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Due to the increasing concerns about the environmental and economic issues of traditional ships, all-electric ships with energy
storage and renewable energy integration have become more and more appealing for the forthcoming future. In this paper, an
optimal energy storage system (ESS) capacity determination method for a marine ferry ship is proposed; this ship has diesel
generators and PV panels. ESSs sizing optimization and power system scheduling optimization are simultaneously conducted and
it is converted to a mixed-integer quadratic programming (MIQP) model with special modeling techniques. /e case study shows
that the proposed method is flexible and effective, and the relationships between the ESSs size and the discharge rate, life cycle
times, or initial investment cost are investigated.

1. Introduction

/e impacts of global warming caused by air pollution and
depletion of fossil fuels have attracted increasing attention
and opportunities in transportation, especially in the mar-
itime industry. According to the International Maritime
Organization (IMO) reports, maritime transportation
contributes to 2.2% of CO2 emissions in the world in 2012,
and if no action is taken, this data will increase between 50%
and 250% in 2050 [1]. /erefore, the IMO requires the
shipbuilding industry to improve the efficiency of the
onboard energy systems for the mitigation of CO2 emissions
[2–4]. In this context, the integrated power system (IPS)
technology is used for the all-electric ship (AES), which
combines electric propulsion and ship service electric grid to
provide a common electrical platform [5] has become an
appealing technology compared to the traditional ships.
Since its superior energy efficiency, IPS technology is
attracting more and more attention [6].

A few years ago, solar photovoltaic has aroused a high
degree of interest in the scientific community and has been
involved in some experimental research; however, the high

expensive PV investment cost prevents its widespread use in
ship area [7]. Recently, due to the oil price increases and PV
investment costs decreasing, more and more ships choose to
deploy a few PV panels on the rooftop to reduce the ship’s
greenhouse gas emissions, improve energy efficiency, and
save operation costs.

2. Literature Review

2.1. Literature Survey. In a ship with IPS, the variable fre-
quency drive technology, unit commitment technology
[8, 9], and demand-side management algorithm can be used
to improve system efficiency and fuel economy. However, as
the most important load, the propulsion power is signifi-
cantly impacted by the uncertain ocean and weather con-
ditions, which causes the outputs of the generators to vary
greatly, which then further makes the advantages of the AES
not fully displayed.

Motivated by the successful application experience of
energy storage systems (ESSs) in mitigating the negative
impacts introduced by the uncertainties of renewable energy
resources [10, 11], the importance of onboard ESSs and the
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smart energy management strategies for shipboard micro-
grid has been discussed in [12]. ESS can absorb energy from
the ship power system when the load is low and release it
when the load becomes high, which can reduce the fuel
consumption and improve the economy of the IPS.

Although ESSs have so many advantages, their expensive
investment cost and the limited ship deployment space
prevent them from widely applying. In this situation, it is
necessary to address the problem of ESS sizing by consid-
ering the optimal power scheduling problem, which has a
close relationship to the performance of ESS [13, 14].

Lots of recent research works have been done in the area
of optimal system designation and ESS sizing on the land
grid [15]. References [16, 17] proposed a rule-based ESS size
optimization approach; the ESS charging/discharging power
is obtained by implementing the discrete Fourier transform
(DFT) algorithm to the system imbalance power. In [18],
ESS capacity optimization models based on rule operation
strategy and optimal operation strategy are considered and
discussed. Simulation results show that, compared with the
traditional rule-based ESS size optimization approaches, the
optimal operation strategy-based ESS capacity optimization
model can significantly reduce battery capacity degradation
and microgrid operation cost. To solve the ESS capacity
optimization problem, some coevolutionary algorithms [19],
deep learning algorithms [20], and meta-heuristic algo-
rithms in land microgrids or large power system are used.
Although these algorithms have superior modeling con-
struction and searching the optimal objectives, however, the
computation burden of these algorithms will be very large if
the ESS operation strategy is considered in the ESS sizing
optimization problems and a long time will be used to obtain
the final result.

Due to the shipboard ESS sizing problem with optimal
energy management strategy involving too many variables,
parameters, and specific constraints, some studies [21–23]
proposed the two-stage modeling method. /ey divided the
whole optimization problem into two sub-problems. /e
first one is the traditional optimal sizing problem, which is
used to determine the ESS capacity and solved by the
heuristic or meta-heuristics approaches [24, 25], and this
sub-problem does not consider the detailed system opera-
tion plan. While the second one is the traditional optimal
energy management problem, its ESS parameters are ob-
tained from the result of the first sub-problem and the results
of the second sub-problem are the operation schemes of the
DGs and the ESS units. However, this modeling and solving
approach has to take a long time to obtain the optimal ESS
size because the two sub-problems should be iterated lots of
times to choose the minimal value. Literature of [26] pro-
posed a hybrid modeling method of ESS optimization for a
ferry, an SOC based ESS optimization is considered as the
inner control loop, and the ESS sizing optimization is
considered as the outer loop; the final result is obtained by
combining the two-loop results. Reference [27] proposed a
comprehensive modeling and optimization technology,
which can integrate the ESS capacity optimization problem

and optimal energy management problem into a single
model. However, the optimal energy management model
used is too simple to lose many important features of the ESS
and DGs, such as the charging/discharging efficiency, the
power ramp rate, and the minimum run/downtime.

2.2. Contributions. /is work is focused on proposing a new
modeling approach to find the best ESS size of a ship power
system with considering the optimal energy management
strategy. /e most motivation is to simultaneously optimize
the ESS sizing problem and the optimal energy management
problem in a mathematical model. Due to the unit com-
mitment problem, ESS optimal schedule, demand-side
management, and sizing problem are included; this math-
ematical model is expressed by a mixed-integer quadratic
programming (MIQP) model.

2.3. Organization. /e outline of this paper is as follows:
Section 3 introduces the structure of the shipboard IPS and
the operation features of ESS and DGs. Section 4 describes
the detailed modeling process of the ship power system ESS
sizing problem. Results and discussions are implemented in
Section 5, and Section 6 concludes.

3. Problem Description

/is section describes the framework of IPS, PV generation
model, DG efficient operation characteristics, and the life
model of the ESS.

3.1. Integrated Power System (IPS) Description. A generic
diagram of an IPS is shown in Figure 1; it can be considered
as an independent shipboard DCmicrogrid. Compared with
the traditional ships, the generators in the IPS supply power
to the ship service load and electric propulsion motors si-
multaneously./erefore, the power of these two parts can be
adjusted at any time through the energymanagement system
(EMS) to increase the fuel efficiency or improve the power
quality [28]. In the IPS, the primemovers can be gas turbines
or diesel generators, or both of them. Besides, the generators
are all rectification generators.

To guarantee the ship power system safety, the IPS
operation should be subject to several constraints and
limitations, such as generation and consumption balance
limitation, ship speed variation limitation, spinning reserve
limitation, and generator ramp rate limitation. Besides, the
gas emission limitation should also be contained in the near
future.

3.2. PVGeneration. As we all know, the power output of PV
panels is determined by many factors, such as the effective
solar radiation on the panels, the PV panel type, and the PV
panel slope angle [29, 30]. Mathematically, the PV gener-
ation can be described as the following.

2 Discrete Dynamics in Nature and Society



TC(t) � TA(t) +
NCOT − 20

800
Sp(t, β),

ISC(t, β) � ISC,STC + KI TC(t) − 25( 􏼁􏽨 􏽩
Sp(t, β)

1000
,

VOC(t) � VOC,STC − KVTC(t),

PPV(t) � NPVVOC(t)ISC(t, β)FF(t),

(1)

where TC(t) and TA(t) are the PV panel temperature and
ambient temperature, respectively. NCOT is short for
Nominal Cell Operating Temperature; its value is generally
provided by the manufacturer. ISC,STC and VOC,STC are the
short-circuit current and open-circuit voltage of the PV
panel under the Standard Test Conditions; namely, the
ambient temperature is 25°C and the effective solar radiation
on the panels is 1 kW/m2, KI and KV are the corresponding
temperature coefficients, PPV(t) is the PV generation with
NPV PV panels, FF(t) is a fill factor which is determined by
the type of PV panels, β is the slope angle of the PV panel,
and Sp(t, β) is the effective solar radiation for the PV panel,
which is described as the following:

Sp(t, β) �
S

sinh
sin(h + β),

sinh � sin φ sin δ + cos φ cos δ cos τ,

(2)

where h is solar elevation, φ is geography of the latitude, τ is
hour angle, and δ is solar declination angle.

3.3. Efficient Operation of Diesel Generators. Generally, the
fuel consumption cost of the ship diesel generator Cfuel

i,DG can
be approximated by a second-order polynomial function:

C
fuel
i,DG Pi,DG􏼐 􏼑 � αiP

2
i,DG + βiPi,DG + ciδ

onoff
i,DG , (3)

where Pi,DG(t) is power output of the ith DG in period t
(kW), δonoffi,DG is operation state of the ith DG in period t
(binary), and αi, βi, ci are cost coefficients of the ith DG
($/MWh2, $/MWh, $/h).

Specific fuel consumption (SFC) is the result of fuel
consumption cost divide by power output, which is
expressed as equation (4). It is used to realize the operation
characteristic of the generators.

SFCfuel
i,DG Pi,DG􏼐 􏼑 � αiPi,DG + βi +

ci

Pi,DG
. (4)

Equation (4) indicates that once a generator is started, its
SFC first decreases when its power output is smaller than the
most efficient power point; then the SFC will increase
continuously.

/e CO2 emission is determined by the power output of
the DGs. It can be expressed as

E
fuel
i,DG Pi,DG􏼐 􏼑 � aiP

2
i,DG + biPi,DG + ciδ

onoff
i,DG , (5)

where ai, bi, ci are CO2 emission of the ith DG (kg/kW2, kg/
kW, kg/h).

3.4. ESS Efficient Operation. /ere are several types of ESSs
available on the market, in which the battery due to its high
specific energy and suitable specific power becomes the most
widely used ESS [31, 32]. However, one of the shortcomings
of the battery is its short life cycle which leads to the whole
life cost of the battery being a little expensive.

According to the literature, the battery life is mainly
affected by the depth of discharge (DOD) and the number of
charge-discharge cycles [33]. /e degradation of batteries in
each charge-discharge cycle can be modeled as [34]:

Ncycle � a · e
b·DoDavg + c · e

d·DoDavg , (6)

where Ncycle is the number of charge-discharge cycles to a
fault, DoDavg is the preset DOD value which should be
subjected over its life, a, b, c, d are the fitting parameters, they
are constants and provided by the manufacture, and their
values are determined by the value of DoDavg. After using
Ncycle cycles, the battery is assumed to have reached the end
of its life and should be replaced.

For most batteries, the manufacturer will provide the
suggestion of how to set the DoDavg value to achieve the best
life according to their long-term user experience.

4. Materials and Methods

/is section provides the modeling process of how to cal-
culate the best ESS capacity.
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Figure 1: Generic diagram of IPS.
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4.1. Objective Function. /e goal is to find the optimal ESS
size, which can make the total value of the IPS operation cost
CM and the ESS investment cost CI over the ship life be the
minimal.

minCtotal � min CI + CM( 􏼁. (7)

Due to Ctotal including investment cost and operation
cost, its minimum value must be the optimized result both
considered the ESS size and operation schedule.

4.1.1. ESS Investment Cost. /e investment cost CI equals
the summary of the storage pack initial investment cost
CI ESS, converter initial investment cost CI inverter, and
storage pack replacement cost CR [10].

CI � CI ESS + CI inverter + CR. (8)

In equation (8), the storage pack initial investment cost
CI ESS is expressed as the product of the single module cost
CnESS, the module nominal capacity Emax

ESS , and the number of
modules NESS. NESS is one of the determination variables,
which determines the ESS size.

CI ESS � CnESS · E
max
nESS · NESS. (9)

In this paper, we use the module as the minimal com-
ponent of storage pack to reduce the value of the decision
variable. A storage module consists of several storage cells.

Similar to the initial investment cost of storage pack, the
initial investment cost of the converter can be expressed as
the product of every kilowatt cost Cninverter and the rated ESS
power:

CI inverter � Cninverter · P
max
ESSd · NESS, (10)

wherePmax
ESSd is the rated discharge power of a storagemodule.

It is equal to the product of its nominal capacity and the
discharge rate

P
max
ESSd � E

max
nESS · RDnESS. (11)

Due to the feature limitation of some ESS technologies,
for example, the charge rate RCnESS of the battery is different
from the discharge rate RDnESS, which results in its rated
discharge and charge powers are different. /e rated charge
power of a storage module isz

P
max
ESSc � E

max
nESS · RCnESS. (12)

Since the life cycle of ESS converter is very long, the
replacement action can be neglected over the ship life.
However, the higher energy density ESS usually has a shorter
life. /erefore, the replacement operation of ESS pack
should be considered [35]. /e replacement cost CR for the
storage pack is illustrated in the following equation:

CR � CI ESS · NrepESS. (13)

Equation (13) indicates that CR is directly determined by
the number of storage replacement NrepESS [15], and the
formulation of NrepESS is expressed as follows:

NrepESS �
Tship · 365􏼐 􏼑

Nuse days
, (14)

where Tship is the calendar life of the ship, and Nuse days is the
actual calendar life of the storage pack; it is represented as

Nuse days �
Ncycle

Ndaily
, (15)

where Ndaily is the number of charge-discharge cycles in one
day. It is defined as

Ndaily �
E
exchanged
ESS

2 · E
max
nESS · NESS( 􏼁

, (16)

where E
exchanged
ESS is the total energy exchanged between the

ESS and the ship power system in one day. It is defined as

E
exchanged
ESS � 􏽘

Tday

t�1
PESSc(t) + PESSd(t)( 􏼁Δt, (17)

where PESSc(t), PESSd(t) are charging, discharging rate of the
ESS in period t (kW). Equations (14)–(17) indicate that the
magnitude of NrepESS is strictly related to the life cycle times
of ESS, further related to the ESS charge/discharge strategy
and its DOD in (6).

4.1.2. IPS Operation Cost. Operation cost CM of the IPS is
calculated according to the optimal energy management
problem. It comprises the operation cost of the DGs CM DG
and the ESSs CM ESS.

CM � CM DG + CM ESS. (18)

/e DGs’ operation cost is the summary of every DG
operation cost, which consists of the fuel consumption cost,
the startup cost, the shutdown cost, and the maintenance
cost, as shown in (19). Correspondingly, the mathematical
models of the startup cost, shutdown cost, and maintenance
cost are shown in (20)–(22).

CMDG
� 􏽘

NDG

i�1
􏽘

Tday

t�1
C
fuel
i,DG(t) + C

stu
i,DG(t) + C

shd
i,DG(t) + C

O&M
i,DG (t)􏼐 􏼑,

(19)

C
stu
i,DG(t) � c

stu
i,DGδ

stu
i,DG(t), (20)

C
shd
i,DG(t) � c

shd
i,DGδ

shd
i,DG(t), (21)

C
O&M
i,DG (t) � c

O&M
i,DG Pi,DG(t). (22)

In (20), the startup cost Cstu
i,DG(t) is defined as the product

of a single time startup cost cstui,DG, which is a constant value,
and the index value of startup action δstui,DG(t). /e definition
of shutdown cost is similar. In (22), the maintenance cost
CO&M

i,DG (t) is defined as the product of per unit power
maintenance cost cO&M

i,DG and the generator output power
Pi,DG(t).
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In DG operation cost model of (20)–(22), the decision
variables of the ith DG are the power output Pi,DG(t) and the
operation status δonoffi,DG (t) of the ith DG in periods t.

/e operation cost of ESSs is defined as the per unit
changing power co&m

ESS product the summary value of
charging power PESSc(t) and discharging power PESSd(t).

CM ESS � c
o&m
ESS 􏽘

Tday

t�1
PESSd(t) + PESSc(t)( 􏼁Δt. (23)

Equation (23) shows that, in ESS operation cost model,
the decision variables of ESS are the charging power PESSc(t)

and discharging power PESSd(t).

4.2. Constraints. Operation constraints of the shipboard IPS
are presented as follows. It determines the energy man-
agement strategy and energy schedule of the ship power
system.

4.2.1. Operation Constraints of the DGs. When the DGs run
on, the operation of them must subject to the power output
limitation, ramp up/down limitation, minimum runtime,
and downtime limitation, as shown in (24)–(27),
respectively.

δonoffi,DG (t)P
min
i,DG ≤Pi,DG(t)≤ δonoffi,DG (t)P

max
i,DG, (24)

−R
max
i,DG ≤Pi,DG(t) − Pi,DG(t − 1)≤R

max
i,DG, (25)

δonoffi,DG (t) − δonoffi,DG (t − 1)≤ δonoffi,DG τoni,DG􏼐 􏼑,

τoni,DG � t, t + 1, . . . , min t + T
on
i,DG − 1, Tday􏼐 􏼑,

(26)

δonoffi,DG (t − 1) − δonoffi,DG (t)≤ 1 − δonoffi,DG τoffi,DG􏼐 􏼑,

τoffi,DG � t, t + 1, . . . , min t + T
off
i,DG − 1, Tday􏼐 􏼑,

(27)

δstui,DG(t) � max δonoffi,DG (t) − δonoffi,DG (t − 1), 0􏼐 􏼑, (28)

δshdi,DG(t) � max δonoffi,DG (t − 1) − δonoffi,DG (t), 0􏼐 􏼑, (29)

where Pmin
i,DG and Pmax

i,DG are the minimum and the maximum
power output of the ith DG (kW), Rmax

i,DG is the ramp up/down
limit of the ith DG (kW). τoffi,DG and τoni,DG are the introduced
auxiliary parameters which are used to more efficiently
express the limitation models of the minimum runtime and
the minimum downtime. Ton

i,DG and Toff
i,DG are the minimum

on and the minimum off time of the ith DG (h). δstui,DG(t) and
δshdi,DG(t) are the introduced auxiliary binary variables to more
efficiently express the ith DG’s startup cost and shutdown
cost. In addition, δstui,DG(t) and δshdi,DG(t) can be used to limit
the operation times of ith DG’s startup and shutdown, if
needed.

/e operation problem with DGs’ operation constraints
can be expressed as a mixed integer quadratic programming
model, which can be computed by some commercial soft-
ware, such as ILOG, CPLEX, and GAMS. Of course, it can

also be converted to a mixed linear quadratic programming
model by piecewise linear approximation.

4.2.2. Operation Constraints of the ESSs. As is well-known,
ESS’s size determination is tightly coupled with the ESS’s
energy management strategy. /erefore, the modeling of op-
timal ESS sizing problems must consider the ESS’s energy
management strategy. A few literatures only set simple rule-
based energy management strategy, which leads to the fact that
the calculated ESS size is nonoptimal. Some other literatures
divide the ESS sizing problem and the ESS energymanagement
problem into two sub-problems; though the computation
complexity is reduced, the computation burden is increased
very large. In this paper, we integrate the ESS sizing problem
and ESS energy management problem into a single model by
introduce extra two constraints; however, the computation
burden is not largely increased because no extra variable is
introduced and it is still a mixed integer linear programming
model. /e detail description is shown as follows.

E
min
nESSNESS ≤EESS(t)≤E

max
nESSNESS, (30)

0≤PESSc(t)≤P
max
ESSc, (31)

0≤PESSd(t)≤P
max
ESSd, (32)

δESSc(t)P
min
ESSc ≤PESSc(t)≤ δESSc(t)P

mark
ESSc , (33)

δESSd(t)P
min
ESSd ≤PESSd(t)≤ δESSd(t)P

mark
ESSd , (34)

δESSc(t) + δESSd(t)≤ 1, (35)

EESS(t + 1) � EESS(t) + ηcPESSc(t)Δt −
PESSd(t)

ηdΔt
􏼠 􏼡 − εESSNESS,

(36)

EESS Tday + 1􏼐 􏼑 � EESS(1), (37)

P
max
ESSc � P

max
nESScNESS,

P
max
ESSd � P

max
nESSdNESS,

(38)

P
mark
ESSc � P

max
nESScN

max
ESS ,

P
mark
ESSd � P

max
nESSdN

max
ESS ,

(39)

where Emin
nESS and Emax

nESS are the maximum and the minimum
permit-able energy level of a single ESS module (kWh),
δESSc(t) and δESSd(t) are the introduced auxiliary binary
variables to more efficiently express the charging and dis-
charging status of the ESS in period t, and ηc and ηd are the
charging and discharging efficiencies of ESS. εESS is the self-
loss of a single ESS module (kWh/h). Tday is the time interval
numbers of one day. Pmax

nESSc, Pmax
nESSd are the maximum charge

and discharge power of a single ESS module (kW). Nmax
ESS is

the maximum ESS modules can be used for this ship, and
thus Pmark

ESSc , Pmark
ESSd are the ESS maximum charge and dis-

charge power for the ship.
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/e storage capacity constraint is shown in (30), which
indicates the actually decision variable of energy size is the
storage modular numbers NESS. /e storage power limita-
tions are shown in (31)–(35), which consists of two parts,
namely, the power magnitude limitation which is in (31),
(32), and operation status limitation which is in (33)–(35).
/e storage dynamics model is shown in (36), which is the
same as the other literatures. /e energy consensus limi-
tation is shown in (37), which indicates that at the beginning
of one day the stored energy of the ESS should be the same.
Equations (38), (39) are the formulation of the introduced
auxiliary variables of Pmax

ESSc, Pmax
ESSd, Pmark

ESSc , and Pmark
ESSd .

/e largest difference between the ESS model in this
paper and that in other literatures is the description of ESS
power limitation, as shown in (31)–(34). According to
modeling experience in energy management problem, the
ESS power and operation status limitations in ESS sizing
problem will be expressed as in (40), (41), which constrain
the ESS power limitations and its corresponding operation
status limitations together and they should be expressed as a
nonlinear programming model. In order to make the model
in (40), (41) be efficiently resolved, it is divided into two sub-
problems to solve; the outer sub-problem determines the
storage modular numbers NESS, and the inner sub-problem
determines the corresponding optimal energy management
scheme, namely, the optimal charge power PESSc(t) and
discharge power PESSd(t) in each period, as shown in
Figure 2.

δESSc(t)P
min
ESSc ≤PESSc(t)≤ δESSc(t)P

max
nESScNESS, (40)

δESSd(t)P
min
ESSd ≤PESSd(t)≤ δESSd(t)P

max
nESScNESS. (41)

In Figure 2, the outer optimization has to be imple-
mented by intelligent optimization algorithms, such as ge-
netic algorithm, particle swarm optimization, etc., which
means the final result cannot be obtained immediately. In
addition, the final result may be the nonoptimal result. /e
optimization model with (31)–(34) can optimize the storage
modular numbers NESS and the storage operation schedule
simultaneously and can get the optimal result by analytical
optimization algorithm.

4.2.3. Constraints of Power Balance and Spinning Reserve.
In order to guarantee the safety of the shipboard power
system, the power supply must be equal to the load demand
all the time, where Pload(t) represents the load demand of the
ship in period t (kW).

PESSc(t) + Pload(t) � 􏽘

NDG

i�1
Pi,DG(t) + PESSd(t) + PPV(t).

(42)

In addition, the DGs must provide enough reserve ca-
pacity RDG to meet the power and energy demand in
emergency conditions.

􏽘

NDG

i�1
P
max
i,DG · δonoffi,DG (t) + PPV(t) + PESSd(t) − PESSc(t)≥RDG · Pload(t). (43)

We should note that, because only a part of the ship
rooftop can be applied to PV panels, the penetration level of
PV generation is low and the impacts its randomness has can
be neglected for a large power IPS ship.

4.2.4. Constraints of the ESS Module Numbers. Because the
available space to deploy storage is limited, the storage
number can be deployed and should be in a given range.

N
min
ESS ≤NESS ≤N

max
ESS . (44)

5. Results and Discussion

In this section, the proposedmethod is applied to a ferry ship
equipped with low-voltage IPS. /is ferry ship has two
electric propulsion motors and four diesel generators.
Moreover, it goes back and forth on the fixed shipping line
every day. /e sampled ship power data in one day is
extracted from the onboard IAS and then averaged and
presented in Figure 3, which is used to represent the typical

data in ESS sizing optimization. It indicates that the load
demand is fluctuant. /e technical parameters of the gen-
erators are presented in Table 1 and the storage module data
is presented in Table 2. /e available ship rooftop is about
50m2 and the PV generation of a typical spring day of the
rooftop is shown in Figure 4. It indicates that the PV panels
can supply power of 1400 kWh in the daytime; this energy
can effectively reduce the oil fuel consumption of the diesel
generators.

For solving the optimization model in a short time,
typical computational software such as MATLAB R2013a
and ILOG’s CPLEX v.12.0 is used in this paper. CPLEX v.12
optimization solver is utilized to solve the optimization
model given in (18), and MATLAB 2013a and YALMIP
toolbox are used for linking the CPLEX solver. All the
computations are done on a PC with Intel(R) Core(TM) i5-
3470, 3.2GHz and 8GB of RAM. /e core of CPLEX op-
timization solver is brand-and-bound algorithm. Of course,
the mathematical model can also be solved by heuristic or
meta-heuristics approaches if the computation time has no
restricted constraints.
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Besides, the time interval of energy management is
1min, and the minimum spinning reserve ratio of the DGs is
set to 5%.

5.1. Sizing of ESSs. By implementing the proposed ESS sizing
model, the operation routines of the DGs and the ESS device
are presented in Figures 5–7. /e total solving time of the
optimization model is 12.44 s, which is much shorter than

�e outer optimization algorithm �e outer optimization model

�e inner optimization model�e inner optimization algorithm

ESS size optimization

Energy management optimization 

ESS modular number 
N_ESS

ESS investment cost

ESS operation scheme

ESS operation cost

Figure 2: Bi-level configuration of traditional ESS optimal size problem with considering energy management.
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Figure 3: Recorded load power.

Table 1: Parameters of DGs.

Num. Pmin
a (MW) Pmax

a (MW) Rmax
a (MW/min) Ton

i,DG (h)

1 0.1 5 4 1
2 0.05 4 3.2 1
3 0.05 4 3.5 1
4 0.2 6 5 1
Type αi,DG ($/MWh2) βi,DG ($/MWh) ci,DG ($/h) cstui,DG ($) cshdi,DG ($)
1 34.1 77 500 15 10
2 55 28 510 15 10
3 54 24 510 15 10
4 32.6 84 490 16 10
Type ai,DG (kg/kWh2) bi,DG (kg/kWh) ci,DG (kg/h) co&m

a ($/MWh) Toff
i,DG (h)

1 0.0041 −5.55 14.09 1.4 1
2 5.64 −6.05 12.54 1 1
3 5.62 −6.06 12.55 1 1
4 3.38 −3.55 15.33 1.6 1

Table 2: Parameters of a storage module.
Nominal capacity 105Ah/51.2 V
DoD 70%
Max. charging/discharging rate 0.5 C/2C
Life cycle 3000 cycles
Charging/discharging efficiency 0.95/0.95
Capital cost of storage module 200 $/kWh
Capital cost of converter 100 $/kW
Operation and maintenance cost 0.01 $/kWh
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the two-layer optimization method in [21]. In [21], the total
optimization time probably needs several hours because the
time-consuming energy management optimization model
has to be iterated hundreds of times.

By observing Figures 5 and 6, it can be found that the ESS
plays an important role in the IPS operation. When the ship
has no ESS, the DGs power outputs are 1328 kWh,
3312 kWh, 5536 kWh, and 10062 kWh, respectively.
Meanwhile, when the ship has ESS integration, the DGs

power outputs are 1261 kWh, 3208 kWh, 5543 kWh, and
10165 kWh, respectively, as shown in Table 3. /e operation
cost of the DGs in one day is reduced 50$ with the inte-
gration of the ESS device.

/e ESS device in Figure 7 is mainly used to improve
the fuel efficiency of the DGs because the load demand is
fluctuant. /ere are 464 battery modules which are
needed for this ferry ship, the rated ESS capacity is
155 kWh, and the investment cost of this ESS device is
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Figure 4: PV generation of a typical day.
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Figure 5: Operation schedule of DGs with ESS.
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Figure 6: Operation schedule of DGs without ESS.

Table 3: Power outputs of DGs with/without ESS.

DGs number Power outputs without ESS (kWh) Power outputs with ESS (kWh)
DG 1 1328 1261
DG 2 3312 3208
DG 3 5536 5543
DG 4 10062 10165
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Figure 7: Operation schedule of ESSs.
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46500$, and the ESS device does not need to be replaced
over the ship life. If this ferry ship can work 300 days in
one year, only need 3 years can recover the initial in-
vestment cost.

Meanwhile, the one-day CO2 emission of the DGs with
or without ESS is 4439.1 kg and 4474.6 kg in one day, as
shown in Table 4, respectively. Table 4 indicates that the ship
can reduce CO2 emission 259.2 t over its whole life.
/erefore, the advantage of using ESS is significant no
matter whether from the economic view or the carbon
emission-reducing view.

5.2. Sensitivity Studies. Generally, the ESS capacity size re-
sults will be different with different ESS parameters. In this
paper, the impacts of storage charging/discharging rate, the
ESS module cost, and the ESS cycle life cycle are discussed.

5.2.1. Impacts of Discharging Rate. As is known to all, ESS
discharge/charge rate is an important parameter to evaluate
the performance of ESS./e larger the discharge/charge rate,
the better the dynamic response performance, and it needs
less ESS capacity to deal with the same power randomness.
In addition, the charge rate is usually smaller than the
discharge rate for a battery.

In order to investigate the relationship between the
discharging rate and the ESS sizing optimization, the ESS
discharging rate varies from 0.4C to 4C and the charging rate
varies from 0.1C to 1C simultaneously, where C is used to
represent the rate of the discharge/charge current for ESS
and 1C indicates the ESS can be fully discharged/charged in
one hour. /e discharge rate increment is 0.4C, and the
charge rate increment is 0.1C. /e results of every time are
shown in Figure 8.

Figure 8 indicates that when the ESS charge rate is very
low, the charge rate increases can make the ESS more
economical and it has significant impacts on the ESS size;
however, if the charge rate increases further, its impacts on
the ESS economy are neglected. /e charge rate and dis-
charge rate of the battery optimized in this paper are both
0.4C. In order to reduce the initial investment cost of the
ESS, the battery charge rate must be higher than 0.4C.

5.2.2. Impacts of ESS Cycle Life. Similarly, the ESS cycle life
is another important index to evaluate the performance of
ESS. /e longer the cycle life is, the lower the average op-
eration and investment costs are.

In order to investigate the relationship between the cycle
life and the ESS sizing optimization, the cycle life varies from
500 times to 4000 times. /e increment of each time is set as
500. /e simulation results are presented in Figure 9.

In Figure 9, the longer the cycle life of the battery is, the
more battery unit will be applied. If the cycle life of the
battery is too short, the ESS investment cost cannot be
recovered. /erefore, as the battery technology improves,
more and more ships have the idea to apply ESS.

5.2.3. Impacts of ESS Investment Cost. In order to inves-
tigate the relationship between the ESS investment cost
and the ESS sizing optimization, the storage pack in-
vestment cost decreases from 200 $/kWh a module to
100 $/kWh. /e decrement each time is set as 20$. /e
converter investment cost will also be decreased corre-
spondingly. /e results are shown in Figure 10.

Figure 10 indicates that the ESS optimal size is very
sensitive to the storage unit investment cost, and the battery
unit number increase speed is faster than the battery cost
decrease cost.

Table 4: CO2 emission of DGs with/without ESS.

CO2 emissions Without ESS
(kg)

With ESS
(kg)

In one day 4474.6 4439.1
In one year 1.663 ∗ 106 1.62 ∗ 106
Over the ferry’s whole life (20
years) 3.27 ∗ 107 3.24 ∗ 107
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Figure 8: Relationship between the battery number and charge
rate.
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6. Conclusions

In this work, an optimal energy management strategy based
on ESS sizing selection for a shipboard power system has
been presented./is method has been developed in a flexible
and general way to apply it to different types of shipboard
power systems and different energy storage technologies.
/e effectiveness of the proposed method has been validated
through a low-voltage integrated power system-based ferry
ship./e case study shows that the solving time of the model
proposed in this paper can be significantly reduced while
comparing with the conventional two-stage modeling
method. Besides, the whole life operation cost of the ferry
ship can be reduced by 2.3% and the CO2 emission reduction
can be reduced by 5.52% by integrating ESS. /e impacts of
charging/discharging rate, storage module investment cost,
and ESS cycle life are all investigated to help the selection of
ESS in the future.

Future studies will be developed to investigate the sizing
optimization problem of hybrid energy storage systems by
considering more complex and more efficient models, the
optimization of the depth of discharge, and the constraints
of space and volume. Besides, renewable energy resources,
such as PV generations and wind turbines, will be consid-
ered in the further model.
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