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We consider a series of independent observations from a P-norm distribution with the position parameter μ and the scale
parameter σ. We test the simple hypothesis H0: σ � σ1 versus H1: σ � σ2. Firstly, we give the stop rule and decision rule of
sequential probabilistic ratio test (SPRT). Secondly, we prove the existence of h(σ) which needs to satisfy the specific situation in
SPRTmethod, and the approximate formula of the mean sample function is derived. Finally, a simulation example is given. 'e
simulation shows that the ratio of sample size required by SPRTand the classic Neyman–Pearson (N − P) test is about 50.92% at
most,38.30% at least.

1. Introduction

P-norm distribution is a family of distributions, including
normal distribution, Laplace distribution, uniform distri-
bution, degenerate distribution and many unknown dis-
tributions. Let the density function of the random variable be
given by

f(x) �
pλ

2σΓ(1/p)
exp − λ

|x − μ|

σ
􏼢 􏼣

p

􏼨 􏼩. (1)

'en, it is said that X follows the P-norm distribution,
where λ � (Γ(3/p)/Γ(1/p))1/2, the position parameter is μ,
and the scale parameter is σ > 0. Since it contains some
important distributions, the P-norm distribution can better
describe error distributions to some extent. 'ere are many
articles that studied the properties of the P-norm distri-
bution. For example, Hu and Sun [1] systematically obtained
unbiased estimators of parameters for the P-norm distri-
bution. Sun and Hu [2] gave a density function of P-norm
distribution and its sampling distribution. However, nobody
investigated the sequential probabilistic ratio test for the
scale parameter of P-norm distribution.

Likelihood ratio method is a widely used test method,
which can get a lot of in-depth results. For example, Self and

Liang [3] gave the asymptotic distribution of maximum
likelihood estimators and likelihood ratio statistics under
nonstandard conditions. Fan and Zhang [4] proposed the
sieve empirical likelihood ratio test for nonparametric
functions. Ferrari and Cysneiros [5] used the Skovgaard’s
modified likelihood ratio method to study the exponential
family nonlinear model and obtained the approximate
distribution of modified likelihood ratio statistics. Giam-
paoli and Singer [6] tested the variance parameter of the
linear mixed model by the likelihood ratio method. Huang
et al. [7] tested the shape parameter of the generalized ex-
tremum distribution with the Lq-likelihood ratio method.
Qin and Priebe [8] proposed a robust Lq-likelihood ratio test
for the general pollution distribution and obtained the as-
ymptotic distribution of Lq-likelihood ratio test statistics.

In order to meet the requirements of quality inspection
of American munitions production during World War II,
Wald [9] presented a sequential analysis method. Since then,
many authors had studied sequence analysis methods and
proposed various sequence tests to test different hypotheses.
For example, Whitehead and Jones [10] and Jennison and
Turnbull [11] provided extensive applications of sequence
and group sequence based techniques in the formation and
execution of clinical trials in their books. Darkhovsky [12]
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studied the sequence examination of two compound hy-
potheses and proposed a sequence process that minimizes
the maximum Bayesian risk on a series of prior parameter
distributions. Kachiashvili [13] proposed a sequential
method to constrain the multiple test problem in the
Bayesian hypothesis test task and proved the high quality of
this method. Li et al. [14] extended the sequence probability
ratio test and proved that the sequence test was asymp-
totically optimal when the error probability went to zero, so
the sequence test could asymptotically obtain the minimum
expected sample size.Wang et al. [15] proposed the weighted
expected sample size (WESS) to evaluate the test problem of
the composite hypothesis for the overall performance of
three different regions. Nakamura et al. [16] proposed a
sequential test procedure to determine the minimum dose
with threshold effect. Li et al. [17] constructed a general
sequence test to detect outliers in all collected observation
sequences. Mudholkar et al. [18] deduced the sequential
probabilistic ratio test method of M-Gaussian population
model under the assumption that the discrete parameters
were known. Zou et al. [19] proposed a nonparametric se-
quential test based on empirical likelihood to test the treat-
ment effect. Tartakovsky et al. [20] discussed in detail recent
advances in sequential hypothesis testing in their book.

'e P-norm distribution describes the error distribution.
In order to use the P-norm distribution, it is necessary to use
the sequential likelihood ratio test method to study the
P-norm distribution parameter. 'erefore, this paper will
apply the sequential probability ratio test method to study
the parameter of P-norm distribution. 'e specific structure
of this paper is as follows. Section 2 introduces the SPRT
method. Section 3 gives some properties of SPRT. Section 4
performs a simulation study to confirm results. Proofs of
theorems are contained in Section 5.

2. SPRT Method

Suppose that (X1, X2, . . .) is an independent and identically
distributed (i.i.d.) random sample sequence from the
P-norm distribution. Let (x1, x2, . . .) be the sequence of
their observed values. 'e following is a simple hypothesis
test problem (let us assume that parameter μ is known.
Without loss of generality, let parameter μ � 0):

H0: σ � σ1↔H1: σ � σ2. (2)

Here, σ1, σ2 ∈ Θ are known numbers and 0< σ1 < σ2.
Let us give the stopping rule and decision rule of SPRT in

turn. First, consider the likelihood ratio statistic:

%
λn �

􏽑
n
i�1 f Xi, σ2( 􏼁

􏽑
n
i�1 f Xi, σ1( 􏼁 �

σ1
σ2

􏼠 􏼡

n

exp λp σ − p
1 − σ − p

2􏼐 􏼑 􏽘

n

i�1
Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p⎧⎨

⎩

⎫⎬

⎭.

(3)

Let S
p
n � 􏽐

n
i�1 |Xi|

p. Taking the logarithm of equation (3),
we can get

ln λn � n ln
σ1
σ2

+ λp σ− p
1 − σ − p

2􏼐 􏼑S
p
n . (4)

Given the test level α> 0 and β> 0, α + β< 1. Taking A �

β/(1 − α) and B � (1 − β)/α, we can get

c � −
ln σ1/σ2

λp σ − p
1 − σ − p

2􏼐 􏼑
,

d1 �
ln B

λp σ− p
1 − σ − p

2􏼐 􏼑
,

d2 �
ln A

λp σ− p
1 − σ − p

2􏼐 􏼑
.

(5)

We easily know c> 0, d1 > 0, andd2 > 0. It is given by
λn ≥B that

S
p
n ≥ −

ln σ1/σ2
λp σ− p

1 − σ − p
2􏼐 􏼑

+
ln B

λp σ − p
1 − σ − p

2􏼐 􏼑
� cn + d1 � Rn.

(6)

Similarly, it is given by λn ≥A that

S
p
n ≤ −

ln σ1/σ2
λp σ − p

1 − σ− p
2􏼐 􏼑

+
ln A

λp σ − p
1 − σ − p

2􏼐 􏼑
� cn + d2 � An.

(7)

It is not difficult to see that the sufficient and necessary
condition for λn ≥B is S

p
n ≥Rn, the sufficient and necessary

condition of λn ≤A is S
p
n ≤An. 'en, the stopping rule of the

SPRT for the P-norm distribution is

τ∗ � inf n: n≥ 1 and S
p
n ∉ An, Rn( 􏼁􏼈 􏼉. (8)

'e decision rule of the P-norm distribution SPRT is as
follows:

(i) When S
p
n ≥Rn, we should stop the experiment and

accept H0

(ii) When S
p
n ≤An, we should stop the experiment and

reject H0

3. Sample Size Required for SPRT

From the above analysis, we know that the SPRT method
depends on the constants A and B that have been selected
beforehand. For the selection of A and B, we need to start
from some properties of SPRT.'e study of SPRTproperties
can be turned into the study of random walks. 'en, this
section will study the random walks of the SPRTmethod for
the P-norm distribution and give some properties of SPRT.

Given α and β (which satisfy α + β< 1), we can get
constants A and B. Let zi � ln(f(Xi, σ2)/
f(Xi, σ1))(i � 1, 2, . . .). 'en, the random walk sequence is
Zn � 􏽐

n
i�1 zi, n≥ 1􏼈 􏼉. We have L(σ) � Pσ(acceptH1)

� Pσ(Zn ≤ ln A) for ∀σ ∈ Θ.
By (4), we can get
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Z1 � ln
f X1, σ2( 􏼁

f X1, σ1( 􏼁

� ln
σ1
σ2

exp λ X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
p
σ− p
1 − σ − p

2􏼐 􏼑

� ln
σ1
σ2

− λ X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
p
σ− p
2 − σ − p

1􏼐 􏼑,

(9)

EZ1 � E ln
σ1
σ2

− λ X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
p
σ− p
2 − σ − p

1􏼐 􏼑􏼠 􏼡

� ln
σ1
σ2

− λp
E X1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p σ − p

2 − σ− p
1􏼐 􏼑.

(10)

Note that E|Xi|
p � (1/p)(σ/λ)p and E|Xi|

2p �

((1 + p)/p2)(σ/λ)2p (Hu and Sun [1]). By (10), we have

EZ1 � ln
σ1
σ2

−
σp

p
σ − p
2 − σ − p

1􏼐 􏼑. (11)

If EZ1 ≥ 0, then

σp ≥
p ln σ1/σ2( 􏼁

σ− p
2 − σ − p

1
. (12)

Let σp
∗ � (p ln(σ1/σ2))/(σ

− p
2 − σ− p

1 ) we know that

(i) When σp � σp
∗, EZ1 � 0 can be given

(ii) When σp > σ
p
∗, EZ1 > 0 can be given

(iii) When σp < σ
p
∗, EZ1 < 0 can be given

Similarly, we have

Z
2
1 � ln

σ1
σ2

− λ X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
p
σ − p
2 − σ − p

1􏼐 􏼑􏼠 􏼡

2

� ln
σ1
σ2

􏼠 􏼡

2

+ λ2p σ− p
2 − σ− p

1􏼐 􏼑
2

X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2p

− 2 ln
σ1
σ2

􏼠 􏼡λp
X1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p σ − p

2 − σ − p
1􏼐 􏼑,

EZ
2
1 � ln

σ1
σ2

􏼠 􏼡

2

+ λ2p σ− p
2 − σ− p

1􏼐 􏼑
2

X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2p

� ln
σ1
σ2

􏼠 􏼡

2

+
p + 1

p
σ− p
2 − σ− p

1􏼐 􏼑
2
σ2p

−
2
p

ln
σ1
σ2

􏼠 􏼡 σ − p
2 − σ − p

1􏼐 􏼑σp
.

(13)

For simplicity, h � h(σ) is denoted as a function of σ.

exp hZ1( 􏼁 � exp h ln
σ1
σ2

− λ X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
p
σ − p
2 − σ − p

1􏼐 􏼑􏼢 􏼣􏼠 􏼡,

E exp hZ1( 􏼁 � exp h ln
σ1
σ2

􏼠 􏼡
pλ

2σΓ(1/p)
􏽚

+∞

− ∞
exp

− λp
h σ − p

2 − σ − p
1􏼐 􏼑 + σ− p

􏼐 􏼑 X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

􏼐 􏼑dX1.

(14)

Let h∗ � σ − p/(σ − p
1 − σ − p

2 ), h∗ > 0. We have

E exp hZ1( 􏼁 �

1
σ
exp h ln

σ1
σ2

􏼠 􏼡 h σ − p
2 − σ − p

1􏼐 􏼑 + σ− p
􏼐 􏼑

− 1/p
, h< h

∗
,

∞, h≥ h
∗
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)
By studying random walks, we can derive some properties

of SPRT. Next, we will give some properties of SPRTmethod
for P-norm distributions. At the same time, we will also give
the average sample size required for the SPRT method.

Theorem 1. If h< σ− p/(σ − p
1 − σ − p

2 ) exists, then there must be
some h≠ 0 that satisfies E(exp(hZ1)) � 1.

In order to find out the average sample size in the SPRT
method, we need to verify whether condition h< σ− p/(σ − p

1 −

σ − p
2 ) in 'eorem 1 is true. It is given by 'eorem 2.

Theorem 2. For σ1 and σ2 in (2), h0(σi)< σ
− p
i /(σ − p

1 − σ − p
2 )

(i � 1, 2).

'e operational characteristic (OC) of Wald’s SPRT is
the probability of accepting the null hypothesis. 'e average
sample number (ASN) is the average number of observa-
tions that we would have to collect in order to make a
decision regarding the statistical hypotheses put forth.
According to Mudholkar et al. [18], we can give the OC
function and ANS of SPRT for the P-norm distribution.
'ese are given by 'eorems 3 and 4.

Theorem 3. If h< σ− p/(σ − p
1 − σ − p

2 ) and E(exp(hZ1)) � 1,
then the OC function of SPRT is given by

L(σ) � Pσ acceptH1( 􏼁 ≈
B

h(σ)

B
h(σ)

− A
h(σ)

. (16)

By 'eorem 3, we can get the approximate formulas
α ≈ 1 − L1 and β ≈ L2, where L1 � L(σ1) and L2 � L(σ2).
'us, we can give 'eorem 4.

Theorem 4. 7e ANS of SPRT for the P-norm distribution is
that

(1) If σp � (p ln(σ1/σ2)/(σ
− p
2 − σ − p

1 )), then Eστ∗ ≈
(L(σ)(lnA)2 + (1 − L(σ))(lnB)2)/EσZ2

1

(2) If σp ≠ (p ln(σ1/σ2)/(σ
− p
2 − σ − p

1 )), then Eστ∗ ≈
((L(σ) ln A + (1 − L(σ))ln B)/EσZ1)

For the given probability α and β which are the type 1
and the type 2 errors, A � β/(1 − α) and B � (1 − β)/α are
taken, respectively. According to 'eorem 4, it can be ob-
tained that the average sample size of the SPRT method is

Eτ∗ �
1
2

Eσ1τ
∗

+ Eσ2τ
∗

􏼐 􏼑. (17)

Eσ1τ
∗ and Eσ2τ

∗ here are determined in four cases as
follows:
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(1) If σp
i � (p ln(σ1/σ2)/(σ

− p
2 − σ − p

1 )), i � 1, 2, then

Eσ1τ
∗ ≈

(1 − α)(lnβ/(1 − α))
2

+ α(ln(1 − β)/α)
2

Eσ1Z
2
1

,

Eσ2τ
∗ ≈

β(lnβ/(1 − α))
2

+ (1 − β)(ln(1 − β)/α)
2

Eσ2Z
2
1

,

(18)

where

Eσ1Z
2
1 � ln

σ1
σ2

􏼠 􏼡

2

+
p + 1

p
σ− p
2 − σ − p

1􏼐 􏼑
2
σ2p
1

−
2
p

ln
σ1
σ2

􏼠 􏼡
σ1
σ2

􏼠 􏼡

p

− 1􏼠 􏼡,

Eσ2Z
2
1 � ln

σ1
σ2

􏼠 􏼡

2

+
p + 1

p
σ− p
2 − σ − p

1􏼐 􏼑
2
σ2p
2

−
2
p

ln
σ1
σ2

􏼠 􏼡 1 −
σ2
σ1

􏼠 􏼡

p

􏼠 􏼡.

(19)

(2) If σp

i ≠ (p ln(σ1/σ2)/(σ
− p
2 − σ − p

1 )), i � 1, 2, then

Eσ1τ
∗ ≈

(1 − α)ln(β/(1 − α)) + α ln((1 − β)/α)

Eσ1Z1
,

Eσ2τ
∗ ≈

βln(β/(1 − α)) + (1 − β)ln((1 − β)/α)

Eσ2Z1
,

(20)

where

Eσ1Z1 � ln
σ1
σ2

−
σ1/σ2( 􏼁

p
− 1

p
,

Eσ2Z1 � ln
σ1
σ2

−
1 − σ2/σ1( 􏼁

p

p
.

(21)

(3) If σp
1 � (p ln(σ1/σ2)/(σ

− p
2 − σ − p

1 )) and
σp
2 ≠ (p ln(σ1/σ2)/(σ

− p
2 − σ − p

1 )), then

Eσ1τ
∗ ≈

(1 − α)(lnβ/(1 − α))
2

+ α(ln(1 − β)/α)
2

Eσ1Z
2
1

,

Eσ2τ
∗ ≈

β lnβ/(1 − α) + (1 − β)ln(1 − β)/α
Eσ2Z1

.

(22)

(4) If σp
1 ≠ (p ln(σ1/σ2)/(σ

− p
2 − σ − p

1 )) and σp
2 � (p ln

(σ1/σ2)/(σ
− p
2 − σ − p

1 )), then

Eσ1τ
∗ ≈

(1 − α)lnβ/(1 − α) + α ln(1 − β)/α
Eσ1Z1

,

Eσ2τ
∗ ≈

β(lnβ/(1 − α))
2

+ (1 − β)(ln(1 − β)/α)
2

Eσ2Z
2
1

.

(23)

To compare the methods of the simulation example in
Section 4, we briefly introduce the Neyman–Pearson test
method to calculate the average sample size. 'e principle of
the N − P test is to control the probability of making the first
type of error within a given range and to find the test to make
the probability of making the second type of error as small as
possible, that is, to maximize the effectiveness of the test.
Before proceeding to the results, we introduce these notions:
|Xi|

p􏼈 􏼉(i � 1, 2, . . . , n) is an independent sequence, and we
take S

p
n � 􏽐

n
i�1 |Xi|

p and X
p

� (S
p
n /n). Likewise, we know

E|Xi|
p � (1/p)(σ/λ)p and D|Xi|

p � (1/p)(σ/λ)2p (Hu and
Sun [1]).

According to the Neyman–Pearson theory, the optimal
fixed quantity is as follows. We should look for n and c that
satisfy

Pσ1 X
p ≥ c􏼐 􏼑 � α,

Pσ2 X
p < c􏼐 􏼑 � β.

(24)

By the central limit theorem, we know that X
p ap-

proximately follows a normal distribution AN(E|Xi|
p,

(D|Xi|
p/n)), namely,

�
n

√
X

p
− E Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
������

D Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 isAN(0, 1). (25)

We can get

Pσ1

�
n

√
X

p
− Eσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 ≥
�
n

√
c − Eσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � α,

Pσ2

�
n

√
X

p
− Eσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 <
�
n

√
c − Eσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � β.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

'at is,

Kα �

�
n

√
c − Eσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 ,

K1− β �

�
n

√
c − Eσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
�������
Dσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where Kα and K1− β represent quantiles of the standard
normal distribution.

'en, we have

n �
Kα

�������

Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱

c − Eσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
,

c �
Kα

�������

Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱

Eσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− K1− β

�������

Dσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱

Eσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

Kα

�������

Dσ1 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱

− K1− β

�������

Dσ2 Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏽱 .

(28)

4 Discrete Dynamics in Nature and Society



And the ratio of sample size required by SPRTand N − P
test is that

r �
Eσ1τ
∗

+ Eσ2τ
∗

2n
. (29)

4. A Simulation Example

In this section, we will calculate the average sample size
obtained by the SPRTmethod and the Neyman–Pearson test
method, respectively, and compare them to verify the su-
periority of the SPRT method.

Suppose that σ1 � 1, σ2 � 2, p � 1, μ � 0, and α � β
� 0.05. 'e approximate values of the average sample size
required by the SPRT method at the given test level are
shown in Tables 1–3.

In order to illustrate the advantages of the SPRTmethod,
the sample size required by the Neyman–Pearson test at the
given test level is presented here (see Table 4). Meanwhile,
Table 5 shows the ratio of the sample size required by the
SPRT method and Neyman–Pearson test method at the
given test level.

From the above example, we can see that the ratio of
sample size required by SPRTandN − P test is about 50.92% at
most and 38.30% at least. It can be seen that the sample size
required by the SPRT method is much less than the optimal
sample size required by the Neyman–Pearson test method,
which also shows the advantages of the SPRT method.

5. Proof of SPRT Properties

Proof. of'eorem 1. Suppose that there exists h(σ)≠ 0 such
that E(exp(hZ1)) � 1. Hence,

1
σ
exp h ln

σ1
σ2

􏼠 􏼡 h σ − p
2 − σ− p

1􏼐 􏼑 + σ − p
􏼐 􏼑

− (1/p)
� 1,

exp h ln
σ1
σ2

􏼠 􏼡 − σ h σ − p
2 − σ − p

1􏼐 􏼑 + σ − p
􏼐 􏼑

(1/p)
� 0.

(30)

Here, let g(h) � exp(h ln(σ1/σ2)) − σ(h(σ− p
2 − σ − p

1 )+

σ − p)(1/p). By calculation, we know g(0) � 0, g(− ∞)> 0, and
g(h∗) � exp(h∗ ln(σ1/σ2))> 0. To get g(h) � 0, there exists
h such that g(h)< 0, namely,

exp h ln
σ1
σ2

􏼠 􏼡 − σ h σ− p
2 − σ − p

1􏼐 􏼑 + σ − p
􏼐 􏼑

(1/p)
< 0, (31)

σ1
σ2

􏼠 􏼡

hp

< hσp σ− p
2 − σ − p

1􏼐 􏼑 + 1. (32)

Let f(h) � (σ1/σ2)
hp − hσp(σ − p

2 − σ − p
1 ) − 1; we have

f′(h) � p
σ1
σ2

􏼠 􏼡

hp

ln
σ1
σ2

− σp σ − p
2 − σ − p

1􏼐 􏼑,

f″(h) � p ln
σ1
σ2

􏼠 􏼡

2 σ1
σ2

􏼠 􏼡

hp

> 0.

(33)

So, we know that f(h) is convex. Let us set f′(h) � 0
here, and we get

h0 �
ln σp σ − p

2 − σ − p
1􏼐 􏼑/p ln σ1/σ2( 􏼁􏼐 􏼑

p ln σ1/σ2( 􏼁
. (34)

By calculation, we can know h0 ≠ 0. We substitute h0 into
f(h) and talk about the following two cases:

(1) If σ � σ1, then

f h0( 􏼁 �
σp
1σ

− p
2 − 1

p ln σ1/σ2( 􏼁
1 − ln

σp
1σ

− p
2 − 1

p ln σ1/σ2( 􏼁
􏼠 􏼡􏼠 􏼡 − 1.

(35)

Here, we study the properties of the function
V(t) � t(1 − ln t) − 1, where t> 0. After calculation,
we can know that the function value of V(t) in its
domain is always less than 0. And f(h0)< 0 is always
true if (σp

1σ
− p
2 − 1)/p ln(σ1/σ2) is regarded as a value

of the independent variable in (35), where
((σp

1σ
− p
2 − 1)/p ln(σ1/σ2))> 0. 'us, we can find h0

to make the inequality (32) true, and then there is h

to make g(h)< 0.
(2) If σ � σ2, then

f h0( 􏼁 �
1 − σ − p

1 σp
2

p ln σ1/σ2( 􏼁
1 − ln

1 − σ − p
1 σp

2
p ln σ1/σ2( 􏼁

􏼠 􏼡􏼠 􏼡 − 1. (36)

Table 1: Eσ1τ
∗ approximation.

β
α

0.01 0.03 0.05 0.1
0.01 23.3150 22.4315 21.6255 19.7806
0.03 17.6849 16.9173 16.2272 14.6720
0.05 15.0677 14.3552 13.7201 12.3026
0.1 11.5177 10.8825 10.3248 9.1007

Table 2: Eσ2τ
∗ approximation.

β
α

0.01 0.03 0.05 0.1
0.01 14.6755 11.1317 9.4842 7.2498
0.03 14.1194 10.6485 9.0358 6.8499
0.05 13.6121 10.2141 8.6360 6.4989
0.1 12.4508 9.2353 7.7438 5.7284

Table 3: Eτ∗ approximation.

β
α

0.01 0.03 0.05 0.1
0.01 18.9952 16.7816 15.5549 13.5152
0.03 15.9022 13.7829 12.6315 10.7610
0.05 14.3399 12.2846 11.1781 9.4007
0.1 11.9843 10.0589 9.0343 7.4146
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And by the same token, we get f(h0)< 0 here, we have
the situation where h makes g(h)< 0.

To sum up, when h(σ)< (σ − p/(σ − p
1 − σ − p

2 )), it can be
proved that h(σ)≠ 0 satisfies E(exp(hZ1)) � 1 by the in-
termediate value theorem. In the end, the proposition has
been proved. □

Proof. of 'eorem 2. When σ � σ1, we can get

h0 σ1( 􏼁<
σ − p
1

σ − p
1 − σ− p

2
, (37)

that is,

ln σ1/σ2( 􏼁
p

− 1􏼐 􏼑/p ln σ1/σ2( 􏼁􏼐 􏼑

p ln σ1/σ2( 􏼁
<

1
1 − σ1/σ2( 􏼁

p. (38)

By observing the right part of (38), we know that its
range is (1, +∞). 'en, formula (38) can also be written as

ln σ1/σ2( 􏼁
p

− 1􏼐 􏼑/ p ln σ1/σ2( 􏼁( 􏼁􏼐 􏼑

p ln σ1/σ2( 􏼁
≤ 1. (39)

By simplifying (39), it can be obtained that

ln
σ1/σ2( 􏼁

p
− 1

p ln σ1/σ2( 􏼁
􏼠 􏼡≥p ln

σ1
σ2

,

σ1
σ2

􏼠 􏼡

p

− 1≤p
σ1
σ2

􏼠 􏼡

p

ln
σ1
σ2

.

(40)

Let x � (σ1/σ2), x ∈ (0, 1), andT(x) � xp − pxp ln x−

1; then,

T′(x) � px
p− 1

− px
p− 1

− p
2
x

p− 1 ln x

� − p
2
x

p− 1 ln x> 0.
(41)

From the above, we can see that the function T(x) in-
creases monotonically on (0, 1), and T(1) � 0; hence,
T(x)≤ 0 holds on (0,1). And we can deduce that

(σ1/σ2)
p − 1≤p(σ1/σ2)

p ln(σ1/σ2); therefore, h0(σ1)< (σ− p
1

/(σ − p
1 − σ − p

2 )) holds.
Similarly, when σ � σ2, the inequality h0(σ2)<

(σ − p
2 /(σ − p

1 − σ− p
2 )) also holds. To sum up, the proposition is

proved. □
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