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Cell behavior analysis is a fundamental process in cell biology to obtain the correlation between many diseases and abnormal cell
behavior. Moreover, accurate number estimation plays an important role for the construction of cell lineage trees. In this paper, a
novel Gaussian ant colony algorithm, for clustering or spatial overlap cell state and number estimator, simultaneously, is
proposed. We have introduced a novel definition of the Gaussian ant system borrowed from the concept of the multi-Bernoulli
random finite set (RFS) in the way that it encourages ants searching for cell regions effectively. (e existence probability of ant
colonies is considered for the number and state estimation of cells.(rough experiments on two real cell sequences, it is confirmed
that our proposed algorithm could automatically track clustering cells in various scenarios and has enabled superior performance
compared with other state-of-the-art approaches.

1. Introduction

Cell tracking has become a focus in the bioengineering
community, as it provides a powerful tool for cell tracking in
understanding of cellular phenomena. For example, to
analyze the cell cycle, to track the cell and extract the motion
features accurately, to consider cells undergoing division
accelerated the wound healing process, and to understand
how the drug effects on cells. Image analysis methods are
needed to extract quantitative information from these vast
and complex datasets. (ere are numerous approaches that
address the cell tracking problem in general. However, with
the increasing of big datasets, manual cell tracking ap-
proaches often incur tracking error and becoming time-
consuming and tedious. (us, cell tracking with an auto-
matic method is essential.

Unlike tracking cars or people in videos, cellular image
sequences usually vary number or shapes of cells in the field
of view (FOV). Also, because cells are grouped together or
spatially overlapped, it is difficult to distinguish them

separately. In addition, the underlying cellular activities may
be diverse, including cell division, cell death, large defor-
mation, and leaving/entering the FOV. Taken together, the
multicells’ tracking becomes a very difficult task.

To cope with these difficulties, sophisticated tracking
approaches have been extensively studied andmany effective
approaches have been developed recently [1, 2]. (ese ap-
proaches generally adapt some good established algorithmic
framework, such as segmentation and association methods,
model evolution methods, and stochastic filtering methods.
However, most works typically utilize different cell tracking
methods according to variable cell types and tracking
requirements.

Ant colony optimization (ACO) was inspired by the idea
of collective intelligence and was introduced by Dorigo [3].
It works on the principle that an ant while moving leaves
pheromones on its path, which is used as a guide to be
followed by other ants. In recent years, ACO algorithm has
been successfully applied to solve real optimization prob-
lems. (ese problems include visual tracking, the traveling
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salesman problem (TSP) [4–6], vehicle routing [7], clus-
tering [8], and image processing [9, 10].

In clustering cell environment, not only the states of the
cells vary with time but also the number of cells also changes
due to cells appearing and disappearing, but this aspect has
been less discussed before in the literature. (e goal of this
paper is to design a tracking framework that addresses the
above challenges. Ant colonies move randomly but pur-
posely towards different cell regions. (e ant colonies and
pheromone-resulting distribution can be used to extract the
cells state and estimate the cells number. And then, we will
optimize the ant work mode to improve the algorithm ac-
curacy through analyzing the issue about the effect of
heuristic information, pheromone, and pheromone gradient
information. Also, prediction strategy is utilized to reduce
the processing time of ACO. In essence, the contributions of
this paper can be summarized as follows:

(1) An efficient Gaussian ACO method borrowed from
the concept of the multi-Bernoulli random finite set
(RFS) for clustered cells state and number estimator
simultaneously is proposed

(2) An ant work mode based on the pheromone gradient
information with the exponential form is presented

(3) (e existence probability of ant colony is established
for effectively estimating the state and number of
cells

(e rest of the paper is organized as follows. Section 2
gives an overview on approaches in the field of cell tracking.
(e necessary background on ACO algorithm is briefly
described in Section 3. Section 4 details the cell-tracking
methodology based on Gaussian ant colony. We evaluate the
results of our algorithm in Section 5. Finally, a brief sum-
mary is given in Section 6.

2. Related Works

Cell-tracking methodologies can be divided into three
general categories, i.e., detection, model evolution, and
stochastic filter method.

In the detection method, cell tracking is implemented by
detection of the objects in each frame and then matching
cells between consecutive frames. Nasrul et al. [11] used radii
limits for the cells during training data to reduce the Hough
transform computation cost. However, the technique failed
to work in case of occlusions, low contrast, and noise. Zhang
et al. [12] proposed a novel system for adhesive cell detection
and tracking by processing a sequence of images with
nonrigid objects changing position and shape. However, this
method required very good detection in almost all frames
because low performance in cell detection may heavily affect
the tracking results. In [13], a robust segmentation and
tracking system for the plant cells was proposed by
exploiting the cells’ spatiotemporal contextual information.
Massoudi et al. [14] proposed an automatic cell tracking
algorithm that did not rely on a perfect segmentation
module. (is algorithm can track cells that enter or leave the
FOV and can also handle cell division. However, when

occlusion happens at a node in the graph, the algorithm
cannot distinguish between occluded cells. In sum, these
techniques have limitations. (e accumulation of tracking
errors due to incorrect segmentation may result in the
tracker losing a significant number of cells.

Model evolution approach integrates the stages of
segmentation and tracking into a joint model. Mean shift
[15, 16], active contours [17, 18], and level set [19, 20]
belong to this approach. He et al. [21] presented an active-
contour-based segmentation method which used an
improved region-scalable fitting (RSF) model and was
robust against initialization and noise; however it still
suffered from the problem of arbitrary initialization and
increased computational cost. Zimmer et al. [22] pre-
sented a parametric active contour modeling for seg-
mentation and tracking of cell from in vitro video
microscopy. However, manual initialization was required
for the first frame and is unable to handle objects entering
the scene later in the sequence. Li et al. [23] proposed a
new distance regularized level set evolution formulation
that evolves as the gradient flow minimizing an energy
functional having a distance-based regularization term
and external energy. In summary, these methods often
have the advantage of obtaining segmentation from the
model but usually have high computational cost and may
require special methods of dealing with changes of object
topology.

Stochastic filter methods have powerful function when
objects’ motion can be modeled in a Bayesian framework.
Examples of this category include particle filters [1, 24, 25],
Kalman filters [26, 27], and multi-Bernoulli filtering [28, 29].
In [26], a Kalman filter-based local graph matching method
was proposed to track the plant cells. Vishwanath et al. [30]
presented an auxiliary particle filtering algorithm with dy-
namic variance adaptation of the posterior distribution to
account for nonlinear movements. However, it has low
performance when there were other cells in the close vicinity
of the object of interest. Yang et al. [31] presented a spatially
constrained particle filtering method for tracking the
movement of axonal neurofilaments. However, it was not
good at overlap cells’ tracking.

As mentioned above, most algorithms focus on specified
cell data with special morphological characteristics and need
reliable cell segmentation, which hampers the generality of
the methods. To reduce computational expense and improve
the effective and accuracy with different cell types, we
proposed a novel ant-based approach with the cardinality
estimator for multiple cells’ tracking.

3. Generic AntColony Systems forCell Tracking

(e ant colony optimization method is inspired by the fact
that ants are able to find the shortest route between their nest
and a food source. In the ant-based algorithm for cell
tracking, searching for interest region (cells) is looked upon
as an ant colony foraging process [32].(e approach is based
on a number of artificial ants, moving on the pixels of the
image driven by the image’s intensity values and pheromone
amount to establish a pheromone matrix. (is matrix

2 Discrete Dynamics in Nature and Society



represents the cell information at each pixel location of the
image.

For one ant a, placed at pixel i, the probability of
choosing the next pixel j is described by

p
a
i,j �

τij 
α
ηij 

β


a∈Ψa

τia 
α ηia 

β, if j ∈ Ψa,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where Ψa denotes the set of unvisited pixels of ant a, τi,j

represents pheromone on edge (i, j), ηi,j � (1/di,j) is the
heuristic function, where di,j is the distance between pixels i

and j, and α and β denote the weight factors to determine the
relative influence of pheromone τi,j and the heuristic
function ηi,j on the decision of ant a.

After all ants have finished their tours, update the
pheromone level according to

τi,j←ξτi,j + 
a

Δτa
i,j, (2)

where ξ(0< ξ < 1) is the pheromone persistence coefficient.
(e term Δτa

i,j is the pheromone amount that deposited by
ant on the edge (i, j).

(e above process is repeated multiple times until
certain termination conditions are reached. (e following
sections describe our proposed ACO algorithm, followed by
details of the modifications made to attempt to improve its
performance in a complexity environment.

4. Methods

4.1. Algorithm Description. In this paper, we present a
Gaussian ant colony algorithm for clustering cells to reduce the
computation time and improve the accuracy. First, ant colonies
are pioneers and aim to find the areas where cells might exist
based on existing cells’ states in the prior frame. (e existence
probability function of ant colony corresponding to new
emerging cell is designed as a Boolean function which is spe-
cifically defined tomaximize cell region coverage. It obtains one
if the gray mean value of the pixels covered by the ant colony is
big enough, otherwise it returns zero. And then, an ant work
mode based on the pheromone gradient information with
exponential form is presented, which is sensitive to small change
of heuristics, the pheromone intensity, and pheromone gradient
information. Finally, the existence probability of ant colonies is
proposed, which can faithfully reflect the intensity field of
pheromone diffusion and strengthen the collaboration and
communication among ants. A large number of experiments on
cell image sequence show that the proposed algorithm can not
only improve the estimation accuracy but also greatly enhance
convergence speed. (e framework is shown in Figure 1.

Before the technical details are provided, the notation is
listed in Table 1.

4.2. Gaussian Ant Colony Algorithm for Clustered Cell
Tracking. Due to the random search, ACO generally
needs hundreds of iterations, and each iteration is

time-consuming. In fact, high computational complexity of
cell state extraction algorithms has always been a tremen-
dous challenge, especially for low signal-noise ratio image
sequences. To solve these problems, the Gaussian ant colony
algorithm is employed, in which ant colonies are transmitted
and predicted from frame k − 1 to the potential region where
cells might be located at frame k.

4.2.1. Stochastic Models of the Multicell State. In the image
sequence, as a cell moves from the current frame to the next
frame, it may survive or disappear, and new cells may appear
into FOV in the current frame. So, cells are random and the
number of cells is dynamic. As described in [33], stochastic
models of the multicell state are established with the time
evolution.

Suppose that, at frame k − 1, there are Mk− 1 cells.
Τk− 1 � Xk− 1,1, Xk− 1,2, . . . , Xk− 1,Mk− 1

  ∈ Θ(k) is the multi-
cell state set. Xk− 1 ∈ Τk− 1 will be propagated to the next
time k accordingly. PS,k(k− 1

X ) is the probability that the cell
state Xk− 1 continues to exist and 1 − PS,k(k− 1

X ) is the
probability of death and fk|k− 1(Xk|Xk− 1) denotes the
transition probability at time k. It is important to note
that S in PS,k(k− 1

X ) stands for surviving cell. (e multicell
state at frame k can be represented as the surviving and
new emerging objects:

Xk � XS,k|k− 1 + Xc,k, (3)

where XS,k|k− 1 denotes the surviving cells state set, Xc,k

denotes the new emerging cells state set in the FOV at frame
k, and Xc,k stands for new appearing cell. In our concept,
new appearing cells include both incoming and new born
cells.

4.2.2. Gaussian Ant Colony. In the ACO framework, we
assume that a cell corresponds to an ant colony. So, cell’s
behavior can be represented by ant colony. In order to
improve the search efficiency and increase computing speed
of ACO algorithm, the initial position of ants is considered.
As the cells move very slowly, the move distances between
frames are slight. So, within this work, the position of the
ants in the current frame is propagated according to the
movement of the cell. (is section describes how an ant
colony moves and survives to the next frame.

Suppose xc(a) is the state of ant a

xc(a) � [xc(a), yc(a), _xc(a), _yc(a)]T, which represents the
2D position [xc(a), yc(a)] and corresponding velocities
[ _xc(a), _yc(a)], respectively. (e cell’s existence proba-
bility approximately equals to that of corresponding ant
colonies.

(e motivation is based on the fact that the multi-
Bernoulli parameter set describing the multicell state and
ACO is an effective tool that is able to synthetically describe
the randomness of cells. Tomodel the evolving process of ant
colony from the next frame to the current frame, the concept
of the generic Gaussian implementation of the cardinality
balanced multitarget multi-Bernoulli (CBMeMBe) [33] is
borrowed to generate Gaussian ant colony.
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Suppose that the cell states at frame k − 1 are approxi-
mately represented as the multi-Bernoulli parameter set
corresponding to the ant colonies:

Xk− 1 � r
(ι)
k− 1, p

(ι)
k− 1  

Mk− 1

ι�1 , (4)

where Mk− 1 is the number of surviving cells, r
(ι)
k− 1 is inter-

preted as the existence probability of the ιth
(ι � 1, 2, . . . , Mk− 1) cell, and p

(ι)
k− 1 (ι � 1, 2, . . . , Mk− 1) is

probability density comprised of the Gaussian form:

p
(ι)
k− 1 ∼ N x, m

(ι)
k− 1, P

(ι)
k− 1 , (5)

where m
(ι)
k− 1 and P

(ι)
k− 1 is mean and covariance of the ιth term,

which is fitted by subant colony at frame k − 1. N(: ; z, [)

denotes a Gaussian function with mean z and covariance [.
(e cell state Xk|k− 1 at time k is described by the

combination of multi-Bernoulli parameters’ sets for sur-
viving cells and new appearing cells:

Xk|k− 1 � r
(ι)
S,k|k− 1, p

(ι)
S,k|k− 1  

Mk− 1

ι�1 ∪ r
(υ)
c,k , p

(υ)
c,k  

Mc,k

υ�1
, (6)

where the first term (r
(ι)
S,k|k− 1, p

(ι)
S,k|k− 1) 

Mk− 1

ι�1 is the parameter
set of surviving cells, r

(ι)
S,k|k− 1 is denoted as the existence

probability of cell, and p
(ι)
S,k|k− 1 is probability density, which

are approximately equivalent to that of corresponding ant
colonies:

r
(ι)
S,k|k− 1 � r

(ι)
k− 1PS,k,

p
(ι)
S,k|k− 1 ∼ N x, m

(ι)
S,k|k− 1, P

(ι)
S,k|k− 1 .

(7)

Assume that there are ants (xc(a)
(j)

k− 1, j � 1, 2, . . . , N)
included in the subcolony ι at frame k − 1, and N is the
number of ants; then, the predicted ant state xc(a)

(j)

k|k− 1 is
given by

xc(a)
(j)

k|k− 1 � F∗xc(a)
(j)

k− 1 + wk− 1, (8)

where xc(a)
(j)

k|k− 1 and xc(a)
(j)

k− 1 are the state of ant a at frame k

and k − 1, respectively, F is the ant state transition matrix,
and w is the process noise covariance. So, we have

m
(ι)
S,k|k− 1 �

1
N



N

j�1
xc(a)

(j)

k|k− 1,

P
(ι)
S,k|k− 1 �

1
N



N

j�1
xc(a)

(j)

k|k− 1 − m
(ι)
S,k|k− 1  xc(a)

(j)

k|k− 1 − m
(ι)
S,k|k− 1 

T
.

(9)
To represent the new cells’ appearance in the current

frame, additional ants should be added. (e second term

(r
(μ)

c,k , p
(μ)

c,k ) 
Mc,k

μ�1
is the parameter set of new appearing cells.

Mc,k is the number of new appearing cells. r
(ι)
c,k denotes the

existence probability of the ant colonies, and probability
density p

(ℓ)
c,k is given by

p
(ℓ)
c,k ∼ N x; m

(ℓ)
c,k , P

(ℓ)
c,k , (10)

wherem
(ℓ)
c,k andP

(ℓ)
c,k denote themeans and covariance of the ℓth

cell. New appearing ant colony is generated following this

Number
estimation

Existence
probability

rk
(ι)

Update ant
colony

and pheromone
field

Cell state
estimation

Ant searching

η(xc(a)k
(ι,ζ))

Gaussian ant
colonies generate

{(rS
(
,
ι
k
)
|k-1, pS

(
,
ι
k
)
|k-1)}

Mk-1

t=1

{(rk
(
-
ι)
1, pk

(
-
ι)
1)}

Mk-1

t=1

{(rγ
(
,
υ
k
), pγ

(
,
υ
k
))}

Mr,k

υ=1

τk(xc(a)k
(ι,ζ))

Pi
a
,j = e(τ

j
(t)α ηβ

j (▽τ
j
(t))γ)

e(τj(t)α ηβ
j (▽τj(t))γ)

∑
jєΩ(ι)

Figure 1: Framework of the proposed algorithm.

Table 1: Basic notation.

Symbol Description
Xk Cells state set in frame k

Tk Multicell state set
PS,k Survive probability
fk|k− 1 (e transition probability
Mk (e number of cells in frame k

xc(a) (e state of ant a

r (e existence probability
p Probability density
m Mean
P Covariance
Ω(i) (e neighbors of pixel i

ηj (e heuristic function of pixel j

τj Pheromone level on pixel
∇τj Pheromone gradient information of pixel j

μ Intensity average value
Ij (e intensity value on pixel j

D(i) (e pixel set located by ants.
F State transition matrix
w (e process noise covariance
T (e sampling interval.
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Gaussian distribution. In general, in order to represent a di-
vision cell, ant colonies of different orientations are generated.

(e existence probability of new appearance ant colony
is designed with a Boolean function which is specifically
defined to maximize cell region coverage. In general, the
intensity average of objects is different from that of back-
ground. For a gray cell image, calculate the intensity average
value μ(i) of pixels’ set where ant colony located:

μ(i) �
j∈A(ι)Ij

|D(i)|
, (11)

where Ij denotes a normalized image gray intensity at pixel
j, Ij ∈ [0, 1], and D(i) represents a pixel set each located by
ants.

Boolean function obtains one if the gray mean value of
the pixels covered by the ant colony is big enough, otherwise
it returns zero. It is given by

r
(ι)
c,k �

1, if μ(ι)> μth,

0, otherwise,
 (12)

where μth is threshold.
In order to describe above process clearly, the framework

is shown in Figure 2. (ere are 5 cells in frame k − 1. 4 cells
survive and one cell (gray color) is left out in the next frame
k. At same time, two cells (blue color) appear in frame k.
Gaussian ant colonies in frame k are generated based on
prior information of frame k − 1.

4.2.3. Transition Probability and Pheromone Update.

After ant’s distribution is given, these ant start to move
forward to search and determine the number of cells and
potential region where each cell is located.

During cell image sequencing, if cells are clustered to-
gether, it is difficult to distinguish them separately. It leads to
the fact that, for describing cells during their activity, the
development of additional ant mode for their separation is
required. Considering pheromone field changes dramati-
cally at the edge of cell, therefore, the pheromone gradient
information is used in the ant decision-making model.

In each cycle of iteration, an arbitrary ant a starts from
pixel i and selects one of the neighboring pixels j following
according to transition probability function Pa

i,j:

P
a
i,j �

e
τj(t)αηβ

j
∇τj(t)( 

c

 

j∈Ω(i)e
τj(t)αηβ

j
∇τj(t)( 

c

 
, if j ∈ Ω(i),

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

where parameters α, β, and c are adjustment factors which
control the relative importance of their individual terms,
Ω(i) denotes the neighbors of pixel i, ηj denotes the heuristic
function of pixel j, τj(t) is the pheromone level on pixel j at
the tth iteration, and ∇τj(t) denotes the pheromone gra-
dient information of pixel j.

Transition probability function with the exponential
form is sensitive to small change of the pheromone intensity,
pheromone gradient information items, and heuristic
function.

(e pheromone gradient information ∇τj(t) is given by

∇τj(t) �
τ(x+1,y)

j (t) − τ(x− 1,y)
j (t)



 + τ(x− 1,y+1)
j (t) − τ(x+1,y− 1)

j (t)


 + τ(x,y+1)
j (t) − τ(x,y− 1)

j (t)


 + τ(x+1,y+1)
j (t) − τ(x− 1,y− 1)

j (t)


 

4
,

(14)

where τ(x,y)
j (t) denotes pheromone level on pixel j with the

coordinate (x, y) at the tth iteration.
(e heuristic function ηj is another key issue in selecting

which pixels the ants will visit in the neighbor of their
positions. Assume that ant is able to acquire knowledge of
neighboring environment. (e intensity difference between

two pixels in a blob can be used as a measure to evaluate
whether a pixel belongs to a cell or not.

As shown in Figure 3, ant locates at pixel j, which is the
center of blue color blob (3 × 3 pixels), and the corre-
sponding heuristic function ηj is calculated by

ηj �
1

Imax
max I

(x+1,y)
j − I

(x− 1,y)
j



, I
(x− 1,y+1)
j − I

(x+1,y− 1)
j



, I
(x,y+1)
j − I

(x,y− 1)
j



, I
(x+1,y+1)
j − I

(x− 1,y− 1)
j



 , (15)

where max(·) is the maximum absolute value of the intensity
difference between two pixels, Imax is the maximum intensity
value of the image, which is equivalent to a normalization factor,
and I

(x,y)
j is the intensity value on pixel j with the coordinate

(x, y) in image.

Generally, the more the number of ants clustered in
the local area, the larger the pheromone will be. (us, it
can attract more and more ants to move closer to its
neighborhood. On the contrary, the pheromone, as a
chemistry substance, will evaporate as time goes on,
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reducing its attractive strength. When ant moves to pixel
j, it will deposit a certain amount of pheromone, and the
pheromone update function is given by

τj(t)←(1 − ρ)τj(t − 1) + 
N

j�1
Δqa

j (t − 1), (16)

where τj(t) represents the pheromone trail of the pixel j

at the tth iteration and ρ (0< ρ< 1) is the pheromone
attenuation coefficient. (e bigger the ρ is, the stronger
the forgetting effect is. A constant pheromone amount
Δqa

j(t − 1) is released on pixel j by ant a. 
N
j�1 Δqa

j (t − 1)

represents the total pheromone increment that ants de-
posited when the t − 1th iteration ends.

In addition, the pheromone will propagate to its
neighboring as time goes on. A cone model is employed to
simulate the pheromone diffusion. In general, the closer
the distance between the pixel and info fountain center,
the stronger the field force of the intensity field. More
precisely, the pheromone influence of an info fountain on
other nodes will gradually reduce as the distance between
pixels becomes long. Assume the center dot is denoted by
the pixel j′, d is the radius of diffusion area in the image,
the pixel j locates in the intensity field of the info
fountain, and dj is the distance between pixel j and the
center dot j′ in the image. Let τj′(t − 1) be the pheromone
amount on pixel j′ laid by the ant colony at the t − 1th
iteration. We can give the pheromone diffusion model

(x-1, y-1) (x-1, y) (x-1, y+1)

(x, y-1)

(x+1, y+1)(x+1, y)(x+1, y-1)

(x, y-1)
(x, y)

j

Figure 3: (e relative position among the pixel j.

denotes ant

frame kframe k – 1

(rk
(
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1
1
), pk

(
-
1
1
))

(rk
(
-
3
1
), pk

(
-
3
1
))

(rk
(
-
4
1
), pk

(
-
4
1
))

(rk
(
-
5
1
), pk

(
-
5
1
))

(rγ
(
,
2
k
), pγ

(
,
2
k
))

(rγ
(
,
1
k
), pγ

(
,
1
k
))

(rS
(
,
4
k
)
|k-1, pS

(
,
4
k
)
|k-1)

(rS
(
,
5
k
)
|k-1, pS

(
,
5
k
)
|k-1)

(rS
(
,
1
k
)
|k-1, pS

(
,
1
k
)
|k-1)

(rS
(
,
3
k
)
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(
,
3
k
)
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(
-
2
1
), pk

(
-
2
1
))

Figure 2: An illustration of Gaussian ant colony evolution corresponding cells.
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fj(t − 1) based on the real distance between two pixels in
the image, as shown in Figure 4:

fj(t − 1) � 

j′∈ Ω j′( )| |

1
Ω j′( 




Dj′ ,

Dj′ �

d − dj

d
τj′(t − 1), if dj <d,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where Ω(j′) denotes the set of neighbors of pixel j′ and
|Ω(j′)| denotes the number of elements in set Ω(j′).

Both the pheromone evaporation and pheromone
propagation are considered simultaneously, and the evo-
lution of pheromone is rewritten as

τj(t)←(1 − ρ)τj(t − 1) + 
N

j�1
Δqa

j (t − 1) + fj(t − 1). (18)

4.2.4. Existence Probability of Gaussian Ant Colony. (e
resulting pheromone field is very important for existence
probability of ant colony and state extract. When a given
number of iterative runs are reached, the existing probability
of ant colony can be described as in [34]. If, at frame k, the
number of ant colonies is Mk, then the existence probability
r

(ι)
k of ant colony ι (ι � 1, . . . , Mk) is given by

r
(ι)
k � 

L
(i)

k

ς�1
τ(ι)

k xc(a)
(ι,ς)
k η xc(a)

(ι,ς)
k , (19)

where τk(xc(a)
(ι,ς)
k ) denote the pheromone values in the

position of ant a located with state xc(a)
(ι,ς)
k , η(xc(a)

(ι,ς)
k ) is

the heuristic information of pixel which ant a located, and ς
(ς � 1, 2, 3, . . . , L

(i)
k ) is the number of ants in ιth ant colony

in frame k.
(e existence probability r

(ι)
k indicates how likely the ιth

ant colony denotes a true cell. So, the subcolonies, whose
existence probabilities are larger than a threshold (set at 0.5
in our experiments), are chosen to estimate the number and
state of cells.

To reduce the false alarms caused by noise and clutter,
the “pruning” and “merge” procedure described in [35] is
also directly applied for our proposed algorithm. (e basic
idea is to discard subant colonies with negligible existence
probability and merge ant colonies that are close together.
Finally, trajectories of multiple cells are obtained by data
association strategy between consecutive frames.

5. Simulation Results

(e proposed method is tested on low-contrast cell image
datasets. We present two image sequences to evaluate the
tracking performance. (e identified positions of the cells
are overlaid on the original images to show the tracking

results. All experiments are conducted in MATLAB R2016a
and on i5 2.4GHz PC.

5.1. Parameter Settings. Suppose each cell evolves in a general
linearmodel. So, ant state prediction in frame k is obtained with

F
lk− 1
k (a) �

1 0 0 0
0 1 0 0
0 0 T 0
0 0 0 T





and Q
lk− 1
k (a) � diag([0.1, 0.1, 0.1,

0.1]), where T is the sampling interval.
We tested different sets of parameters and then used the

one with the best tracking performance for two image se-
quences. For simplicity, other parameters are illustrated in
Table 2.

5.2. Results. To give an objective evaluation, the perfor-
mance of our proposed cell-tracking approach is investi-
gated, and two criteria are known as Precision and Recall
measures and are used and given by [36]

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

(20)

where TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative, respectively.

5.2.1. 9e Tracking Result of Sequence 1. Figure 5 shows the
tracking results in noisy scenarios, and some of them are
clustering and occluding with each other. For example,
Figure 5(c) shows how our proposed algorithm tracks’
clustering cells (cell 2, cell 5, cell 11, and cell 12), as shown
zone “A” in frame 1 and zone “B” in frame 2.

Figures 6 and 7 plot the position and velocity estimates of
each cell in every frame, respectively. It can be seen that the
exact location of the cell in each frame and the knowledge of
the life cycle of each cell are acquired. Some cells are more
active than others, such as cell 6 and cell 14 exhibit greater
maneuvering.

It is worth noting that our algorithm can give satisfactory
tracking performance. All cells are continuously tracked by
our algorithm in succeeding frames. It can handle the case

Dj′

dj

j′

d
y

x

τ
τ

Figure 4: (e sketch map of the pheromone diffusion model.
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Table 2: Parameter settings on various sequences.

Sequence 1 Sequence 2
Image size 180∗180 pixels 200∗200 pixels
Sampling interval T � 60 s T � 60 s
Control coefficient α � 0.6; β � 2; c � 0.1 α � 0.7; β � 1; c � 0.5;
Pheromone evaporation coefficient ρ � 0.7 ρ � 0.7
Survival probabilities PS,k � 0.99 PS,k � 1
Distance threshold dth � 25 dth � 18
(e quantity of pheromone laid by ant Δqa

j � 0.15 Δqa
j � 0.1

frame 1 frame 2 frame 7 frame 8 frame 10 frame 13

frame 17 frame 22

(a)

frame 1 frame 2 frame 7 frame 8 frame 10 frame 13

frame 17 frame 22

(b)

frame 1 frame 2

A B

(c)

Figure 5: Tracking results with our proposed algorithm in different frames. (a) Results of ant distribution in different frames. (b) Tracking
partial results of original RGB image sequences. (c) Tracking results of clustering cells in original RGB image sequences
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that cells enter and leaving the image and cells closely
contact with each other.

5.2.2. 9e Tracking Result of Sequence 2. Consider a typical
tracking scenario where cells neither appear or disappear nor
the number of cells is known a priori (and fixed). Since there
is no appearing or disappearing cell, the existence proba-
bility of the birth cell r

(i)
c,k � 0 and the probability of survival

is PS,k � 1.
Figure 8 illustrates the tracking results of selected images.

(e left top cells are in close contact with each other, as shown
region “A” from frame 1 to frame 30. All cells move slowly and
their shape keeps on changing irregularly and share very similar
physical features, as shown in Figure 8(a). (e overall trajec-
tories are shown in Figure 8(c). It can be observed that our
proposed algorithm can successfully track those cells with
different cells motion types.

Figures 9 and 10 plot the position and instant velocity
estimates of each cell in x and y coordinates versus time. It
can be seen that cell 1 and cell 2 are more active than others.

From the above results, it can be seen that our proposed
algorithm provides accurate track performance. It not only
tracks all cells with shape change and different cells motion
types but also manages to track cells which are in close
contact with each other.

To verify the performance of proposed algorithm, 100
simulations on the sequences are performed in each frame. All
True Positive, False Positive, True Negative, and False Negative

reports are recorded, and the average TP, TN, FP, and FN for
each frame are obtained. Precision and Recall are computed, as
presented in Table 3.

5.3. Comparisons. To complete the evaluation, it was con-
sidered interesting to compare the behavior of the proposal
with other cell-tracking algorithms in this scenario such as
the particle filter (PF) [37] and themulti-Bernoulli filter [29].
To ensure an objective comparison, the likelihood function
used in other filter methods take the same form as the
heuristic information function used in the ant-based
method.

We present the averaged position errors using a tradi-
tional quantitative performance measure, i.e., the root
means square error (RMSE): RMSEk �

��������������


Τ
ζ�1 RMSEζ,k/N



,
where RMSEζ,k � 1/Mk 

Mk

i�1 ‖(xk,i, yk,i) − (x
∧

k,i, y
∧

k,i)‖, N is
the total number of successfully tracking, Mk is the total
number of cells at frame k, and (xk,i, yk,i) and (x

∧
k,i, y
∧

k,i) are
defined as the true and estimate positions of the cell i at
frame k, respectively. Figure 11 plots the comparison of
RMSE of different methods and our proposed algorithm
obtained less RMSE values than other methods. It shows that
our proposed method is more precise than others.

Average number estimates of cells in sequence 1 over 100
simulations are shown in Figure 12. (e ground truth is
manual. It can be found that the number errors are small.

To illustrate the effectiveness of the proposed approach,
we have compared precision and Recall of our method with
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Figure 6: Position estimation of each cell in x and y coordinates.
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Figure 7: Instant velocity estimation of each cell in x and y coordinates.

frame 1 frame 4 frame 12 frame 18 frame 24 frame 30

(a)

frame 1 frame 4 frame 12 frame 18 frame 24 frame 30

(b)

frame 1 frame 4 frame 12 frame 18 frame 24 frame 30

(c)

Figure 8: Tracking results with our proposed algorithm in different frames. (a) Original RGB image. (b) Results of ant distribution in
different frames. (c) Tracking partial results of original RGB image sequences.
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the other techniques. All TP,TN, FP, and FN in each frame
are recorded over 100 simulations, and their averaged values
are computed and the results are listed in Tables 4 and 5.

As shown in Tables 4 and 5, we provide performance
comparisons of the proposed method with the other

methods in this field. (e comparison is made with re-
spect to Precision and Recall.

It can be seen that our proposed algorithm produces
significantly less false tracks and alleviate fragmented tracks
because the tracker efficiently manages important
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Figure 9: Position estimation of each cell in x and y coordinates.
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Figure 10: Instant velocity estimation of each cell in x and y coordinates.

Table 3: Performance measures of our method on two sequences.

Sequence Precision Recall
1 0.897 0.874
2 0.875 0.846
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hypotheses and keep confident tracks based on the existence
probability. (e proposed algorithm provides reliable
tracking results.

As a common visual tracking method, the computing
time is a major concern problem. We measured the time it
took to process the sequences 1 and 2. Table 6 illustrates the
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Figure 11: (e RMSE comparisons using various methods. (a) Cell image in sequence 1. (b) Cell image in sequence 2.
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comparison statistic results among various methods. It can
be observed that the speed of our proposed method on
sequence 1 is 38.621 s per frame and sequence 2 is 20.174 s
per frame, respectively. Although our algorithm runs rela-
tively slowly, its computation speed is still far less than the
sampling interval (60 s), and this shows that our proposed
cell tracking algorithm is quite suitable for automated cell
tracking in our studied image sequences.

6. Conclusion

Multicells’ tracking is concerned with estimating the number
of objects and their trajectories in the presence of cell ap-
pearance/disappearance, grouped together, or spatial over-
lap. In this work, the Gaussian ACOmethod borrowed from
the concept of the multi-Bernoulli RFS for tracking clus-
tering cells’ state and number estimator is proposed. Two

Table 4: Comparison results for tracking performance of various methods (sequence 1).

Method Precision Recall
Our proposed method 0.897 0.874
Multi-Bernoulli filter [29] 0.823 0.802
PF [37] 0.744 0.728
(e performance of the proposed algorithm.

Table 5: Comparison results for tracking performance of various methods (sequence 2).

Method Precision Recall
Our proposed method 0.875 0.846
Multi-Bernoulli filter [29] 0.835 0.807
PF [37] 0.773 0.750

Table 6: Comparison speed using various methods.

Method Sequence 1 (s) Sequence 2 (s)
Our proposed method 38.621 20.174
Multi-Bernoulli filter [29] 26.167 17.365
PF [37] 22.521 13.113
(e performance of the proposed algorithm.
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Figure 12: Comparison of cells number estimates using various methods.
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datasets under different image scenarios (e.g., clustering
cells, which are in close contact with each other and share
very similar physical features) are used to make an evalu-
ation for the proposed method. (e results obtained were
satisfactory and errors were found to be small.
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