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Under the assumption that there is a time delay between the time target cells are contacted by the virus particles and the
time the contacted cells become actively infected, we investigate the exponential stability of the noninfected equilibrium
for a delayed HIV infection model with a nonlinear incidence rate. Compared with the global asymptotic stability analysis
based on basic reproduction number, exponential stability analysis reveals the change range of various cells in different

time periods.

1. Introduction

As is well-known, acquired immune deficiency syndrome
(AIDS) has received widespread attention since its discov-
ery. Initial models used to gain an insight into HIV im-
munology relied on systems of ordinary differential
equations (see, e.g., [1-6]). In general, an underlying as-
sumption in such an ODE model for HIV infection is that
infection of cells by virions is instantaneous. In fact, in the
real world, there may be intracellular delays in the viral
infection and replication, and immune response processes.
Furthermore, delay-differential equations exhibit much
more complicated dynamics than ordinary differential
equations since a time delay could affect the stability of the
systems and may lead to some complex dynamic behaviors
such as oscillation, chaos, and instability [7, 8]. Hence, time
delays have been incorporated into HIV infection models by
some authors (see [9-16] and the references cited therein).

On the other hand, compared with bilinear incidence
rate, nonlinear incidence rate usually has more complex
properties. When the number of viruses and susceptible cells
is large, the number of susceptible cells contacted by viruses
per unit time is limited, so the nonlinear incidence rate

should be adopted in this case [17]. Recently, under the
assumption that there is a lag between the time target cells
are contacted by the virus particles and the time the con-
tacted cells become actively infected, Yuan et al. [18] pro-
posed the following delay-differential system for HIV
infection models with a nonlinear incidence rate:

x'(t) = p - kx (t) — ax (£) f (v(1)),
y' () =ae "x(t-1)f (v(t - 1)) - yy(t) - By (DR (z(1)),
v (1) = py (1) —dv(p),
Z' (1) =8y (1) - qz (1),
(1)

where x (), y (t), v(t), and z(¢) denote C D4" cells that are
susceptible to infection, productively infected cells, virus,
and the effector population of CTLs (cytotoxic
T lymphocytes), respectively, at time t; 4 denotes the newly
added susceptible cell, k represents its death rate constant, «
is the infection rate constant, y signifies the infected cell
death rate constant, and f3 represents the killing rate constant
of productively infected cell by CTLs; p denotes the rate
constant of virus production by infected cell, and d
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determines the clearance rate constant of virus; effectors are
generated in the presence of infected cells at rate § y and die
at rate constant g per cell; 7> 0 represents lag between the
time target cells are contacted by the virus particles and the
time the contacted cells become actively infected, and e™"" is
assumed to describe the surviving rate constant of each
target cell to get infected. The functions f(x) and h(x)
represent the force of infection by the infective at density x
and the force of CTLs to kill infected cells at density x,
respectively. Furthermore, the functions f (x) and h(x) are
locally Lipschitz on [0,00) and satisty the following:

(A1) f(0)=0, the derivatives f'(x)>0 and
(f (x)/x ) <0 in (0, 00)

(A2) h(x)=>0in [0,00)

Due to their biological relevance, all parameters in model
(1) are positive. In fact, the first equation of (1) has more
general form x' (t) = n(x(t)) — g(x(t),v(t)), where n(x) is
a general function that accounts for both production and
turnover of healthy target cells [19, 20]. Generally speaking,
there are two main forms of this function. In addition to
n(x(t)) =A—-dx(t) [21, 22], another typical function
appearing in the literature is
n(x(t) =A—-dx(t) +rx(t)[1 - (x(t)/K)], where A, d,r, K
are positive real numbers [23, 24]. In particular, if we allow
r = 0, the second form of n(x (t)) will become the first one.
In order to include the aforementioned two forms, we
consider the following delay-differential system:

X (6) = p—kx (0 +pX(t)[1 —%] —ax (O f (v(0),

) y' () =ae” " x(t - 1) f (v(t - 1))~ yy () - By (DR (2 (1),

V(1) = py(t) —dv(t),

Z'(t) = 8y (1) - qz (b).
(2)
Here, 0<p <k, p is the maximum proliferation rate of
uninfected cells, and M is the maximum level of uninfected

cell concentration in the body. The other parameters are
positive and have similar meanings to those in system (1).

x" (p)

_M(p-R)+(M (o= + apMyu)"?
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For the sake of convenience, we denote by R” the set of

all n-dimensional real vectors. For any
x = (x},%,,...,x,) € R", we let |x| denote the absolute-
value vector given by |x| = (x|, |x,],...,|x,]) and define

[xll = max;e 5 ylx;|. Let R, denote nonnegative real
number space, C = C([-7,0],R) be the Banach space of
continuous functions mapping the interval [-7,0] into R
equipped with the usual supremum norm |-, and let
C, =C([-7,0],R,). Set x,(6) = x(t + 0) for all 8 € [-T,0].

From the biological meanings, the initial conditions
associated with (2) are defined as follows:

x(0) = ¢(0),v(0) =y (0), »(0),2(0) €R,,0 € [-7,0],
(3)
where ¢,y € C([-7,0],R,).
Most recently, by using the characteristic equation and

the Fluctuation lemma, Yuan et al. [18] proved the following
result:

Theorem 1. Let the basic reproduction number

- “pﬂe—mrfl (0)
= —kyd <1. (4)

Then, the noninfected equilibrium E° = ((u/k),0,0,0) of
(1) is globally asymptotically stable.

R,

However, Theorem 1 does not give us any information
about the convergence rate, which is vitally important to the
disease prevention and control in real-world applications of
theoretical results on epidemic models. In fact, the known
convergence rate means that the range of the population is
predictable; that is to say, we can estimate the range of
changes in the population within a given time range. In
particular, since the exponential convergence rate reveals the
variation range of population in different time periods, there
have been extensive results on the problem of the expo-
nential stability of epidemic models in the literature studies
[25-28]. Now, a question naturally arises: under what
conditions is the noninfected equilibrium (x*, y*,v*,z*) =
(x*(p),0,0,0) of system (2) with initial conditions (3) are
exponentially stable? Here,

2p

It is easy to see that limpﬂwx* (p) = x*(0) = (u/k). For
0<p <k, we denote x* (p) by x* for simplicity of notation.

, p>0;x*(0):%p:0. (5)

Motivated by the above discussions, the main purpose
of this paper is to establish sufficient conditions for the
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exponential stability of the noninfected equilibrium
(x*, y*,v*,2") = (x%,0,0,0) of system (2). To the best of
our knowledge, it is the first time to focus on the problem
of the exponential stability for (2). In particular, a nu-
merical example is provided to illustrate our theoretical
results.

Similar to the reference [29], we give the definition of the
exponential stability as follows.

Definition 1. Let (x(t), y (t),v(t),z(t)) be the solution of
(2) with initial value conditions (3). If there exists a positive
constant A >0 such that

x(t) - x| = O(e™™),
F -0 - At ,
|y (@) y*l (ew) ©
|v(t) -V | = O(e )
|z(t) - 2z"| = O(e”“),

ast — + 00, then the noninfected equilibrium is said to be
globally exponentially stable.

In the rest of the paper, we give our main result in
Section 2. The theoretical result is illustrated with examples
as well as numerical simulations in Section 3. Finally,
conclusions are made in Section 4.

k—p+(px" /M) — (pu/M (k — p)) ye™ (k - p)

2. Main Results

By the fundamental theory of functional differential equa-
tions [30], we have that there is a unique solution
(x (), y(t),v(t),z(t)) satistying system (2) with initial
conditions (3). Furthermore, by a similar argument as that in
Zhu etal. [31], it is not hard to show that every solution of (2)
with initial value conditions (3) is nonnegative and bounded
on [0,00). From (2), we have

x' () <p—(k-p)x(t), (7)
which implies

‘M[l _ e*(k*P)t]

x(t) <x(0)e F P! 4
k—p

(8)

__H _ K ~(k-p)t
k—p+[x(0) k—p]e ,

for all t € (0, 0c0).
In addition, from (A1), we can get

FE<f(0¢ &€ (0,00). 9)

The following theorem is our main result.

Theorem 2. Assume that the following

{(xf' (0)<min{

hold. Then, there exist three positive constants A, K, and t;
such that

|x (1) = x7| <Ke™M,
PIORSAES o o
lv() —v'| <Ke™M,

|z(6) - 27| < Ke ™,

x" (p)

_ M(p-k)+(M* (p— k)’ + 4pMy

P ]» p<d,d<q, (10)

for all t > t;. Here, (x*, y*,v*,z") = (x (p),0,0,0), and

)(1/2)

2p

, p>0;x*(0)=%,p=0. (12)



Proof. Let
X (1) = (x, (£), x5 (1), x5 (1), x4 (1))

(13)
=(x(t) = x", y(t) = 0,v(t) - 0,z (£) = 0),

x3’ (t) = px, (t) - dxs (t),

[ x4 () = 8x, () — gx, (1),

t

x,(t) = e_ J'fo

e
to

[k— p+%x* +af(x; (s))]dsx1 )+ jt _ J

to

t
x5 (t) = ef"l(H“)x3 (o) + J e 1 px, (v)dv,
ty

t
x,(t) = e_Q(t_tO)x4 () + J e 1%, (v)dv,

to

for all t>t,.
From (8) and (10), there exist £, >0 and ¢, > 0 such that

x(t)Seo+L, forall t e (t,,00),

k—p
(15)
ae " f! (0)(‘u + 80) <y.
k—p
Then, for any € € (0,¢,], we can choose two positive
constants A and # such that

L ) —(k-p+Lx*)< -
+M<k_P+s>+ocxf(0) (k p+Mx)< n<0,

A+ txehe*mrf'(o)<L+s> -y< -n<0,
] k-p

A+p-d< -n<0,

L A+0-g< —n<0.

[k— p+]%x* +af (x; (s))]ds[

- t hx4s ds [ ‘ x,(s S
x,(t)=e jt“[y+/3( W) xz(to)+J e J."[}H—ﬂh( +(9)]d ae ™
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then we can get

x| () = —kx, (£) + px, () — ﬁx*xl (t) - ﬁx(t)xl (t) — ax, (8) f (0 (1)) — ax” £ (x5 (8)),

X, (1) =ae " x(t = 1) f (x5 (£ — 1)) — px, (£) = B, (DR (x4 (1)),

—%x(v)x1 (v) = ax” f (x5 (v)) |dv,

x(v=1)f (x3(v=1))dv,

(14)

Foragiven ¢ € (0,¢, ], from (8), we can find t, >0 such

that
x(t)<e+ L,

k—p forall te (tl, 00) (17)

Letty =t + T,Kq) >1, and

(16)
X1 = max{ max |x1 (s)|, max |x2 (s)|, max |x3 (s)|, max |x4 (s)| } (18)
se [to-Tte] se [to-nte] se [to-te ] s [to-Tte]
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Consequently,

| (t) | <0Xlle + e < K, (UX1e + £) = K, (X1 + )€™,
(19)

In the following, we will show
IX (0 <K, (IX1l +£)ee™™,  forallt >t (20)

If not, one of the following four cases must occur.
Case I: there exists 6, >0 such that
%, (6)] = K, (IX]l¢ + £)e*ce ",
{ IX () < K, CIX1e + e)eee™,  forallt € [t,—1,0,).
(21)

Case II: there exists 6, >0 such that

{ |, (6,)] = K, (IX1g + €)eee %,

At

||X(t)||<Kq,(||X||5+£)e}‘tfef , forallt € [t,—1,0,).

(22)

|x,(6))] = e

f

f

<e_<k_p+ ﬁx*) (91_t5)|x1(t5)| + -[6‘ e_(k_p+ ﬁx*) (&)

Case III: there exists 05 >0 such that

|x3 (63)| = K¢(||X||g + e)e“fefwﬁ
IX (I <K, (IX]l +e)ee™,  forallt € [t, - 1,6,).
(23)

Case IV: there exists 6, >0 such that

|4 (0)] = K, (11X +€)ese™,

IX (0 <K, (IX]l +)e*e ™, forallt € [t,—1,6,).
(24)

If Case I holds, in view of (9), (14), (16), (17) and (21), we
have

0
e pe Loxt ! N I d
-[‘s [k Ve +af(x3(s))]d xl(t5)+r e J’v [ Pt +o¢f(x3(s))] S[—%x(v)xl(v)—ocx*f(x3(v)) dv

[% (L + s>x1 (v) + ax” ' (0)x; (V)]dV

k—p

M\k-p

ﬁ * ¢ | k- +£ * —v
Se*(k*fHMx )(91 5)(||X||£+s)+J’9 . (k P Mx )(61 )[£<L+g>+ax*f/ (O)]K(P("X”f+s)e/\tze*/\vdv

te

¢

P
_ 1 -(6-t )(k-p+—x - /1)
$K¢(||X||£+s)e'ufe A6‘<|Ke ¢ M +J

,D *
B 1 —(6,-¢ (k— —x —/\)
SK(p(”XHE_'_E)e)ttfe 26, {K_e ( ¢) p+M +J‘

¢

6, —(6,-v)kopr Lx™ = )
e ® )<k P Mx )(p<ﬂ+e>+(xx*f’(0)>d1/}

t M\k-p

t

P«
b —(6,-v (k— —x - /\)
e S v (k—p+%x*—/\)dv]>

P
A —16, 1 7(0.—tf)(k—p+—x —/1)
= K, (1] + )ee {1_<1_K )e 7

Aty — 10
<K, (IXll + €)e*ce™,

which contradicts with the first equation in (21). Hence,

Case I could not hold.

(25)

If Case II holds, combining (A2), (9), (14), (16) and (17),
and (22), we deduce that
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e
te

6,
- (" +Bh (x4 (s s 2 - h d
|, (6,)] =le st [refh ()] xz(tg) + .[0 J-v [y A ey () s[oce""”x(v— 7) f (x5 (v—1))]dv

Se’(ertf))’|x2(tf)| + J92 e(ezv)y[ae’”f' (0)<k‘ufp + s>|x3 (v- T)l]dv
43

2
= e (X +€) + J e‘(ez”)?[ae""f 5 “”(kﬂfp ¥ e>]1<¢(||xuf +e)eMe 0 dy

te (26)
<K (||X|| + .s)e”fe_w2 Le_(ez_tf)(y_” + JGZ e ()= (y = AN)dv
SKy 4 K(p t
= K, (IX1 +€)ee 41 —( 1~ Lo 000
14 ¢ K(P
<K, (X1l +£)eee*®,
which contradicts the first equation in (22). Thus, (22) could If Case III holds, together with (14) and (16), (23) yields
not hold.
05
EXCAIE e’d(93’tf)x3(t5) + L pxy (s)e (B9 ds
3
Se‘d(ﬂz—te)("X”E + s) + JG3 pe-d(og—s)K (||X||€ + s)eltge—asds
t ¢
1 05
<K, (IX[g +e)ee — e (Ot @-n J e (Bm) D) g
qu t
(27)

93
<K, (IX] + £)e e {ie(eﬁffﬂ“) + J e (B D (g _ A)ds}
K@ 153

_ 1 _(6.— _
1 e i1 L)oo
¢

Aty — A6
<K (I1X] +e)e™ee™™,
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which contradicts the first equation in (23). Thus, (23) could

not hold.

If Case IV holds, together with (14) and (16), (24) yields

94
ra (@] = 171 (1) + [ oy 9 9 D
13

04
Se_q(94_t£)(||X"£ + 8) +J e—q(94—5)6K¢(||X||E +£)e/\tge—)»sds
t

3

ae 26, [ U —(0-t)@-n . [ ~(60-5)@@-1
§K¢(||X||E+e)e te My o (Bimh) +J e\ Y ds
K

¢

& (28)

_ 1 (o) (o % o Vo
<K, (X +€)e"ee "94{Ke (0-t) @ Mj e (B9 ”(q_ms}

?

13

_ 1\ _(o- _
= K, (IX1; +£)e"*e w“{l —(1 —K—)e (61 (a A)}
¢

Aty — A6
<K, (IXllg +€)ece™™,

which contradicts with the first equation in (24). Thus, (24)
could not hold.
Therefore, we obtain from the above discussions that

IX O <K, (I1XIe + €)' e™, forallt>t,  (29)
holds. Letting ¢ — 0%, we have that
IX (0 <K, Xl e ™, forallt>te,  (30)

which proves (11), where K = K¢||X|| Ee)“f . This completes
the proof of Theorem 2.

According to the above discussion, it is easy to see that
our result is also true when p = 0. Furthermore, compared

M(p-k)+(M*(p-K)? +4pMu)"”

with Theorem 1, we find that the significantly stronger
conclusion of Theorem 2 is obtained with only slightly
stricter conditions. O

3. A Numerical Example

In this section, we will show the existence and global ex-
ponential stability of the noninfected equilibrium of system
(2) by a numerical example.

Let py=24,k=0.3,p=0.05 M =80, a=0.01,m=2,
=1,y =025 =003 p=002d=00505=004, g =
0.07, f(x) = 0.2x, and h(x) = x + 0.5 sin x. Then,

x"(p)= 2

. p>0;x"(0) =80,

k—p+(px" /M) - (pu/M (k = p)) ye™" (k—p)

af'(0)=0.002<0.003 = min{

p=0.02<d =0.05,
8=0.04<q=0.07,

<

V' (t) = 0.02y(t) — 0.05v(t),

L 2" (t) = 0.04y (t) — 0.07z (1),

which is globally exponentially stable, and all solutions of system
(31) converge exponentially to the noninfected equilibrium

, x'(£) =24 - 0.3x(t) + 0.05x (¢) [1 -

i

(31)
x (t)
0

8_] —0.002x (£)v (1),

y'(t) = 0.002¢ 2x(t — Dv(t—1) - 0.25y (t) — 0.03y(t) [z (t) + 0.5sin(z (1))],

(80,0,0,0) with the exponential convergent rate { = 0.002.

This fact is verified by the numerical simulation in Figure 1.
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Ficure 1: (a) The numerical solution
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State variables Inx(t), Iny(t), Inz(t)

Iny(t)
Inz(t)

0 50 100 150

Time t
(b)

equation (31) for the initial values

x, = 60, y(0) = 40, v, = 30,2z (0) = 20,s € [-1,0]; (b) the numerical simulation of logarithmic solution (x(t), y(¢),v(t),z(t)) of equation

(31).

Since the results in [3, 4, 19, 32, 33] give no opinions
about the global exponential stability of the HIV infection
models, it is clear that all the results in the above references
cannot be applicable to prove the global exponential stability
of system (31).

4. Conclusion

We have proved the global exponential stability of the
noninfected equilibrium for a delayed HIV infection model
with a nonlinear incidence rate. It is worth pointing out that
the required conditions are simple and easy to verify. It is
natural to ask whether our methods in this paper are
available to study the global exponential stability of the
infected equilibrium of the delayed HIV infection models. It
is an issue worth our further study. In addition, as pointed
out in the literature [34, 35], the further extension of the
model is to consider the case with reaction-diffusion term,
which is also the focus of our further research.
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