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In this study, we deal with the chemotaxis systemwith singular sensitivity by two stimuli under homogeneous Neumann boundary
conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, we show
that the system possesses global classical solution. Our results generalize and improve previously known ones.

1. Introduction

Chemotaxis is a well-known biological phenomenon de-
scribing the collective motion of cells or the evolution of
density of bacteria driven by chemicals, including embryo
development, skin wound healing, cancer invasion, and
metastasis. +e pioneering works of the chemotaxis model
was introduced by Keller and Segel in [1], describing the
aggregation of cellular slime mold toward a higher con-
centration of a chemical signal, which reads

ut � Δu − ∇ · (u∇v), x ∈ Ω, t> 0,

vt � Δv − v + u, x ∈ Ω,
􏼨 (1)

where Ω ⊂ RN (N≥ 1) is a bounded domain with smooth
boundary. +e mathematical analysis of (1) and the variants
thereof mainly concentrate on the boundedness and blow-
up of the solutions (refer to [2–6] and the references
therein), that is, it is well-known that for all suitably regular
initial data (u0, v0), an associated Neumann initial boundary
value problem, posed in a smooth N-dimensional domain
Ω, Osaki and Yagi [4] proved that system (1) always pos-
sesses a global bounded classical solution in one-dimen-
sional bounded domain, Nagai et al. [3] showed that system
(1) also admits a global bounded classical solution in two-
dimensional bounded domain if ‖u0‖L1(Ω) is small, as N≥ 3,
Winkler [5] proved that for each q> (N/2), p>N, one can
find ε0 > 0, such that if the initial data (u0, v0) fulfill

‖u0‖Lq(Ω)< ε and ‖v0‖Lp(Ω)< ε for some ε< ε0, then the so-
lution is global in time and bounded; this is complemented
by corresponding findings on the occurrence of finite-time
blow-up of some solutions emanating from smooth but
appropriately large initial data [2, 6]. In the past few decades,
system (1) has attracted extensive attentions.

Keller and Segel [7] introduced a phenomenological
model of the wave-like solution behavior without any type of
cell kinetics, a prototypical version of which is given by

ut � Δu − χ∇ ·
u

v
∇v􏼒 􏼓, x ∈ Ω, t> 0,

vt � Δv − uv, x ∈ Ω, t> 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where u represents the density of bacteria and v denotes the
concentration of the nutrient. +e second equation models
consumption of the signal. In the first equation, the che-
motactic sensitivity is determined according to the
Weber–Fechner law, which says that the chemotactic sen-
sitivity is proportional to the reciprocal of signal density.
Winkler [8] proved that if initial data satisfy appropriate
regularity assumptions, system (2) possesses at least one
global generalized solution in two-dimensional bounded
domains. Moreover, he took into account asymptotic be-
havior of solutions to system (2) and proved that v(·, t)⇀⇀0 in
L∞(Ω) and v(·, t)⟶ 0 in Lp(Ω) as t⟶∞ provided
􏽒Ωu0 ≤m, − 􏽒Ωln(v0/‖v0‖L∞(Ω))≤M, where m, M are the
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positive constants. When uv is replaced by g(u)v,
g ∈ C1(R), and 0≤g(u)≤ uβ, β ∈ (0, 1), χ ∈ (0, 1), and any
sufficiently regular initial data, Lankeit and Viglialoro [9]
showed that system (2) has a global classical solution.
Moreover, if additionally m � ‖u0‖L1(Ω) is sufficiently small,
then also their boundedness is achieved. When system (2)
has a logistic source f(u), Lankeit and Lankeit [10] showed
that system (2) possesses a global generalized solution for
any χ ≥ 0, r≥ 0, and μ> 0 if f(u) � κu − μu2. As
f(u) � ru − μuk, and 1/v is replaced by ϕ(v),
ϕ(v) ∈ C1(0,∞), satisfying ϕ(v)⟶ 0 as v⟶∞. Zhao
and Zheng [11] proved that system (2) possesses a unique
positive global classical solution provided k> 1 with N � 1
or k> 1 + (N/2) with N≥ 2. When 1/v is replaced by 1/vα,

α≥ 1 and Δv turned into εΔv, Zhao et al. [12] obtained the
global existence of classical solutions with N � 1. Moreover,
for any global classical solution (u, v) to the case of N, it is
shown that v converges to 0 in the L∞-norm as t⟶∞with
decay rate established whenever ε ∈ (ε0, 1) with
ε0 � max 0, 1 − (χ/(α‖v0‖

α− 1
L∞(Ω)))􏽮 􏽯. When u is replaced by

f(u) and 0<f(u)≤K(u + 1)α, Liu [13] showed that for any
sufficiently smooth initial data, system (2) admits a global
classical solution when either N � 1 and α< 2 or N≥ 2 and
α< 1 − (N/4). When Δu is replaced by Δum (m≥ 1), Lankeit
[14] proved that if m> 1 + (N/4), system (2) admits a global
classical solution or global locally bounded weak solution.

+is study deals with a chemotaxis system with singular
sensitivity by two stimuli, which is given by

ut � ∇ · (u + 1)
m− 1∇u􏼐 􏼑 − ∇ ·

ϕ1(u)

v
∇v􏼠 􏼡 + ∇ ·

ϕ2(u)

w
∇w􏼠 􏼡, x ∈ Ω, t> 0,

vt � Δv − uv, x ∈ Ω, t> 0,

wt � Δw − uw, x ∈ Ω, t> 0,

zu

z]
�

zv

z]
�

zw

z]
� 0, x ∈ zΩ , t> 0,

u(x, 0) � u0(x), v(x, 0) � v0(x), w(x, 0) � w0(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where Ω ⊂ RN (N≥ 2) is a bounded domain with smooth
boundary zΩ, (z/z]) denotes the derivative with respect to
the outer normal of zΩ, and u(x, t), v(x, t), and w(x, t)

represent the density of the cell population, the concen-
tration of the chemoattractant substances, and the con-
centration of the chemorepellent substances, respectively.
We assume that m≥ 1, ϕ1(u), ϕ2(u) ∈ C1+σ([0,∞)), where
σ ∈ (0, 1) and satisfies

0<ϕ1(s)≤ Γ1s
α1 ,

ϕ1(0) � 0,

0<ϕ2(s)≤ Γ2s
α2 ,

ϕ2(0) � 0, for all s> 0,

(4)

with Γ1, Γ2 > 0, and α1, α2 < 2 (α1 ≠ α2) are the constants.
Furthermore, we assume that the initial data (u0, v0, w0)

satisfy

u0 ∈ C
0
(Ω), u0 ≥ 0 inΩ and u0 ≡ 0 as well as,

v0, w0 ∈W
1,∞

(Ω), v0(x), w0(x)> 0 inΩ.

⎧⎨

⎩

(5)

It is different from model (3); the following is the at-
traction-repulsion Keller–Segel model where the signal is
produced and not consumed by the cells:

ut � ∇ · (D(u)u) − χ∇ · (u∇v) + ξ∇ · (u∇w), x ∈ Ω, t> 0,

τ1vt � Δv + αu − βv, x ∈ Ω, t> 0,

τ2wt � Δw + cu − δw, x ∈ Ω, t> 0,

⎧⎪⎪⎨

⎪⎪⎩

(6)

which was proposed in [15] to describe how the combination
of chemical might interact to produce aggregates of cells. In
two space dimensions, when D(u) � 1, τ1 � 1, and τ2 � 0,
Jin et al. [16] proved that if χα − ξc≤ 0, then system (6)
possesses a unique global uniformly in-time bounded
classical solution, and if χα − ξc> 0, 􏽒Ωu0(x)< (4π/
(χα − ξc)), the same result is also obtained; to the contrary, if
􏽒Ωu0(x)> (4π/(χα − ξc)), the solutions blow up in finite or
infinite time. Ulteriorly, Xu et al. [17] showed that if
ξcβ≥ χαδ, the global classical solution of system (6) con-
verged to the unique constant state (u0, (α/β)u0, (c/δ)u0) as
t⟶∞, where u0 � (1/|Ω|)􏽒Ωu0. When D(u) � 1,
τ1 � τ2 � 0, Li et al. [18] proved that if 􏽒Ωu0(x)|x − x0|

2 is
sufficiently small, either of the following cases holds: (i)
χα> ξc, δ ≥ β, and 􏽒Ωu0(x)> (8π/(χα − ξc)); (ii) χαδ > ξcβ,
δ < β, and 􏽒Ωu0(x)> (8π/(χαδ − ξcβ)), the corresponding
solution of (6) blows up in finite time. Hu et al. [19] showed
that if χα> ξc and 􏽒Ωu0(x)> (8π/(χα − ξc)) hold with
􏽒Ωu0(x)|x − x0|

2 small enough, the solution of (6) blows up
in finite time. In high dimensions, when D(u) � 1,
τ1 � τ2 � 1, Jin [20] proved that if ξc> χα, system (6)
possesses global classical solution in dimensions and weak

2 Discrete Dynamics in Nature and Society



solution in three dimensions with large initial data. When
τ1 � 1, τ2 � 0, D(s)≥ 0, s≥ 0, and D(s) � D0(s)s− θ for all
s> 0 with some D0 > 0 and θ ∈ R, Lin et al. [21] showed that
if θ< (2/N) − 1, for any nonnegative initial data, system (6)
admits a unique classical solution which was global and
bounded; if θ> (2/N) − 1, the radially symmetric solutions
may blow up in finite time. When τ1, τ2 > 0, D(u)> 0 for
u≥ 0 and D(u)≥ dum− 1 with d> 0 and m≥ 1 for all u> 1, Li
et al. [22] proved that the corresponding initial boundary

value problem possesses a unique global bounded classical
solution for m> 2 − (2/N). In particular, in the case τ1 � τ2
and χα � ξc, the solution is globally bounded if
m> 2 − (2/N) − ((N + 2)/(N2 − N + 2)). When the system
has a logistic source, the relevant results can be found in
[23–25].

To the best of our knowledge, Dong et al. [26] first put
forward the following chemotactic model with general ro-
tational sensitivity caused by two stimuli:

ut � Δu − ∇ · uS1(x, u, v, w)∇v( 􏼁 + ∇ · uS2(x, u, v, w)∇w( 􏼁, x ∈ Ω, t> 0,

vt � Δv − uv, x ∈ Ω, t> 0,

wt � Δw − uw, x ∈ Ω, t> 0,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where Ω ⊂ RN (N≥ 1) is a bounded domain with smooth
boundary zΩ. Under mild assumptions on S1(x, u, v, w),
S2(x, u, v, w), system (7) admits at least one global gener-
alized solution.

+roughout above analysis, compared with system (6),
the theory of system (3) is so fragmentary. To the best of our
knowledge, the global classical solution of model (3) in N≥ 2
has never been touched. No matter biological relevance or
mathematical meaning, we find it is worth addressing the
basic solvability theory of the model (3). Inspired by the
arguments in previous studies [8, 13, 14, 26, 27], we mainly
investigate the global classical solution in a chemotactic
movement with singular sensitivity by two stimuli. +eorem
1 partially generalizes and improves previously known ones.

In this study, we use symbols Ci and ci (i � 1, 2, . . .) as
some generic positive constants which may vary in the
context. For simplicity, u(x, t) is written as u, the integral
􏽒Ωu(x)dx is written as 􏽒Ωu(x), and 􏽒

t

0 􏽒Ωu(x)dxdt is
written as 􏽒

t

0 􏽒Ωu(x).

+e rest of this study is organized as follows. In Section 2,
we summarize some useful lemmata in order to prove the
main result. In Section 3, we give some fundamental esti-
mates for the solution to system (3) and proof of +eorem 1.

2. Preliminaries and Main Result

In this section, we give the main theorem and the local
existence of the classical solution to (3) and also summarize
some useful lemmata in order to prove the main result.
Noting the singular chemotaxis term, we let

n1 ≔ − ln
v(x, t)

v0
����

����L∞(Ω)

⎛⎝ ⎞⎠,

n2 ≔ − ln
w(x, t)

w0
����

����L∞(Ω)

⎛⎝ ⎞⎠, (x, t) ∈ Ω ×[0,∞).

(8)

+en, we can rewrite (3) as

ut � ∇ · (u + 1)
m− 1∇u􏼐 􏼑 + ∇ · ϕ1(u)∇n1( 􏼁 − ∇ · ϕ2(u)∇n2( 􏼁, x ∈ Ω, t> 0,

n1t � Δn1 − ∇n1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ u, x ∈ Ω, t> 0,

n2t � Δn2 − ∇n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ u, x ∈ Ω, t> 0,

zu

z]
�

zn1

z]
�

zn2

z]
� 0, x ∈ zΩ , t> 0,

u(x, 0) � u0(x), n1(x, 0) � n10(x) ≔ − ln
v(x, t)

v0
����

����L∞(Ω)

⎛⎝ ⎞⎠,

n2(x, 0) � n20(x) ≔ − ln
w(x, t)

w0
����

����L∞(Ω)

⎛⎝ ⎞⎠, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)
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At first, we give the main result of global existence of the
classical solution to (3).

Theorem 1. Let Ω ⊂ RN (N≥ 2) be a bounded domain with
smooth boundary. Assume that min 1 − (2/N),{ 2 − (6/
(N + 2))}<m≤ 2 − (2/N), ϕ1(u), ϕ2(u) satisfy (4) and

α1 < 1 −
(1 − m)N

4
,

α2 < 1 −
(1 − m)N

4
.

(10)

+en, for any choice of the initial data (u0, v0, w0) ful-
filling (5), there exists a triple (u, v, w) ∈ (C0(Ω × t

[0,∞))∩C2,1(Ω × (0,∞))3 which solves (3) classically.
Moreover, we have u≥ 0 and v, w> 0 in Ω × [0,∞).

Remark 1. +eorem 1 shows that system (3) admits a global
classical solution nothing to do with Γ1 and Γ2.

Remark 2. +eorem 1 partially generalizes and improves the
results in ([14], +eorem 1.1) and ([13], +eorem 1.1).

Remark 3. If we replaced the terms uv and uw in system (3)
by uf1(v, w) and uf2(v, w), respectively, +eorem 1 still
holds provided that both f1 and f2 are nonnegative dif-
ferentiable functions satisfying f1(0, 0) � 0 and
f2(0, 0) � 0.

In the sequel, we will consider system (9) to obtain the
local boundedness of v, w and then come back to system (3)
to prove the main theorem. Under the framework of fixed
point theorem, we will prove the local existence of classical
solution to system (3) in the following lemma. +e proof is
quite standard, and a more detailed display of a similar
reasoning in a related circumstance can be found in [14].

Lemma 1. Let Ω ⊂ RN (N≥ 2) be a bounded domain with
smooth boundary. Assume that m≥ 1, ϕ1(u), ϕ2(u) satisfy (4)
and α1 < 2, α2 < 2. 8en, for any initial data (u0, v0, w0)

fulfilling (5), there exist Tmax ∈ (0,∞] and a triple
(u, v, w) ∈ (C0(Ω × [0, Tmax))∩C2,1(Ω × (0, Tmax))

3 solv-
ing (3) classically in Ω × (0, Tmax), where Tmax denotes the
maximal existence time. Moreover, the solution (u, v, w)

satisfies

􏽚
Ω

u(x, t) � 􏽚
Ω

u0(x), for all t> 0,

0< v< v0
����

����L∞(Ω)
,

0<w< w0
����

����L∞(Ω)
inΩ ×(0,∞),

(11)

if Tmax < +∞, then

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) �∞. (12)

Lemma 2. 8e solution of (9) satisfies

􏽚
t

0
􏽚
Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤􏽚
Ω

n10 + Ct, for all t ∈ 0, Tmax( 􏼁, (13)

􏽚
t

0
􏽚
Ω
∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤􏽚
Ω

n20 + Ct, for all t ∈ 0, Tmax( 􏼁, (14)

where C � 􏽒Ωu0(x).

Proof. Integrating the second equation of (9) with respect to
(x, t) ∈ Ω × (0, Tmax), we have

􏽚
Ω

n1 − 􏽚
Ω

n10 � − 􏽚
t

0
􏽚
Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
t

0
􏽚
Ω

u

≤ − 􏽚
t

0
􏽚
Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Ct.

(15)

Due to the positivity of n1, we obtain (13) immediately.
Likewise, we get (14). +e proof is complete. □

Lemma 3 (Gagliardo–Nirenberg interpolation inequality
[28]). Let 0< θ≤p≤ (2N/(N − 2)). 8ere exists a positive
constant CGN, such that for all u ∈W1,2(Ω)∩Lθ(Ω),

‖u‖Lp(Ω) ≤CGN ‖∇u‖
a
L2(Ω)‖u‖

1− a
Lθ(Ω) +‖u‖Lθ(Ω)􏼐 􏼑, (16)

is valid with a � (((N/θ) − (N/p))/(1 − (N/2)+

(N/θ))) ∈ (0, 1).

Lemma 4 (See [29]). Let T> 0 and y ∈ C0([0, T)) ∩C1(0,

T) be such that

y′(t) + ay(t)≤g(t), for all t ∈ (0, T), (17)

where g ∈ L1
loc(R) has the property that

1
τ

􏽚
t+τ

t
g(s)ds≤ b, for all t ∈ (0, T), (18)

with some τ > 0 and b> 0. 8en,

y(t)≤y(0) +
bτ

1 − e
− aτ , for all t ∈ [0, T). (19)

3. Proof of Theorem 1

In this section, we establish some priori estimates for so-
lutions to system (9); we first establish a bound for n1(x, t)

and n2(x, t) in the one-dimensional case, which differs from
that in the multidimensional settings.

Lemma 5. Let N≥ 2 and suppose that min 1 − (2/N),{

2 − (6/(N + 2))}<m≤ 2 − (2/N), (4) holds with σ ∈ (0, 1),
Γ1, Γ2 > 0, and α1 < 1 − ((1 − m)N/4), α2 < 1 − ((1 − m)

N/4). 8en, there exists C3, C4 > 0, such that the solution of
(9) satisfies
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􏽚
Ω

u
1− 2α1 ≤C3,

􏽚
Ω

u
1− 2α2 ≤C4, for all t ∈ 0, Tmax( 􏼁,

(20)

􏽚
t

0
􏽚
Ω

u
m− 2α1− 1

|∇u|
2 ≤C3(1 + t),

􏽚
t

0
􏽚
Ω

u
m− 2α2− 1

|∇u|
2 ≤C4(1 + t), for all t ∈ 0, Tmax( 􏼁.

(21)

Proof. Multiplying the first equation in (9) by
2(1 − α1)u1− 2α1 , integrating by parts, using (4) and Young’s
inequality, we have

d
dt

􏽚
Ω

u
2− 2α1 � 2 1 − α1( 􏼁􏽚

Ω
u
1− 2α1 ∇ · (u + 1)

m− 1∇u􏼐 􏼑 + ∇ · ϕ1(u)∇n1( 􏼁 − ∇ · ϕ2(u)∇n2( 􏼁􏼐 􏼑

≤ − L1􏽚
Ω

u
m− 2α1− 1

|∇u|
2

− 2L1􏽚
Ω

u
− 2α1ϕ1(u)∇u · ∇n1

+ 2L1􏽚
Ω

u
− 2α1ϕ2(u)∇u · ∇n2

≤ − 2L1􏽚
Ω

u
m− 2α1− 1

|∇u|
2

+
1
2
L1􏽚
Ω

u
m− 2α1− 1

|∇u|
2

+ 2L1􏽚
Ω

u
1− 2α1− mϕ21(u) ∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
2
L1􏽚
Ω

u
m− 2α1− 1|∇u|2

+ 2L1􏽚
Ω

u
1− 2α1− mϕ22(u) ∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ − L1􏽚
Ω

u
1− 2α1− m

|∇u|
2

+ 2L1Γ1􏽚
Ω

u
1− m ∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2L1Γ2􏽚
Ω

u
1+2α2− 2α1− m ∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

(22)

for all t ∈ (0, Tmax), where L1 � (1 − α1)(1 − 2α1), and we
have used the facts that L1 > 0 due to α1 < 1 − ((1 − m)N/4);
since α1 ≠ α2, without loss of generality, we let α1 > α2; by

Lemma 1, we know that there exists a constant δ1 > 0, such
that u> δ1, and with some rearrangements, we have

d
dt

􏽚
Ω

u
2− 2α1 + L1􏽚

Ω
u

− 2α1 |∇u|
2 ≤ 2δ1+2α2− 2α1− m

1 L1Γ2􏽚
Ω
∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2δ1− m
1 L1Γ1􏽚

Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (23)

Multiplying the first equation in (9) by 2(1 − α2)u1− 2α2 ,
similar to (23), we have

d
dt

􏽚
Ω

u
2− 2α2 + L2􏽚

Ω
u

m− 2α2− 1
|∇u|

2 ≤ 2L2Γ1􏽚
Ω

u
1+2α1− 2α2− m ∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2δ1− m
1 L2Γ2􏽚

Ω
∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

(24)
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where by Lemma 2, we know that there exists a constant
c1 > 0, such that ‖u‖L1(Ω) ≤ c1.

u
1+2α1− 2α2− m ≤

c
1+2α1− 2α2− m
1 , if m≤ 1 + 2α1 − 2α2,

δ1+2α1− 2α2− m
1 , if m> 1 + 2α1 − 2α2.

⎧⎨

⎩

(25)

Let c2 � max c
1+2α1− 2α2− m
1 , δ1+2α1− 2α2− m

1􏽮 􏽯, we have

d
dt

􏽚
Ω

u
2− 2α2 + L2􏽚

Ω
u

m− 2α2− 1
|∇u|

2 ≤ 2c2L2Γ1􏽚
Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2δ1− m
1 L2Γ2􏽚

Ω
∇n2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (26)

Combining with (23) and (26), we obtain that

d
dt

􏽚
Ω

u
2− 2α1 +

d
dt

􏽚
Ω

u
2− 2α2 + L1􏽚

Ω
u

m− 2α2− 1
|∇u|

2
+ L2􏽚

Ω
u

m− 2α2− 1
|∇u|

2

≤ 2Γ1 δ1− m
1 L1 + c2L2􏼐 􏼑􏽚

Ω
∇n1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2Γ2 δ1− m
1 L2 + δ1+2α2− 2α1− m

1 L1􏼐 􏼑􏽚
Ω

|∇n|
2
2.

(27)

By the Gagliardo–Nirenberg inequality with (16), there
exist c3, c4 > 0, such that

􏽚
Ω

u
2− 2α1 � u

m− 2α2+1( )/2
�����

�����
2 2− 2α1( )/ m− 2α2+1( )( )

L 2 2− 2α1( )/ m− 2α2+1( )( )(Ω)

≤ c3 ∇u
m− 2α2+1( )/2( )

�����

�����
2 2− 2α1( )/ m− 2α2+1( )( )θ1

L2(Ω)
u

m− 2α2+1( )/2( )
�����

�����
2 2− 2α1( )/ m− 2α2+1( )( ) 1− θ1( )

L 2/ m− 2α2+1( )( )(Ω)

+ c3 u
m− 2α2+1( )/2( )

�����

�����
2 2− 2α1( )/ m− 2α2+1( )( )

L 2/ m− 2α2+1( )( )(Ω)

≤ c4􏽚
Ω

u
m− 2α1− 1

|∇u|
2

+ c4,

(28)

with

θ1 �
m − 2α2 − 1( 􏼁N/2( 􏼁 − m − 2α2 − 1( 􏼁N/4 1 − α1( 􏼁( 􏼁

1 − (N/2) + m − 2α2 − 1( 􏼁N/2( 􏼁
∈ (0, 1),

(29)

due to α1 < 1 − ((1 − m)N/4). Similar to (28), there exists
c5 > 0, such that

􏽚
Ω

u
2− 2α2 ≤ c5􏽚

Ω
u

m− 2α2− 1
|∇u|

2
+ c5. (30)

Choose appropriate c4, c5, such that c4 ≤ L1 and c5 ≤ L2.
Let y(t) � 􏽒Ωu

2− 2α1 + 􏽒Ωu
2− 2α2 , g(t) � 􏽒Ω|∇n1|

2+ 􏽒Ω|∇
n2|

2,

c6 � min L1 − c4, L2 − c5􏼈 􏼉,

c7 � max 2Γ1 δ1− m
1 L1 + c2L2􏼐 􏼑, 2Γ2 δ1− m

1 L2 + δ1+2α2− 2α1 − m
1 L1􏼐 􏼑􏽮 􏽯.

(31)

By (26), we have

y′(t) + y(t) + c6􏽚
Ω

u
− 2α1 |∇u|

2
+ c6􏽚

Ω
u

− 2α2 |∇u|
2 ≤ c7g(t).

(32)

As from Lemma 3 and Lemma 4, we readily obtain (28).
(21) follows by integrating (32) in time. +e proof is
complete. □

Lemma 6. Let N≥ 2 and suppose that min 1−{ (2/N),

2 − (6/(N + 2))}<m≤ 2 − (2/N), (4) holds with σ ∈ (0, 1),
Γ1, Γ2 > 0 and α1 < 1 − ((1 − m)N/4), α2 < 1 − ((1 − m)N/
4). 8en, there exist p> 1 and q> 1, such that

􏽚
t

0
‖u‖

q

Lp(Ω) ≤C(t + 1), for all t ∈ 0, Tmax􏼂 􏼁. (33)

Proof. By the Gagliardo–Nirenberg inequality, there exist
p> 1 and q> 1, such that
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‖u‖
q

Lp(Ω) � u
m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α1+1( )( )

L 2p/ m− 2α1+1( )( )(Ω)

≤ c8 ∇u
m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α1+1( )( )θ2

L2(Ω)
u

m− 2α1+1( )/2( )
�����

�����
2q/ m− 2α1+1( )( ) 1− θ2( )

L 4 1− α1( )/ m− 2α1+1( )( )(Ω)

+ c8 u
m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α1+1( )( )

L 4 1− α1( )/ m− 2α1+1( )( )(Ω)
,

(34)

‖u‖
q

Lp(Ω) � u
m− 2α2+1( )/2( )

�����

�����
2q/ m− 2α2+1( )( )

L 2p/ m− 2α2+1( )( )(Ω)

≤ c9 ∇u
m− 2α2+1( )/2( )

�����

�����
2q/ m− 2α2+1( )( )θ3

L2(Ω)
u

m− 2α2+1( )/2( )
�����

�����
2q/ m− 2α2+1( )( ) 1− θ3( )

L 4 1− α2( )/ m− 2α2+1( )( )(Ω)

+ c9 u
m− 2α2+1( )/2( )

�����

�����
2q/ m− 2α2+1( )( )

L 4 1− α2( )/ m− 2α2+1( )( )(Ω)
,

(35)

for all t ∈ (0, Tmax) with some c5, c6 > 0 and

θ2 �
m − 2α1 + 1( 􏼁N/4 1 − α1( 􏼁( 􏼁 − m − 2α1 + 1( 􏼁N/2p( 􏼁

1 − (N/2) + m − 2α1 + 1( 􏼁N/4 1 − α1( 􏼁( 􏼁
∈ (0, 1),

(36)

as well as

θ3 �
m − 2α2 + 1( 􏼁N/4 1 − α2( 􏼁( 􏼁 − m − 2α2 + 1( 􏼁N/2p( 􏼁

1 − (N/2) + m − 2α2 + 1( 􏼁N/4 1 − α2( 􏼁( 􏼁
∈ (0, 1).

(37)

In accordance with Lemma 5, there exist some
c10, c11 > 0, such that

􏽚
Ω

u
2− 2α1 ≤ c10,

􏽚
Ω

u
2− 2α2 ≤ c10,

for all t ∈ 0, Tmax( 􏼁,

􏽚
t

0
􏽚
Ω

u
m− 2α1− 1

|∇u|
2 ≤ c11(1 + t),

􏽚
t

0
􏽚
Ω

u
m− 2α2− 1

|∇u|
2 ≤ c11(1 + t),

for all t ∈ 0, Tmax( 􏼁.

(38)

Substituting above four inequalities into (34) and (35),
we have

􏽚
t

0
‖u‖

q

Lp(Ω) ≤ c8 􏽚
t

0
∇u m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α1+1( )( )θ2

L2(Ω)
u

m− 2α1+1( )/2( )
�����

�����
2q/ m− 2α1+1( )( ) 1− θ2( )

L 4 1− α1( )/ m− 2α1+1( )( )(Ω)

+ c8 􏽚
t

0
u

m− 2α1+1( )/2( )
�����

�����
2q/ m− 2α1+1( )( ) 1− θ2( )

L 4 1− α1( )/ m− 2α1+1( )( )(Ω)

≤ c8c
q 1− θ2( )/2 m− 2α1+1( )( )

10 􏽚
t

0
∇u m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α1+1( )( )θ2

L2(Ω)
+ c8c

q/2 m− 2α1+1( )( )
10 · t

≤ c12t + c12,

􏽚
t

0
‖u‖

q

Lp(Ω) ≤ c9 􏽚
t

0
∇u m− 2α1+1( )/2( )

�����

�����
2q/ m− 2α2+1( )( )θ3

L2(Ω)
u

m− 2α2+1( )/2( )
�����

�����
2q/ m− 2α2+1( )( ) 1− θ3( )

L 4 1− α2( )/ m− 2α2+1( )( )(Ω)

+ c9 􏽚
t

0
u

m− 2α2+1( )/2( )
�����

�����
2q/ m− 2α2+1( )( ) 1− θ3( )

L 4 1− α2( )/ m− 2α2+1( )( )(Ω)

≤ c9c
q 1− θ3( )/2 m− 2α2+1( )( )

11 􏽚
t

0
∇u m− 2α2+1( )/2( )

�����

�����
2q/ m− 2α2+1( )( )θ2

L2(Ω)
+ c9c

q/2 m− 2α2+1( )( )
11 · t

≤ c13t + c13,

(39)

for all t ∈ (0, Tmax) with some c12, c13 > 0, where we used the
fact that (qθ2/(m − 2α1 + 1))< 2 and (qθ3/(m − 2α2 +1))<
2, and the proof similar to Lemma 2.6 in [13]. +e proof is
complete.

According to the proof of [14], we have from Lemma 6
that

n1(x, t)≤ c14(1 + t),

n2(x, t)≤ c15(1 + t),
for all (x, t) ∈ Ω × 0, Tmax( 􏼁, (40)

with some c14, c15 > 0. We claim that for any N≥ 2 and for all
T ∈ (0, Tmax), there exist some Υ1(T),Υ2(T)> 0, such that
n1(x, t)≤Υ1(T) and n2(x, t)≤Υ2(T) in (0, T) ×Ω. +is
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together with the definition of n1, n2 entails v≥ ‖v0‖

L∞(Ω)e
− Υ1(T) and w≥ ‖w0‖L∞(Ω)e

− Υ2(T) in (0, T) ×Ω. With
this in hand, we next consider system (3). □

Lemma 7. Let N≥ 2, T ∈ (0, Tmax) and suppose that
min 1 − (2/N), 2 − (6/(N + 2)){ }<m≤ 2 − (2/N), (4) holds
with σ ∈ (0, 1), Γ1, Γ2 > 0, and

α1 < 1 −
(1 − m)N

4
,

α2 < 1 −
(1 − m)N

4
.

(41)

+en, for all p> 1, there exists C ≔ C(T) > 0, such that

d
dt

􏽚
Ω

u
p

+
2p(p − 1)

(p + m − 1)
2 􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤C􏽚
Ω

u
p+2α1− m− 1

|∇v|
2

+ C􏽚
Ω

u
p+2α2− m− 1

|∇w|
2
. (42)

Proof. Multiplying the first equation in (3) by pup− 1, in-
tegrating by parts and Young’s inequality, we have

d
dt

􏽚
Ω

u
p

� p􏽚
Ω

u
p− 1 ∇ · (u + 1)

m− 1∇u􏼐 􏼑 + ∇ ·
ϕ1(u)

v
∇v􏼠 􏼡 − ∇ ·

ϕ2(u)

w
∇w􏼠 􏼡􏼠 􏼡

≤ − p(p − 1)􏽚
Ω

u
p+m− 3

|∇u|
2

+ p(p − 1)􏽚
Ω

u
p− 2ϕ1(u)

v
∇u · ∇v

− p(p − 1)􏽚
Ω

u
p− 2ϕ2(u)

w
∇u · ∇w

≤ − p(p − 1)􏽚
Ω

u
p+m− 3

|∇u|
2

+
p(p − 1)

4
􏽚
Ω

u
p− 2

|∇u|
2

+ p(p − 1)􏽚
Ω

u
p− m− 1ϕ

2
1(u)

v
2 |∇v|

2
+

p(p − 1)

4
􏽚
Ω

u
p+m− 3

|∇u|
2

+ p(p − 1)􏽚
Ω

u
p− m− 1ϕ

2
2(u)

w
2 |∇w|

2

≤ −
p(p − 1)

2
􏽚
Ω

u
p+m− 3

|∇u|
2

+
p(p − 1)Γ21e

2Υ1(T)

v0
����

����
2
L∞(Ω)

􏽚
Ω

u
p+2α1− 2

|∇v|
2

+
p(p − 1)Γ22e

2Υ2(T)

w0
����

����
2
L∞(Ω)

􏽚
Ω

u
p+2α2− 2

|∇w|
2
,

(43)

for all t ∈ (0, T), here we used the fact that
v≥ ‖v0‖L∞(Ω)e

− Υ1(T) and w≥ ‖w0‖L∞(Ω)e
− Υ2(T) in (0, T) ×Ω.

We obtain (42) if we let

C ≔ max
p(p − 1)Γ21e

2Υ1(T)

v0
����

����
2
L∞(Ω)

,
p(p − 1)Γ22e

2Υ2(T)

w0
����

����
2
L∞(Ω)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (44)

+e proof is complete.

Applying the same arguments as in the proof of Lemma
2.9 and Lemma 2.10 in [13], we have the following
Lemma. □

Lemma 8. Assume that Ω ⊂ RN (N≥ 1) be a bounded do-
main with smooth boundary. 8en, for all q≥ 2, there exists
C> 0, such that

1
q

d
dt

􏽚
Ω

|∇v|
2q

+ 􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
≤C􏽚
Ω

u
2
|∇v|

2q− 2
+ C, for all t ∈ 0, Tmax( 􏼁,

1
q

d
dt

􏽚
Ω

|∇w|
2q

+ 􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
≤C􏽚
Ω

u
2
|∇w|

2q− 2
+ C, for all t ∈ 0, Tmax( 􏼁.

(45)
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Lemma 9. Let N≥ 2. Assume min 1 − (2/N), 2−{

(6/(N + 2))}<m≤ 2 − (2/N), (3) holds with σ ∈ (0, 1),
Γ1, Γ2 > 0, and

α1 < 1 −
(1 − m)N

4
,

α2 < 1 −
(1 − m)N

4
.

(46)

Let p and q be the same as in Lemmas 7 and 8. +en, for
all T ∈ (0, Tmax), one can find some C> 0 fulfilling

‖u(x, t)‖Lp(Ω) ≤C,

‖∇v(x, t)‖L2q(Ω) ≤C,
(47)

as well as

‖∇w(x, t)‖L2q(Ω) ≤C. (48)

Proof. We first consider the dimensional N≥ 2. Combining
with Lemmas 7 and 8, there exists some c16 ≔ c16(T)> 0,
such that

d
dt

􏽚
Ω

u
p

+
1
q

􏽚
Ω

|∇v|
2q

+
1
q

􏽚
Ω

|∇w|
2q

􏼠 􏼡 +
2p(p − 1)

(p + m − 1)
2 􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ c16􏽚
Ω

u
p+2α1− m− 1

|∇v|
2

+ c16􏽚
Ω

u
p+2α2− m− 1

|∇w|
2

+ c16􏽚
Ω

u
2
|∇v|

2q− 2
+ c16􏽚

Ω
u
2
|∇w|

2q− 2
,

(49)

for all t ∈ (0, T). By the Hölder inequality, we have

􏽚
Ω

u
p+2α1− m− 1

|∇v|
2 ≤ 􏽚

Ω
u

p+2α1− m− 1( )τ1􏼒 􏼓
1/τ1( )

􏽚
Ω

|∇v|
2τ1′􏼒 􏼓

1/τ1′( )
, (50)

􏽚
Ω

u
p+2α2− m− 1

|∇w|
2 ≤ 􏽚

Ω
u

p+2α2− m− 1( )τ2􏼒 􏼓
1/τ2( )

􏽚
Ω

|∇w|
2τ2′􏼒 􏼓

1/τ2′( )
, (51)

for all t ∈ (0, T), where τ1, τ2 ≔ ((q + 1)/q) and
τ1′, τ2′ ≔ q + 1. Moreover, by the Gagliardo–Nirenberg in-
equality, there exist some constants c17, c18 > 0, such that

􏽚
Ω

u
p+2α1− m− 1( )τ1􏼒 􏼓

1/τ1( )
� u

((p+m− 1)/2)
�����

�����
2 p+2α1− m− 1( )/(p+m− 1)( )

L 2 p+2α1 − m− 1( )τ1/(p+m− 1)( )(Ω)

≤ c17 ∇u
((p+m− 1)/2)

�����

�����
2 p+2α1− m− 1( )/p( )θ4

L2(Ω)
u

((p+m− 1)/2)
�����

�����
2 p+2α1− m− 1( )/(p+m− 1)( ) 1− θ4( )

L 2 2− 2α1( )/(p+m− 1)( )(Ω)

+ c17 u
((p+m− 1)/2)

�����

�����
2 p+2α1− m− 1( )/(p+m− 1)( )

L 2 2− 2α1( )/(p+m− 1)( )(Ω)
,

(52)

􏽚
Ω

u
p+2α2− m− 1( )τ1􏼒 􏼓

1/τ2( )
� u

((p+m− 1)/2)
�����

�����
2 p+2α2− m− 1( )/(p+m− 1)( )

L 2 p+2α2 − m− 1( )τ2/(p+m− 1)( )(Ω)

≤ c18 ∇u
((p+m− 1)/2)

�����

�����
2 p+2α2− m− 1( )/p( )θ5

L2(Ω)
u

((p+m− 1)/2)
�����

�����
2 p+2α2− m− 1( )/(p+m− 1)( ) 1− θ5( )

L 2 2− 2α2( )/(p+m− 1)( )(Ω)

+ c18 u
((p+m− 1)/2)

�����

�����
2 p+2α2− m− 1( )/(p+m− 1)( )

L 2 2− 2α2( )/(p+m− 1)( )(Ω)
,

(53)
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with

θ4 �
(p + m − 1)N/2 2 − 2α1( 􏼁( 􏼁 − (p + m − 1)N/2 p + 2α1 − m − 1( 􏼁τ1( 􏼁

1 − (N/2) + (p + m − 1)N/2 2 − 2α1( 􏼁( 􏼁
∈ (0, 1),

θ5 �
(p + m − 1)N/2 2 − 2α2( 􏼁( 􏼁 − (p + m − 1)N/2 p + 2α2 − m − 1( 􏼁τ2( 􏼁

1 − (N/2) + (p + m − 1)N/2 2 − 2α2( 􏼁( 􏼁
∈ (0, 1),

(54)

the reason analogous to (2.42) and (2.43) in ([13], Lemma
2.11). +erefore, combining with (20) and (52), we get

􏽚
Ω

u
p+2α1− m− 1( )τ1􏼒 􏼓

1/τ1( )
≤ c19 􏽚

Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α1− m− 1( )/4 1− α1( )( )− N/2τ1( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α1( )( )( )( )

+ c19,

(55)

􏽚
Ω

u
p+2α2− m− 1( )τ2􏼒 􏼓

1/τ2( )
≤ c20 􏽚

Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α2− m− 1( )/4 1− α2( )( )− N/2τ2( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α2( )( )( )( )

+ c20,

(56)

for all t ∈ (0, T), where c19 ≔ c17C
((p+2α1− m− 1)/2(1− α1))
3 and

c20 ≔ c18C
((p+2α2− m− 1)/2(1− α2))
4 . Along with (55), (56) follows

from ([13], Lemma 2.9), (50), and (51), and we deduce

􏽚
Ω

u
p+2α1− m− 1

|∇v|
2 ≤ c21 􏽚

Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α1− m− 1( )/4 1− α1( )( )− N/2τ1( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α1( )( )( )( )

􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

+ c21 􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

,

(57)

􏽚
Ω

u
p+2α2− m− 1

|∇w|
2 ≤ c22 􏽚

Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α2− m− 1( )/4 1− α2( )( )− N/2τ2( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α2( )( )( )( )

· 􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

+ c22 􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

,

(58)
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for all t ∈ (0, T), with some constants c21, c22 > 0 determined
by T. Similar to (2.45) in ([13], Lemma 2.11), we know that

N p + 2α1 − m − 1( 􏼁/4 1 − α1( 􏼁( 􏼁 − (qN/2(q + 1))

1 − (N/2) + (p + m − 1)N/4 1 − α1( 􏼁( 􏼁
+

1
q + 1
< 1,

N p + 2α2 − m − 1( 􏼁/4 1 − α2( 􏼁( 􏼁 − (qN/2(q + 1))

1 − (N/2) + (p + m − 1)N/4 1 − α2( 􏼁( 􏼁
+

1
q + 1
< 1.

(59)

+erefore, using the Young inequality, we derive

c21 􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α1− m− 1( )/4 1− α1( )( )− N/2τ1( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α1( )( )( )( )

􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

≤
p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

8c16
􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c23,

(60)

c22 􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
N p+2α2− m− 1( )/4 1− α2( )( )− N/2τ2( )( )/ 1− (N/2)+ (p+m− 1)N/4 1− α2( )( )( )( )

􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓

1
q + 1

≤
p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

8c16
􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c24,

(61)

for all t ∈ (0, T), with some constants c23, c24 > 0 determined
by T. Once more, employing Young’s inequality, there exist
some constants c25, c26 > 0 determined by T, such that

c21 􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

≤
1

8c16
􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c25,

(62)

as well as

c22 􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/(q+1))

≤
1

8c16
􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c26,

(63)

for all t ∈ (0, T). Combining with (57)–(63), we obtain

􏽚
Ω

u
p+2α1− 2

|∇v|
2 ≤

p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

4c16
􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c23 + c25,

(64)

􏽚
Ω

u
p+2α2− 2

|∇w|
2 ≤

p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

4c16
􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c24 + c26,

(65)

for all t ∈ (0, T). Analogous to (64) and (65), we have

􏽚
Ω

u
2
|∇v|

2q− 2 ≤
p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

4c16
􏽚
Ω

|∇v|
2q− 2

D
2
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c27, (66)

􏽚
Ω

u
2
|∇w|

2q− 2 ≤
p − 1
4c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

4c16
􏽚
Ω

|∇w|
2q− 2

D
2
w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ c28, (67)

for all t ∈ (0, T), with some constants c27, c28 > 0 determined
by T. By the Gagliardo–Nirenberg inequality, there exists a
constant c29 > 0, such that

􏽚
Ω

u
p ≤

p − 1
2c16p

􏽚
Ω
∇u((p+m− 1)/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ c29. (68)

Together with (49) and (64)–(68), we have

d
dt

􏽚
Ω

u
p

+
1
q

􏽚
Ω

|∇v|
2q

+
1
q

􏽚
Ω

|∇w|
2q

􏼠 􏼡≤ c30, (69)

for all t ∈ (0, T) with some constants c30 > 0. +e proof is
complete.
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Finally, we prove the main theorem. □

Proof. of +eorem 1. From Lemma 9 and the
Moser–Alikakos iterative technique in Lemma A.1 of [30],
we have for all T ∈ (0, Tmax),

‖u(., t)‖L∞(Ω) ≤C, (70)

for all t ∈ (0, T) with some constant C> 0 determined by T.
+us, the global existence is a consequence of (70) and the
extensibility criterion provided by Lemma 1. □
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