
results show that the proposed IWOA has obvious advantages such as stronger global search ability, better stability, faster
convergence speed, and higher convergence accuracy; it can be used to effectively solve complex constrained
optimization problems.

1. Introduction

*e whale optimization algorithm (WOA) was proposed by
Mirjalili and Lewis [1] in 2016. It is a new swarm intelligence
optimization algorithm that simulates humpback whale
hunting behavior. *e main idea of the algorithm is to solve
the target problem by imitating the whale’s predatory be-
havior [2]. Since its introduction, the WOA has been fa-
vored by many scholars, and it has been widely used in
optimal allocation of water resources [3], optimal control
[4], and feature selection [5]. But as a swarm intelligence
optimization algorithm, like DE, PSO, ACO, and other al-
gorithms, they all have the shortcomings of slow conver-
gence and easy to fall into local optimum. *erefore, in
practical applications, various improvements have been
made to the standard algorithms, such as [6–10]. *erefore,
for the WOA algorithm, in recent years, many scholars have
made a lot of improvements in improving algorithm con-
vergence speed and optimization accuracy. For example,
Abdel-Basset et al. [11] used Lévy flight and logical chaos
mapping to replace and determine the coefficient vector C
and switching probability P in the WOA, proposed an

improved whale optimization algorithm (IWOA), and
verified the effectiveness of the proposed algorithm through
experiments. Long Wen et al. [12] coordinated the explo-
ration, developed the algorithm by updating the formula of
the convergence factor of the nonlinear change, proposed an
IWOA, and used experiments to verify the effectiveness of
the improved algorithm. He et al. [13] introduced the
adaptive strategy into the whale position update formula and
proposed an IWOA for solving function optimization
problems. *is method balanced the global exploration and
local development capabilities of the algorithm and
accelerated the convergence speed and optimization accu-
racy of the algorithm. *e experiments proved its superi-
ority. Wuet al. [14] initialized the population through the
quasireverse learning method to improve the population
diversity. At the same time, the linear convergence factor
was modified to a nonlinear convergence factor. In order to
improve the solution of complex function optimization
problems, Liu and He [15] proposed an IWOA based on
adaptive parameters and niche technology, in which the
adaptive probability threshold coordination algorithm was
introduced for global search and local development
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capabilities. Experiments show that the improved algorithm
can effectively improve the ability to solve complex function
optimization. WOA and its improved algorithms are all
proposed for unconstrained optimization problems; there is
no research on using this algorithm to solve constrained
optimization problems. *erefore, this paper proposes an
IWOA algorithm for solving constrained optimization
problems.

*e remainder of this paper has been organized as fol-
lows: *e related research work has been described in Section
2, the introduction of the standard WOA and its improve-
ment work has been described in Section 3, experimental
results have been explained in Section 4, and the conclusion
and future work have been explained in Section 5.

2. Related Research Work

Constrained optimization problems (Cops) are a type of
nonlinear programming problems that often occur in the
fields of daily life and engineering applications. *ere are
usually two ways to solve this problem: deterministic al-
gorithm and random algorithm [16]. Deterministic algo-
rithms generally have high initial requirements, and they are
generally unable to solve some problems that are not de-
rivable, the feasible region is not connected, or there is no
obvious mathematical expression. Even if some problems
can be solved, the solutions obtained are mostly local op-
timal solutions [16]. *e random algorithm is a swarm
intelligence optimization algorithm that has emerged in
recent years; it has obtained a lot of research in solving
constrained optimization problems. Chen and Huo [17]
proposed to use an improved GA to solve the Cops; this
method used floating-point encoding; they also improved
the genetic mutation operator and termination criterion.
Long and Zhang [18] proposed an improved bat algorithm
for solving Cops. *is method used the good point set
method to construct the initial population to maintain
population diversity and also used inertial weights to im-
prove the performance of the algorithm. An improved
particle swarm optimization algorithm for solving Cops was
proposed by Mi Yong and Gao [19]. *is method used the
penalty function method to treat constrained optimization
problems as unconstrained optimization problems and used
feasible basis rules to update individual and global extreme
values. Lei et al. [20] proposed a new empire competition
algorithm to solve the Cops and used the lexicographic
method to simultaneously optimize the objective function of
the problem and the degree of constraint violation. Long
et al. [21] proposed the firefly algorithm to solve the con-
strained optimization problem. *e algorithm used chaotic
sequences to initialize the firefly position and introduced a
dynamic random local search to speed up the convergence of
the algorithm. Wang et al. [22] proposed an adaptive arti-
ficial bee colony algorithm to solve the Cops. *e algorithm
used an antilearning initialization method and an adaptive
selection strategy. Mohamed et al. [23–25] proposed using
an improved differential evolution algorithm to solve con-
strained optimization problems. *is method is mainly to
improve the mutation operator in standard differential

evolution, and the experimental results verify the effec-
tiveness of the improved algorithm. *ere are many out-
standing constraint-handling techniques in the literature.
However, we do not review the literature of the WOA al-
gorithm on constrained optimization problems.

Without loss of generality, the model of the Cops studied
in this paper is as follows:

minf(x),

s.t.

gj(x)≤ 0, j � 1, 2, . . . , p,

hj(x) � 0, j � p + 1, p + 2, . . . , m

li ≤xi ≤ ui, i � 1, 2, . . . , d,

(1)

where f(x) is the objective function, gj(x) is the inequality
constraint, hj(x) is the equality constraint, and li and ui are
the upper and lower bounds of the variable xi, respectively.

3. The Introduction of the Standard WOA and
Its Improvement

3.1. Standard WOA. WOA is a swarm intelligence opti-
mization algorithm that simulates whale predation behavior.
*e algorithm simulates the unique bubble-net foraging
method of whales [26] as shown in Figure 1.

*e principle of the whale’s bubble-net foraging is as
follows: after the whale finds its prey, it creates a bubble
net along the spiral path and moves upstream to prey. *is
predation behavior is divided into three stages: surrounding
prey, bubble-net attack, and hunting prey.

3.1.1. Surrounding Prey Stage. In the WOA algorithm, the
whale first recognizes the location of the prey and then
surrounds it, but in fact, the whale cannot know the lo-
cation of the prey in advance. *erefore, assuming that the
current optimal position is the target prey, the other in-
dividuals in the group all move to the optimal position. *e
enclosing stage can be expressed by the following mathe-
matical model:

X(t + 1) � X
∗
(t) − A · D,

D � C · X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(2)

where t is the current number of iterations, X∗(t) is the prey
position vector (current optimal solution), X(t) is the prey
position vector, A · D is the surrounding step size, and

A � 2a · rand − a,

C � 2 · rand.
(3)

In the above formula, rand is a random number between
[0, 1], a is a control parameter, and it decreases linearly from
2 to 0 with increasing of the iterations. *e expression is as
follows:

a � 2 −
2t

Tmax
, (4)

where Tmax is the maximum number of iterations.
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3.1.2. Bubble-Net Attack Stage. *e humpback whale’s
bubble-net foraging method is to move along the spiral path
toward the prey in the constricted encirclement. *erefore,
in WOA, two methods are designed to describe the pre-
dation behavior of whales: shrinking and surrounding
mechanism and spiral update position, respectively.

Shrinking and surrounding mechanism: it is achieved by
reducing the convergence factor a in equations (3) and (4).

Spiral update position: first calculate the distance be-
tween the individual whale and the current optimal position,
and then simulate the whale to capture food in a spiral. *e
mathematical model can be expressed as follows:

X(t + 1) � D′ · e
bl

· cos(2πl) + X
∗
(t),

D′ � X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(5)

where D′ is the distance between the ith whale and the
current optimal position, b is a constant coefficient used to
define the logarithmic spiral form, and l takes the random
number of [− 1, 1]. In the predation process, the whale also
needs to shrink the enclosure while spiraling to surround the
prey. *erefore, in order to achieve this synchronous model,
spiral envelopment and contraction envelopment are per-
formed with the same probability.

3.1.3. Hunting Prey Stage. If |A|≥ 1, randomly select the
whale to replace the current optimal solution; it can keep the
whale away from the current reference target and enhance
the algorithm’s global exploration capabilities and also need
to find a better prey to replace the current reference whale.
*e mathematical model is

X(t + 1) � Xrand − A · D,

D � C · Xrand − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
(6)

where Xrand means randomly selecting the position vector of
the whale.

Figure 2 shows the flowchart of the WOA.

3.2. Improvement ofWOA. *eWOA has the disadvantages
of slow convergence and easy localization; this paper in-
troduces three improved strategies and proposes an IWOA
for solving constrained optimization problems.

3.2.1. Generating Initial Population with Good Point Set
Method. For swarm intelligence optimization algorithms,
the quality of the initial population directly affects the ac-
curacy and speed of the algorithm [27]. *e better the di-
versity of the initial population, the stronger the algorithm’s
global search ability. But for optimization problem, in the
absence of any prior knowledge, it is necessary to use the
information of the initial population. It is hoped that the
diversity of the initial population will be used to fully reflect
the basic information of the individual. *e good point set
method is an effective method that can reduce the number of
trials. Experiments show that when the same number of
points is taken, the good point set sequence is more uni-
formly distributed than the point sequence selected by the
general random method, and it is closer to the integrate
curve [28]. And the accuracy of the good point set method
has nothing to do with the dimension; it can overcome the
shortcomings of the random method. Take a good point set
of M points in s-dimensional space:

ri � e
i
(1≤ i≤M),

a
i
k � r1 ∗ i􏼈 􏼉, r2 ∗ i􏼈 􏼉, . . . , rM ∗ i􏼈 􏼉( 􏼁􏼈 􏼉, (i � 1, 2, . . . , M, k � 1, 2, . . . , s),

(7)

where rk ∗ i􏼈 􏼉 means taking the decimal part of rk ∗ i.
In order to explain the difference between the initial

population generated by the good point set and the general

random method, take the two dimensions as an example,
where the value range of the variable is [− 80, 80] and the
population size is 100. Figures 3 and 4 show the population

Figure 1: [26] Schematic diagram of whale bubble-net foraging.
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distribution map generated by the random method and the
good point set method, respectively.

As you can see from the abovementioned figures, the
distribution of the initial population of individuals generated
by the good point set method is more uniform and the
diversity is better than that generated by the random
method.

3.2.2. Nonlinear Convergence Factor. In the standard WOA,
the global search ability and local development ability of the
algorithm mainly depend on the parameter A, and the value

of A mainly depends on the convergence factor a; therefore,
the convergence factor is critical to the algorithm’s ability to
seek optimization. Literature [1] pointed out that a larger
convergence factor a has better global search ability, to avoid
the algorithm falling into local optimum; the smaller con-
vergence factor a has stronger local search ability, to speed
up the convergence of the algorithm. But in the standard
WOA algorithm, the convergence factor a decreases linearly
from 2 to 0 with the increasing of iteration. However, the
linear reduction strategy of convergence factor a makes the
algorithm have better global search ability in the early stage
but the convergence speed is slow, and the convergence
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Figure 3: Initial solution generated by good point set.
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Figure 2: Flowchart of standard WOA.
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speed in the later stage is fast, but it is easy to fall into the
local optimal, and it is especially obvious when solving
multipeak function problems. *erefore, in the evolutionary
search process of WOA, the linear decreasing strategy of
convergence factor a with the number of iterations cannot
fully reflect the actual optimization search process [29].
*erefore, this paper proposes that, in the early stage of
evolution, the convergence factor slowly decreases expo-
nentially, to ensure a strong global search capability in the
early stage of the search while maintaining a fast conver-
gence speed; later in the search, the convergence factor
decreases linearly, in order to ensure that the algorithm has a
faster convergence speed and avoid the algorithm falling into
the local optimal. *e updated formula of the convergence
factor is

a � 2(1− t/T)
, if t< 0.7∗T,

a � 2 −
2t

T
, if t≥ 0.7∗T.

(8)

Here, t is the current number of iterations and T is the
maximum number of iterations.

3.2.3. Improvement of Mutation Operation. Similar to other
swarm intelligence algorithms, in the late evolution of the
WOA, the group gathers closer to the optimal solution,
diversity decreases, and it is easy to fall into local optimum.
Secondly, in the evolution update formula of the standard
WOA, the evolution information of the current generation is
less used. According to previous research on differential
evolution algorithm [30], in the evolution process, making
full use of current generation information can ensure the
global search ability and local search ability of the algorithm;
inspired by this, this paper also introduces the current
generation information in the update formula of the WOA,
set as follows:

Randomly generate probability p between [0, 1]; if
p< 0.5 and |A|≥ 1, then update according to (9):

X(t + 1) � 1 −
t

T
􏼒 􏼓 · Xrand − A · D. (9)

If |A|< 1, update according to (10):

X(t + 1) �
t

T
X
∗
(t) − A · D. (10)

If the probability p≥ 0.5, update according to (11):

X(t + 1) � D′ · e
bl

· cos(2πl) +
t

T
X
∗
(t). (11)

Here, b� 1, l � (− 2 − (t/T)) · rand + 1, and rand is a
random number between [0, 1]; at the same time, in order to
increase the diversity of the population and avoid premature
convergence, Gaussian mutation is implemented on the
individuals after the mutation, which takes the midpoint of
the current individual and the optimal individual as the
mean and the distance between the optimal individual and
the current individual as the variance; the variation formula
is as follows:

X(t + 1) � N 0.5∗ X
∗
(t) + X(t)( 􏼁, X

∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(12)

3.2.4. Constraint Processing Technology. In the constrained
optimization problem, there are usually two methods for
dealing with constraints. One is to transform into a mul-
tiobjective function, and the other is a penalty function
method. *is paper uses the penalty function method. *e
basic idea of the penalty function method is to take the
violation of constraints as a kind of punishment for the
minimum value and incorporate constraints into the ob-
jective function to obtain an unconstrained optimization
problem and then use the optimization algorithm to opti-
mize the unconstrained optimization problem and make the
algorithm find the optimal solution of the problem under the
action of the penalty [31]. *erefore, the objective function
constructed in question (1) in this paper is as follows:
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Figure 4: Initial solution generated by random.
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F(x) � f(x) + δ(t)Q(x), (13)

where f(x) is the original objective function, δ (t) Q (x) is
the penalty term, δ (t) is the penalty force, and Q (x) is the
penalty factor. In the above formula, if δ (t) is fixed, it is
called the fixed penalty function method; otherwise, it is
called the nonfixed penalty functionmethod. In the nonfixed
penalty function method, δ (t) changes with the number of
iterations. *is paper uses the nonfixed multisegment
mapping penalty function method proposed by Parsopoulos
and Vrahatis [32]; the expression is as follows:

Q(x) � 􏽘
m

i�1
θ ri(x)( 􏼁ri(x)

α
. (14)

And ri(x) �
max 0, gj(x)􏽮 􏽯, j � 1, 2, · · · , p,

max |hi(x)| − ε, 0􏼈 􏼉, i � p + 1, · · · , m
􏼨

θ ri(x)( 􏼁 �

10, ri(x)< 0.01,

50, 0.01≤ ri(x)< 0.1,

100, 0.1≤ ri(x)< 1,

300, ri(x)≥ 1,

α �
1, ri(x)< 1,

2, ri(x)≥ 1,
δ(t) � t

�
t

√
.􏼨

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

3.3.Out-of-BoundProcessingMethod. During the evolution
of swarm intelligence algorithm, it is a common problem
that the new solutions generated exceed the prescribed
boundaries. How to deal with individual solutions be-
yond boundaries is also critical. *ere are two common
processing methods: one is to take the boundary value
when beyond the boundary, and the other is to regen-
erate a new solution within the value range. *is paper
takes the first method.

*e specific steps of the IWOA are as follows:

(i) Step 1. Set the population size M and the maximum
number of iterations T and generate the initial
population with the point set method.

(ii) Step 2. Calculate the fitness of the population and
keep the current optimal solution.

(iii) Step 3. Update parameters A, a, C, l.
(iv) Step 4. Generate a random number p between [0, 1];

if p< 0.5 and A≥ 1, mutate according to equation
(9); otherwise, update according to equation (10), if
p≥ 5, and then according to (11).

(v) Step 5. Perform Gaussian mutation to the indi-
viduals in step 4 according to formula (12).

(vi) Step 6. Perform boundary treatment on the indi-
vidual after step 5 mutation and calculate the fitness
of the new individuals, keeping the current optimal
solution.

(vii) Step 7. Determine whether the termination con-
dition is satisfied. If yes, output the current optimal
solution; otherwise, t � t + 1 and return to step 2.

4. Simulation Experiment

In order to test the performance of the IWOA, firstly select 8
benchmark functions [33] for testing as shown in Table 1.
*e selected functions include single-modal functions and
complex nonlinear multimodal functions. *e single-modal
function tests the local exploitation ability of the algorithm,
and the multimodal function tests the global exploration
ability of the algorithm.*e dimension of all tested functions
is set to 30. And compared with the standard WOA, Table 2
shows the mean values and the standard deviations of the
two algorithms running 30 times.

It can be seen from Table 2 that, for multimodal func-
tions F6 and F7, both algorithms can find the optimal so-
lution. But F8 is better than the standard WOA. For single-
mode functions F1, F2, F3, F4, and F5, the mean and std. are
significantly better than the standard WOA, especially F3;
the advantage of the IWOA is particularly obvious. *is
shows that the IWOA algorithm is superior to the standard
WOA in both global search and local search capabilities.

Figure 5 shows the function evolution curves.
It can also be seen from the evolution curve that the

IWOA algorithm converges fast; the tested functions can
converge to the optimal solution or close to the optimal
solution.

To further evaluate the performance of the improved
algorithm to solve constrained optimization problems, in
this paper, 13 benchmark constrained optimization prob-
lems in [34] are selected for testing. All functions are
transformed into unconstrained optimization problems
according to (13). In fact, it is similar to function optimi-
zation after conversion. *e maximum evolutionary gen-
eration is 800. When the variable dimension n< 10, the
population size is set to 80; 10≤ n, the population size is set
to 100. Other parameter settings are the same as mentioned
earlier. *e WOA and IWOA algorithms are coded and
realized in MATLAB. For each problem, 20 independent
runs are performed and statistical results are provided in-
cluding themaximum number of function evaluations (FEs),
the best, mean values, and standard deviations. Table 3
shows the calculation results and comparison with other
algorithms.

It can be seen from Table 3 that the IWOA algorithm can
find the optimal solution or very close to the optimal so-
lution. Among them, g01, g04, g05, g06, g08, g9, g10, g11,
g12, and g13 have the best results, and all find the theoretical
optimal solutions. And the solutions of g02, g03, and g07 are
very close to the global optimal solutions. It can also be seen
from the standard deviations that the stability of the IWOA
is improved and has better robustness.

Further analysis found that, for g01, g04, g06, g08, g09, g10,
and g12 with inequality constraints, g11 and g13 with equality
constraints, and g05 with both equality and inequality con-
straints, the optimal solutions found by the IWOA algorithm
are equivalent to ICA [20]. For g01, g08, g09, and g011, IWOA
and ICA have almost the same stability, but for g02, g07, and
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g10, IWOA is more stable than ICA. *e COMDE [23] al-
gorithm shows good stability, although the standard deviations
of the IWOA are less than that of COMDE, but for g01, g02,
g03, g05, g07, g09, g10, and g13, their FEs are less than that of
COMDE, indicating that the calculation cost of IWOA is less
than that of COMDE. *e NDE [24] is able to find the global
optimal solution consistently in 12 out of 13 comparison
functions with the exception of g02, but their FEs are set to
240,000. Compared with IPES [35], the IWOA algorithm finds
more optimal solutions, and there are better mean values on
g01, g02, g05, g10, and g13. For g03, g08, g11, and g12, themean
values of the two are equivalent. For g01 and g13, IWOA and
IFOA [36] have almost the same mean values and standard
deviations. On the whole, IFOA has strong stability, but its
ability to find the best solutions is poor.

Figures 6–8 show the convergence graphs of log10 (f (x)
− f (x∗)) over FEs with 20 runs, where f (x∗) is the known
optimal solution. Following the previous rule, the dimension
of g01, g02, g03, and g07 is greater than 10, so the FEs are set
to 80,000, and the others are set to 64,000.

As shown in Table 3, IWOA is able to find the global
optimal solution consistently in 10 out of 13 test functions
over 20 runs with the exception of test functions (g02, g03,
and g07).

In order to test the effect of various parameters on
IWOA, we compared the methods before and after the

improvement. Among them, the initial population produced
without a good point set method is called IWOA-1, the
method without nonlinear convergence factor is called
IWOA-2, the method without improved mutation operation
is called IWOA-3, the method without constraint processing
technology is called IWOA-4, and the method without out-
of-bound processing is called IWOA-5. Each algorithm runs
20 times under the same conditions. Table 4 shows the best,
mean values, and standard deviations.

It can be seen from Table 4 that the IWOA-2 without
nonlinear convergence factor is the worst. It shows that, in
the IOWA algorithm, the linear convergence factor has an
obvious influence on it. For g01, g04, g05, g07, and g10 with
many constraints, IWOA-5 without out-of-bound pro-
cessing is not ideal, indicating that the more the constraints,
the more sensitive the boundary. For IWOA-4, it can be seen
that the experimental results are not as good as those with
constraint processing technology, indicating that the con-
straint processing technology adopted in this paper is ef-
fective. For g01, g02, g03, g04, g07, g09, g10, and g13 with
more variables, the effect of using the good point set method
to generate the initial solutions is obviously better than the
IWOA-1 without the good point set method. It shows that
increasing the population diversity can improve the opti-
mization ability. At the same time, it can be seen that the
mutation operation that adds evolution information is better

Table 1: [33] Main characteristics of 8 benchmark functions.

Function Expression Range *eoretical optimal solution
Sphere F1 � 􏽐

n
i�0 x2

i [− 100, 100] 0
Schwefel2.22 F2 � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| [− 10, 10] 0

Schwefel1.2 F3 � 􏽐
n
i�1 (􏽐

i
j�1 xi)

2 [− 100, 100] 0
Rosenbrock F4 � 􏽐

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] [− 30, 30] 0
Sumsquare F5 � 􏽐

n
i�1 ix2

i [− 10, 10] 0
Rastrigin F6 � 􏽐

n
i�1[x2

i − 10cos(2πxi) + 10] [− 5.12, 5.12] 0
Griewank F7 � (1/4000) 􏽐

n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 [− 600, 600] 0

Alpine F8 � 􏽐
n
i�1 |xi · sin(xi) + 0.1 · xi| [− 10, 10] 0

Table 2: Performance comparison with standard WOA.

Functions Evaluation index WOA IWOA

F1
Mean 1.23E − 101 1.29E − 137
Std. 2.5117E − 101 1.8965E − 137

F2
Mean 2.89E − 60 1.34E − 77
Std. 6.3447E − 60 2.24328E − 77

F3
Mean 1.94E+ 04 9.27E − 100
Std. 6.894E+ 03 1.2311E − 99

F4
Mean 26.05163423 25.47650265
Std. 0.448316347 0.265685577

F5
Mean 4.37E − 99 5.30E − 140
Std. 1.07959E − 98 5.7842E − 140

F6
Mean 0 0
Std. 0 0

F7
Mean 0 0
Std. 0 0

F8
Mean 3.22E − 61 6.15E − 78
Std. 5.09486E − 61 6.91291E − 78
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Figure 5: *e evolution curve of finding the optimal solution of equation F1–F8.

Table 3: Comparison of IWOA with other algorithms.

Function/optimal Methods Best Mean Std. FEs

g01/− 15.000

IPES − 14.999 − 14.999 — 240000
IFOA − 15 − 15 0 164111

COMDE − 15 − 15 7.4E − 01 130000
ICA − 15 − 15 0 200000

IWOA − 15 − 14.998 1.97E − 13 80000
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Table 3: Continued.

Function/optimal Methods Best Mean Std. FEs

g02/− 0.803619

IPES − 0.803607 − 0.792771 — 240000
IFOA − 0.803603 − 0.803617 2.4E − 06 553916

COMDE − 0.803619 − 0.801238 5.0E − 03 200000
ICA − 0.803619 − 0.791906 5.1E − 02 200000

IWOA − 0.803576 − 0.801395 6.9E − 03 80000

g03/− 1.000

IPES − 1 − 1 — 240000
IFOA − 1.00052 − 1.00052 9.9E − 16 434916

COMDE − 1.0000 − 1.0000 3.03E − 08 150000
ICA − 1.0005 − 1.0004 6.2E − 05 200000

IWOA − 1.0001 − 0.9973 3.9E − 03 80000

g04/− 30665.539

IPES − 30665.539 − 30665.539 — 240000
IFOA − 30665.538 − 30665.538 2.2E − 11 134756

COMDE − 30665.539 − 30665.539 0 50000
ICA − 30665.539 − 30665.539 0 200000

IWOA − 30665.539 − 30664.771 1.7E − 01 64000

g05/5126.498

IPES 5126.498 5139.003 — 240000
IFOA 5126.495 5126.495 2.5E − 08 786696

COMDE 5126.498 5126.498 0 200000
ICA 5126.498 5126.498 3.8E − 01 200000

IWOA 5126.498 5126.804 3.5E+ 00 64000

g06/− 6961.814

IPES − 6961.814 − 6961.814 — 240000
IFOA − 6961.814 − 6961.814 1.8E − 12 129950

COMDE − 6961.814 − 6961.814 0 12000
ICA − 6961.814 − 6961.814 0 200000

IWOA − 6961.814 − 6952.593 9.9E+ 00 64000

g07/24.306

IPES 24.307 24.316 — 240000
IFOA 24.3068 24.3064 1.29E − 04 695875

COMDE 24.3062 24.3062 4.7E − 07 200000
ICA 24.306 24.3704 3.2E − 01 200000

IWOA 24.3056 24.3705 2.4E − 02 80000

g08/− 0.095825

IPES − 0.095825 − 0.095825 — 240000
IFOA − 0.095825 − 0.095825 8.33E − 17 10331

COMDE − 0.095825 − 0.095825 9.0E − 18 4000
ICA − 0.095825 − 0.095825 0 200000

IWOA − 0.095825 − 0.095823 4.8E − 06 64000

g09/680.630

IPES 680.630 680.630 — 240000
IFOA 680.632 680.647 2.02E − 08 559717

COMDE 680.632 680.630 4.07E − 13 70000
ICA 680.630 679.429 4.5E − 02 200000

IWOA 680.630 680.616 9.1E − 02 64000

g10/7049.331

IPES 7051.341 7210.360 — 240000
IFOA 7049.2844 7049.2607 6.4E − 03 883825

COMDE 7049.248 7049.248 1.5E − 04 200000
ICA 7049.248 7053.721 1.7E+ 02 200000

IWOA 7049.331 7046.627 3.1E+ 01 64000

g11/0.7499

IPES 0.75 0.75 — 240000
IFOA 0.75 0.75 2.7E − 11 372647

COMDE 0.7499 0.7499 0 50000
ICA 0.74990 0.74995 0 200000

IWOA 0.7499 0.7495 2.9E − 06 64000

g12/− 1.000

IPES − 1.000 − 1.000 — 240000
IFOA − 1.000 − 1.000 0 4505

COMDE − 1 − 1 0 6000
ICA − 1 − 1 0 200000

IWOA − 1.000 − 0.998 2.3E − 03 64000
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Table 3: Continued.

Function/optimal Methods Best Mean Std. FEs

g13/0.05395

IPES 0.053950 0.0514626 — 240000
IFOA 0.0543003 0.0539588 6.98E − 05 904975

COMDE 0.0539415 0.0539415 1.4E − 17 150000
ICA — — — —

IWOA 0.05395 0.05394 3.4E − 05 64000
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Figure 6: Convergence graph for g01–g03 and g07.
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Figure 7: Convergence graph for g04–g06 and g08.
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Figure 8: Convergence graph for g09–g13.

Table 4: Statistical features of the results obtained by various versions of IWOA.

Problem Features IWOA IWOA-1 IWOA-2 IWOA-3 IWOA-4 IWOA-5

g01
Best − 15 − 14.998 − 14.999 − 15 − 14.998 − 14.999
Mean − 14.998 − 14.998 − 14.991 − 14.997 − 14.994 − 14.998
Std. 1.97E − 13 3.24E − 04 9.85E − 03 7.46E − 04 5.27E − 03 2.13E − 04

g02
Best − 0.803572 − 0.8038 − 0.7997 − 0.8034 − 0.8017 − 0.8038
Mean − 0.801395 − 0.8006 − 0.8076 − 0.8012 − 0.8007 − 0.8023
Std. 6.9E − 03 7.05E − 03 1.65E − 02 6.67E − 03 7.69E − 02 6.5E − 03

g03
Best − 1.0001 − 0.9997 − 0.9958 − 1.0001 − 0.9979 − 0.9999
Mean − 0.9973 − 0.9956 − 0.9842 − 1.0034 − 0.9528 − 0.9921
Std. 3.9E − 03 2.62E − 03 4.8E − 03 3.6E − 03 5.3E − 03 5.3E − 03

g04
Best − 30665.539 − 30664.66 − 30664.41 − 30665.88 − 30664.32 − 30665.51
Mean − 30664.771 − 30663.86 − 30664.02 − 30664.85 − 30661.36 − 30664.72
Std. 1.7E − 01 3.5E − 01 2.1E − 02 2.4E − 01 8.6E − 01 2.6E − 01

g05
Best 5126.498 5126.697 5124.071 5126.421 5125.535 5125.386
Mean 5126.804 5126.022 5129.948 5126.977 5127.811 5125.846
Std. 3.5E+ 00 4.5E+ 00 6.2E+ 00 5.4E+ 00 7.4E+ 00 1.2E+ 00

g06
Best − 6961.814 − 6961.814 − 6958.081 − 6961.814 − 6959.795 − 6961.814
Mean − 6952.593 − 6959.795 − 6950.981 − 6951.057 − 6953.327 − 6950.333
Std. 9.9E+ 00 6.0E+ 00 7.3E+ 00 10E+ 00 4.6E+ 00 11E+ 00

g07
Best 24.3056 24.3037 24.3421 24.3184 24.3228 24.3106
Mean 24.3705 24.3674 24.4065 24.3436 24.3788 24.3428
Std. 2.4E − 02 1.3E − 01 5.2E+ 00 2.7E − 01 1.3E+ 00 2.2E − 02

g08
Best − 0.095825 − 0.095825 − 0.095802 − 0.095824 − 0.095822 − 0.095825
Mean − 0.095823 − 0.095820 − 0.095822 − 0.095821 − 0.095820 − 0.095821
Std. 4.8E − 06 2.7E − 05 3.2E − 04 6.5E − 06 5.2E − 05 6.7E − 06

g09
Best 680.630 680.638 682.241 680.630 680.633 680.630
Mean 680.616 680.882 687.076 681.300 683.533 680.605
Std. 9.1E − 02 0.499 3.942 0.291 2.438 8.6E − 01

g010
Best 7049.331 7047.405 7058.088 7050.038 7056.534 7049.148
Mean 7046.627 7043.326 7051.038 7041.397 7042.572 7047.406
Std. 3.1E+ 01 5.2E+ 02 6.3E+ 02 3.7E+ 01 2.7E+ 02 1.8E+ 01

g011
Best 0.7499 0.7499 0.7501 0.7499 0.7499 0.7499
Mean 0.7495 0.7487 0.7416 0.7499 0.7494 0.7491
Std. 2.9E − 06 3.5E − 06 4.3E − 05 3.1E − 06 2.5E − 06 7.4E − 06

g012
Best − 1.000 − 1.000 − 0.997 − 1.000 − 1.000 − 0.999
Mean − 0.998 − 0.996 − 0.991 − 0.997 − 0.993 − 0.995
Std. 2.3E − 03 5.3E − 03 3.5E − 02 2.6E − 03 9.2E − 03 6.3E − 03

Discrete Dynamics in Nature and Society 11



than IWOA-3. On the whole, the most obvious impact on
the algorithm is the processing of nonlinear convergence
factor and the processing of constraint technology.

In summary, the test results of 13 benchmark con-
strained optimization problems show that the IWOA al-
gorithm has high accuracy and strong stability, and it is
competitive in constrained optimization problems.

5. Conclusion and Future Work

Like other swarm intelligence algorithms, the WOA algo-
rithm also has the disadvantages of slow convergence and easy
to fall into local optimum. According to the characteristics of
the function optimization problem, this paper improves the
standard WOA from three aspects: (i) initial population, (ii)
convergence factor, and (iii) mutation operation. An IWOA is
proposed. At the same time, in order to solve the constraint
optimization problem, the dynamic penalty function method
is introduced to transform the constrained optimization
problem into an unconstrained optimization problem. *e
test of 8 benchmark functions shows that the IWOA algo-
rithm has improved global exploration ability and local ex-
ploitation ability. *en 13 benchmark constrained
optimization problems were tested, and compared with other
algorithms inmany aspects, the experimental results can show
that the IWOA algorithm is competitive.

WOA is a new type of swarm intelligence algorithm; the
next work is to further improve the algorithm, so that it can
be applied in more fields and solve more constrained op-
timization problems.
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improved Lévy based whale optimization algorithm for
bandwidth-efficient virtual machine placement in cloud
computing environment,” Cluster Computing, vol. 22, no. 4,
pp. 8319–8334, 2018.

[12] W. Long, S. H. Cai, J. J. Jiao et al., “Improved whale opti-
mization algorithm for large scale optimization problems,”
Systems Engineering ?eory ＆ Practice, vol. 37, no. 11,
pp. 2983–2994, 2017.

[13] Q. He, K. Y. Wei, and Q. S. H. Xu, “Mixed strategy based
improved whale optimization algorithm,” Application Re-
search of Computers, vol. 36, no. 12, pp. 3647–3665, 2019.

[14] Wu Z. Q., Mu Y. M. Improved Whale Optimization Algo-
rithm. Application Research of Computers, 2020-03-27:
http://kns.cnki.net/kcms/detail/51.1196.tp.20200326.1103.
023.html.

Table 4: Continued.

Problem Features IWOA IWOA-1 IWOA-2 IWOA-3 IWOA-4 IWOA-5

g013
Best 0.05395 0.05396 0.05398 0.05396 0.05393 0.05395
Mean 0.05394 0.05393 0.05388 0.05392 0.05390 0.05391
Std. 3.4E − 05 2.5E − 04 1.7E − 03 4.2E − 05 4.8E − 04 3.7E − 05

12 Discrete Dynamics in Nature and Society

http://kns.cnki.net/kcms/detail/51.1196.tp.20200326.1103.023.html
http://kns.cnki.net/kcms/detail/51.1196.tp.20200326.1103.023.html


[15] L. Liu and Q. He, “Improved whale optimization algorithm
for solving function optimization problems,” Application
Research of Computers, vol. 37, no. 4, pp. 1005–1009, 2020.

[16] G. Y. Ning, D. Q. Cao, and Y. Q. Zhou, “An improved dif-
ferential evolution algorithm for solving constraint optimi-
zation problem,”Mathematics in Practice and ?eory, vol. 47,
no. 2, pp. 156–165, 2017.

[17] L. Chen and Y. L. Huo, “*e solution to constrained opti-
mization problem by improved genetic algorithm,” Journal of
Chongqing Technology and Business (Natural Sciences Edi-
tion), vol. 31, no. 9, pp. 64–67, 2014.

[18] W. Long and W. Z. H. Zhang, “Modified bat algorithm for
solving constrained optimization problems,” Application
Research of Computers, vol. 31, no. 8, pp. 2350–2353, 2014.

[19] Y. Q. Mi and Y. L. Gao, “*e improved particle swarm op-
timization algorithm for solving constrained optimization
problems,” Journal of Jiangxi Normal University (Natural
Science), vol. 39, no. 1, pp. 59–63, 2015.

[20] D. M. Lei, S. A. N. Q. Cao, and M. Li, “An imperialist
competitive algorithm for solving constrained optimization
problem,” Control and Decision, vol. 34, no. 8, pp. 1663–1670,
2019.

[21] W. Long, S. H. H. Cai, J. J. Jiao et al., “Firefly algorithm for
solving constrained optimization problems and engineering
applications,” Journal of Central South University (Science and
Technology), vol. 46, no. 4, pp. 1260–1266, 2015.

[22] Z. H. Wang and X. F. Li, “Self-adaptive artificial bee colony
Algorithm for constrained optimization problem,” Computer
Engineering and Applications, vol. 55, no. 15, pp. 47–57, 2019.

[23] A. W. Mohamed and H. Z. Sabry, “Constrained optimization
based on modified differential evolution algorithm,” Infor-
mation Sciences, vol. 194, no. 7, pp. 171–208, 2012.

[24] A.W.Mohamed, “A novel differential evolution algorithm for
solving constrained engineering optimization problems,”
Journal of Intelligent Manufacturing, vol. 29, no. 3, pp. 659–
692, 2018.

[25] A. W. Mohamed, A. K. Mohamed, E. Z. Elfeky, and M. Saleh,
“Enhanced directed differential evolution algorithm for
solving constrained engineering optimization problems,”
International Journal of Applied Metaheuristic Computing,
vol. 10, no. 1, pp. 1–28, 2019.

[26] W. A. Watkins and W. E. Schevill, “Aerial observation of
feeding behavior in four baleen whales: Eubalaena glacialis,
Balaenoptera borealis, Megaptera novaeangliae, and Balae-
noptera physalus,” Journal of Mammalogy, vol. 60, no. 1,
pp. 155–163, 1979.

[27] R. Haupt and S. Haupt, Practical Genetic algorithm, John
Wiley & Sons, New York, NY, USA, 2004.

[28] C. H. K. Zhang, L. Y. Xu, and H. H. Shao, “Improved chaos
optimization algorithm and its application in nonlinear
constraint optimization problems,” Journal of Shang Hai Jiao
Tong University, vol. 34, no. 5, pp. 593–595, 2000.

[29] Z. L. Wei, H. Zhao, M. D. Li et al., “A grey wolf optimization
algorithm based on nonlinear adjustment strategy of control
parameter,” Journal of Air Force Engineering University
(Natural Science Edition), vol. 17, no. 3, pp. 68–72, 2016.

[30] G. Y. Ning, D. Q. Cao, and Y. Q. Zhou, “Improved differential
evolution algorithm for solving 0-1 programming problems,”
Journal of Systems Science and Complexity, vol. 39, no. 1,
pp. 120–132, 2019.

[31] L. Wu, Y. Wang, S. Zhou et al., “Differential evolution for
nonlinear constrained optimization using non-stationary
multi-stage assignment penalty function,” Systems Engineer-
ing ?eory and Practice, vol. 27, no. 3, pp. 128–133, 2007.

[32] Parsopoulos K. E.,Vrahatis M N. Particle swarm optimization
method for constrained optimization problems [EB/OL]. [2015-
01-03, http://www.researchgate.net/publication/.2527227_Partic
le_swarm_optimization_method_for_constrained_optimization
_problems.

[33] J. S. Yong, L. W. Xi, Y. Chen et al., “A modified whale op-
timization algorithm for large-scale global optimization
problems,” Expert Systems with Applications, vol. 114,
pp. 563–577, 2018.

[34] J. J. Liang, T. P. Runarsson, E. Mezura-Montes et al., “Problem
definitions and evaluation criteria for the CEC 2006 special
session on constrained real-parameter optimization,” Tech-
nical Report, vol. 18, pp. 1–25, 2006.

[35] C. H. G. Cui and X. F. Yang, “Interior penalty rule based
evolutionary algorithm for constrained optimization,” Journal
of Software, vol. 26, no. 7, pp. 1688–1699, 2015.

[36] Shi J. P., Li P. S., Liu G. P., et al. Improved Fruit Fly Opti-
mization Algorithm for Solving Constrained Optimization
Problems and Engineering Applications. Control and Deci-
sion [2019-10-23], http://kns.cnki.net/kcms/detail/21.1124.
TP.20191022.1622.013.html.

Discrete Dynamics in Nature and Society 13

http://www.researchgate.net/publication/.2527227_Particle_swarm_optimization_method_for_constrained_optimization_problems
http://www.researchgate.net/publication/.2527227_Particle_swarm_optimization_method_for_constrained_optimization_problems
http://www.researchgate.net/publication/.2527227_Particle_swarm_optimization_method_for_constrained_optimization_problems
http://kns.cnki.net/kcms/detail/21.1124.TP.20191022.1622.013.html
http://kns.cnki.net/kcms/detail/21.1124.TP.20191022.1622.013.html

