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With a view to the interference of piecewise constant arguments (PCAs) and neutral terms (NTs) to the original system and the
significant applications in the signal transmission process, we explore the robustness of the exponentially global stability (EGS) of
recurrent neural network (RNN) with PCAs and NTs (NPRNN). -e following challenges arise: what the range of PCAs and the
scope of NTs can NPRNN tolerate to be exponentially stable. So we derive two important indicators: maximum interval length of
PCAs and the scope of neutral term (NT) compression coefficient here for NPRNN to be exponentially stable. Additionally, we
theoretically proved that if the interval length of PCAs and the bound of NT compression coefficient are all lower than the given
results herein, the disturbed NPRNN will still remain global exponential stability. Finally, there are two numerical examples to
verify the deduced results’ effectiveness here.

1. Introduction

Investigation and synthesis of recurrent neural networks
(RNNs) is an unfailing subject regardless of past and present
due to its wide application in image and object recognition,
speech recognition,model prediction, automatic control, signal
processing, and so forth [1–18]. Various stability types for
RNNs have been proposed and deeply explored, for instance,
asymptotic stability [1–3], exponential stability [4–6], and
multistability [7, 8]. Moreover, some other stability types have
been further developed in recent five years, such as syn-
chronization [9, 10], impulsive stochastic stability [11], region
stability [12], global Mittag–Leffler stabilization [13, 14],
memristor-based dynamic behavior stability [15, 16], anti-
periodic stability [17], exponential Lagrange stability [18] and
so on. In fact, compared with the general stability, the study of
global exponential stability can be convenient for us to know
the convergence rate of the system within a fast time interval
accurately and intuitively. -erefore, there is still significative
work to be done to explore and characterize global exponential
stability or other kinds of stability of recurrent neural networks.

-e neutral-type equation is a general class of utility
model originating from the mechanical operation, bio-
logical neural, economy management, electric circuit,
automation control, and the other scientific fields, which
have aroused extremely extensive interests from quite a few
investigators [19–30]. In terms of electrical implementa-
tions, such as mutual reciprocity, package modelling, and
the electromagnetic interference design for multiple digital
computers, pretty responses had been obtained in certain
studies [19].-erefore, there are several kinds of reasonable
featured methods to research the neutral neural network:
the one-step method [20, 21], block boundary value
method [22, 23], Euler–Maclaurin method [24], Run-
ge–Kutta method [25], and Legendre multidomain spectral
collocation method [26], while there are very few specific
ways to study the robustness of the system by giving the
supremum of the neutral term compression coefficient
affected by other additional distractions at the same time. It
may be a challenge to raise some feasible analytical
frameworks to investigate the robustness of recurrent
neural networks with NTs (NRNNs).
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Piecewise constant argument (PCA) has a profound
influence during the operation process of RNNs. Firstly, the
theoretical work on PCA can be traced back to Shah and
Joseph [31] and Cooke andWiener [32]. In quick succession,
Akhmet et al. [33] continued to improve this theory and
provide evidence to achieve exponentially global stability of
RNNs with piecewise constant arguments (PRNNs),
appending more integrity with PRNNs at that time. In fact,
the method of piecewise argument unifies hysteretic and
advance, and can be also applied to other important systems
[23, 34, 35], which undoubtedly immensely improved
convenience to deal with the impact of time-lag on most
systems. -erefore, here we will focus on the discussion of
recurrent neural network with piecewise constant arguments
and neutral terms (NPRNN) to boost the convenience and
completeness of NRNNs.

As far as we know, some of the work is about investigating
the robustness of hybrid stochastic models, nonlinear models,
and recurrentmodels equippedwithNTswithout PCAs [27, 28].
Some of the work has been done to explore the robustness of
recurrentmodelswith PCA subjectswithoutNTs [14, 33, 36, 37].
Others have also been deeply done for systems with PCAs and
NTs [23, 24, 26], but they aim to investigate the stability instead
of robustness. But there are very few literatures to explore the
robustness as well as the globally exponential stability of
NPRNNs through giving the interval length of PCAs and the
bound of NT compression coefficient together through ap-
propriate parameter settings of PCAs.

Encouraged by these thoughts, this paper will pay at-
tention to the robustness of the globally exponential stability
of NPRNN, which can induce faster convergence compared
with the general stable system. We will respectively derive
the maximum scope of NT compression coefficient and the
interval length of PCAs that the system can tolerate to

remain stable after interference. First, we may estimate the
upper bound of the neutral term compression coefficient k

which can be obtained by a linear inequality in one variable.
-en, we may select the feasible value of k so that we can
successfully determine the supremum of the piecewise ar-
gument θ. -is has not been fulfilled for the NPRNN model,
which is exactly the primary contribution here. Hence, in
this paper, the interval length of PCA and the bound of NT
compression coefficient for the perturbed NPRNN to be
exponentially stable are all provided. Additionally, we will
also testify theoretically that if the interval range of the PCAs
and the scope of NTcompression coefficient of the disturbed
system are all lower than the upper bounds given in this
paper, then NPRNNs will still remain stable.

-e composition of the rest part is set out as follows: the
establishment of the NPRNNmodel, symbol description, and
several rational assumptions are presented in Section 2. -e
upper bounds of the PCA interval length andNTcompression
coefficient are all provided in Section 3. Finally, two examples
and corresponding figures by MATLAB are performed to
confirm the main theorems’ efficiency in Section 4.

2. Preliminaries and Notations

Let N, Z+, R+ be the natural number set, the positive integer
set, and the nonnegative real-number set, respectively. For
n ∈ N, denote r � (r1, r2, . . . , rn)T to be a general vector in
Rn (n -D real-vector space); the norm of r is expressed as
‖r‖ � 

n
j�1 |rj|, where T is the transpose of a vector. Denote

N � 1, 2, . . . , n{ }. θq , ϖq  are two real-valued sequences
such that θq ≤ϖq ≤ θq+1, θq⟶∞ when k⟶∞, q ∈ N.

In the first step, we aim at a kind of RNNmodel with the
effect of neutral terms and generalized piecewise constant
arguments (NPRNN), which is written as

d yi(t) − Gi yi(t)(   � − aiyi(t) + 
n

j�1
bijfj yj(t)  + 

n

j�1
cijgj yj(δ(t))  + Ii

⎡⎢⎢⎣ ⎤⎥⎥⎦dt, t≥ t0 ≥ 0,

yi t0(  � y
0
i ∈ R, i ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where n represents the neurocyte numbers in system (1).
δ(t) � ϖq for q ∈ N and θq ≤ t< θq+1. Gi(yi(t)): R⟶ R is
the neutral-type function for yi(t) ∈ R of the i th neurocyte,
where yi(t) is a function which stands for the state trajectory
of given time t of the neurocyte i. fj(yj(t)) and
gj(yj(δ(t))) represent a class of output (activation func-
tions) at time t and δ(t) of the jth neurocyte, respectively. ai

means the self-inhibition of the ith neurocyte, ai > 0. bij and
cij are the intensities of the neurocyte j on the neurocyte i,
corresponding to time t and time δ(t), respectively. Ii refers
to the extra interference on the ith neurocyte.

Remark 1. Obviously, system (1) is a class of a hybrid
system.-at is, if we consider the performance expression of
(1) within the interval [θq, θq+1), q ∈ N. System (1) is shown
as an advanced system when θq ≤ t<ϖq, and system (1) is
shown as a hysteretic system when ϖq ≤ t< θq+1. -erefore,
system (1) is a mixed system which unifies the advanced and
hysteretic systems.

Remark 2. Additionally, compared with (1), in case of δ(t) �

t and without neutral terms, the NPRNN (1) degenerates
into the RNN:

yi

.
(t) � − aiyi(t) + 

n

j�1
bijfj yj(t)  + 

n

j�1
cijgj yj(t)  + Ii, t≥ t0 ≥ 0,

yi t0(  � y
0
i ∈ R, i ∈ N .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)
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Apparently, (2) has a zero solution, state y(t, t0, y0)

exists and is unique for any given initial values t0 and y0 [37].
What follows is the exponentially global stability definition
of RNN (2).

Definition 1. Denote that �y is the equilibrium of model (2).
State y(t) can achieve exponentially global stability (EGS) if
‖y(t) − �y‖< α‖y(t) − �y‖exp − β(t − t0)  exists for all t≥ t0,
where α, β> 0. In particular, if �y � 0 is the equilibrium of
model (2), state y(t) can achieve EGS if
‖y(t)‖< α‖y(t)‖exp − β(t − t0)  is valid, t≥ t0, where α,
β> 0.

To derive the main results, here are some of the as-
sumptions needed:

(A1) fi, gi are all continuous activation functions,
fi, gi ∈ R for each i ∈ N, and fi(0) � 0, gi(0) � 0.
(A2)-ere are Lipschitz constants L1

i and L2
i > 0, ζ i and

ηi ∈ R, i ∈ N, such that

fi ζ i(  − fi ηi( 


≤L
1
i ζ i − ηi


,

gi ζ i(  − gi ηi( 


≤L
2
i ζ i − ηi


.

(3)

(A3) -ere are Lipschitz constants ki, and for any
variable ζ i, ηi ∈ R, i ∈ N, we assume

Gi ζ i(  − Gi ηi( 


≤ ki ζ i − ηi


, ki ∈ (0, 1). (4)

Let k � maxi∈N ki , ζ and η ∈ Rn; the above inequality
can be simply expressed as

‖G(ζ) − G(η)‖≤ k‖ζ − η‖, k ∈ (0, 1). (5)

(A4) -ere is a θ> 0 such that θq+1 − θq ≤ θ, q ∈ N.
(A5) m2θ + m1θ(m2θ + 1)exp m1θ < 1.
(A6) supt∈[t0+T,t0+2T]‖r(t)‖≥ 1.
(A7) α exp(− βT) + (4m2 T + 2m2TK + kM2) exp 2T{

(m1 + m2)}< 1.

Remark 3. For notational brevity, let

m1 � max
1≤i≤n

ai + L
1
i 

n

j�1
bji



⎛⎝ ⎞⎠,

m2 � max
1≤i≤n

L
2
i 

n

j�1
cji



⎛⎝ ⎞⎠,

K �
K1

1 − ω1
,

K1 � 2kM1 1 + m1θ exp m1θ ( ,

ρ �
1

1 − ω1
,

ω1 � m2θ + m1θ 1 + m2θ( exp m1θ ,

M1 � sup
t∈ θq,θq+1 

‖r(t)‖,

M2 � 2 sup
t∈ t0 ,t0+2T[ ]

‖r(t)‖,

]1 � 2m2T(1 + ρ),

]2 � 2m2TK,

]3 � m1 + m2,

T �
ln α
β

,

(6)

where m1, m2, ]1, ]2, ]3, M1, K1, K, T> 0; 0< k< 1; and
M2 ≥ 2.

3. Main Results

In what follows, we aim to give Lemma 1 and -eorem 1 to
study the robustness of EGS of the NPRNN system.

At first, we expect to simplify system (1). Actually, we
may denote yj(t) − �yj as rj(t) and yj(δ(t)) − �yj as rj(δ(t)).
-en, system (1) can be rewritten as a class of NPRNNmodel
(7) as

d ri(t) − Gi ri(t)(   � − airi(t) + 
n

j�1
bijφj rj(t)  + 

n

j�1
cijψj rj(δ(t)) ⎡⎢⎢⎣ ⎤⎥⎥⎦dt, t≥ t0 ≥ 0,

ri t0(  � r
0
i � y

0
i ∈ R, i ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where φj(rj(t)) � fj(rj(t) + �yj) − fj(�yj) and ψj(zj

(δ(t))) � gj (rj(δ(t)) + �yj) − gj(�yj). Generally, we denote
φj(0) � 0 and ψj(0) � 0, j ∈ N. In this way, φj(·) and ψj(·)

also satisfy (A2), which are all Lipschitzian with L1
j and L2

j ,
respectively.

Next, Lemma 1 is given, which directly shows the
relationship between the generalized PCA state r(δ(t))

and the state r(t) at present, laying a benign foundation
for the proof of the theorem later.

Lemma 1. Define that r(t) is the current state of (1), r(δ(t))

is the state with the generalized PCA of (1), where t ∈ R+. If
assumptions (A1)–(A5) hold, the following inequation exists:
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r(δ(t))≤ ρ‖r(t)‖ + K, (8)

where

ρ � 1 − ω1( 
− 1

,

ω1 � m2θ + m1θ 1 + m2θ( exp m1θ ,

K �
K1

1 − ω1
,

K1 � 2kM1 1 + m1θ exp m1θ ( ,

m2 � max
1≤i≤n

L
2
i 

n

j�1
cji



⎛⎝ ⎞⎠,

m1 � max
1≤i≤n

ai + L
1
i 

n

j�1
bji



⎛⎝ ⎞⎠,

M1 � sup
t∈ θq,θq+1 

‖r(t)‖.

(9)

Proof. For a generalized PCA function δ(t) � ϖq, define a
set ϕ � t|t ∈ R+, θq ≤ t< θq+1 , let t ∈ ϕ and q ∈ N, and then
we have

ri(t) − ri ϖq  + Gi ri ϖq   − Gi ri(t)( 

≤ 
t

ϖq

− airi(s) + 
n

j�1
bijφj rj(s)   + 

n

j�1
cijψj rj ϖq  ⎡⎢⎢⎣ ⎤⎥⎥⎦ds.

(10)

In combination with (A2), it follows that

r(t) − r ϖq 
�����

����� − G r ϖq   − G(r(t))
�����

�����

≤ 
n

i�1


t

ϖk

ai ri(s)


 + 
n

j�1
L
1
j bij



 rj(s)


 + 
n

j�1
L
2
j cij



 rj ϖq 




⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(11)

Subsequently, for δ(t) � ϖq and t ∈ [θq, θq+1), it follows
that

‖r(t)‖≤ G(r(t)) − G r ϖq  
�����

����� + r ϖq 
�����

����� + 

n

i�1


t

ϖq

ai ri(s)


 + 

n

j�1
L
1
j bij



 rj(s) 


 + 

n

j�1
L
2
j cij



 rj ϖq 



⎡⎢⎢⎣ ⎤⎥⎥⎦ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ ‖G(r(t)) − G(r(δ(t)))‖ + r ϖq 
�����

����� + G(r(δ(t))) − G r ϖq  
�����

�����

+ 

n

i�1


t

ϖq

ai ri(s)


 + 

n

j�1
L
1
j bij



 rj(s) 


 + 

n

j�1
L
2
j cij



 rj ϖq 



⎡⎢⎢⎣ ⎤⎥⎥⎦ds

⎫⎪⎬

⎪⎭

≤ k r(t) − r ϖq 
�����

����� + r ϖq 
�����

����� + 
n

i�1


t

ϖq

ai ri(s)


 + 
n

j�1
L
1
j bij



 rj(s) 


 + 
n

j�1
L
2
j cij



 rj ϖq 



⎡⎢⎢⎣ ⎤⎥⎥⎦ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ k r(t) − r ϖq 
�����

����� + r ϖq 
�����

����� + 
t

ϖq



n

i�1
ai ri(s)


 + L

1
i 

n

j�1
bji



 ri(s)


 + L
2
i 

n

j�1
cji



 ri ϖq 


⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ 2k sup
t∈ θq,θq+1 

‖r(t)‖ + r ϖq 
�����

����� + 
t

ϖq



n

i�1
ai ri(s)


 + L

1
i 

n

j�1
bji



 ri(s)


 + L
2
i 

n

j�1
cji



 ri ϖq 


⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ 2kM1 + r ϖq 
�����

����� + 
t

ϖq



n

i�1
ai + L

1
i 

n

j�1
bji



⎛⎝ ⎞⎠ ri(s)


 + 
n

i�1


n

j�1
L
2
i cji



 ri ϖq 



⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ 2kM1 + 1 + 
t

ϖq



n

i�1
L
2
i 

n

j�1
cji



⎛⎝ ⎞⎠ ri ϖq 


ds
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ 

t

ϖq



n

i�1
ai + L

1
i 

n

j�1
bji



⎛⎝ ⎞⎠ ri(s)


⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ 2kM1 + 1 + max
1≤i≤n

L
2
i 

n

j�1
cji





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭


t

ϖq



n

i�1
ri ϖq 



⎛⎝ ⎞⎠ds
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ max

1≤i≤n
ai + L

1
i 

n

j�1
bji





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

× 
t

ϖq



n

i�1
ri(s)


⎛⎝ ⎞⎠ds

≤ 2kM1 + 1 + m2θ(  r ϖq 
�����

����� + 
t

ϖq

m1‖r(s)‖ds,

(12)
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where M1 � supt∈[θq,θq+1)‖r(t)‖. Besides, m1 and m2 are de-
fined in Remark 3.

Applying the Gronwall–Bellman Lemma to (12), we can
derive

‖r(t)‖≤ 1 + m2θ(  r ϖq 
�����

����� + 2kM1 exp m1θ . (13)

Otherwise, for θq ≤ t< θq+1, similarly, we get

r ϖq 
�����

�����≤ 2kM1 + ‖r(t)‖ + 
t

ϖq



n

i�1
ai + L

1
i bji



  ri(s)


 + 

n

i�1


n

j�1
L
2
i cji



 ri ϖq 



⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ 2kM1 + ‖r(t)‖ + m2θ r ϖq 
�����

����� + 
t

ϖq

m1‖r(s)‖ds

≤ 2kM1 + ‖r(t)‖ + m2θ r ϖq 
�����

����� + m1θ exp m1θ  1 + m2θ(  r ϖq 
�����

����� + 2kM1 

≤ ‖r(t)‖ + m2θ + m1θ exp m1θ  1 + m2θ(   r ϖq 
�����

����� + 2kM1 1 + m1θ exp m1θ ( 

≤ ‖r(t)‖ + ω1 r ϖq 
�����

����� + K1,

(14)

where ω1 � m2θ + m1θ(1 + m2θ)exp m1θ , K1 � 2kM1(1 +

m1θ exp m1θ ) and m1, m2, and M1 are defined in Remark
3.

Consequently, by combining the above equation with
similar terms, we can obtain

1 − ω1(  r ϖq 
�����

�����≤ ‖r(t)‖ + K1. (15)

So, for δ(t) � ϖq and ω1 < 1 for (A5), we can get

‖r(δ(t))‖ ≤ 1 − ω1 
− 1

· ‖r(t)‖ + 1 − ω1 
− 1

· K1

≕ ρ‖r(t)‖ + K,
(16)

where ρ � 1/(1 − ω1) and K � K1/(1 − ω1). In this way, (8)
is valid for any t≥ 0. And the proof is over. □

Remark 4. Different from the previous recurrent neural
network with piecewise arguments [37], Lemma 1 has one
more term than the previous lemma in [37] due to the
presence of neutral terms. It is reasonable, which shows the
impact of neutral terms on PRNN.

Theorem 1. If (A1)–(A7) exist and RNN (2) achieves ex-
ponentially global stability. And if

k< 2M1 + M2( 
− 1

[1 − α exp(− βT)]exp − 2 m1 + m2( T  − 4m2T ,

θ< θ4 � min θ3, min sup θ1, θ2   ,
(17)

where θ3 > 0, θ3 is written as the only solution to the following
transcendental equation:

α exp(− βT) + ]1 + ]2 + kM2( exp 2]3T  � 1. (18)

θ1 and θ2 satisfy (A5) and (A7), respectively; then, NPRNN
(7) can be globally exponentially stable, where

]1 � 2m2T(1 + ρ),

]2 � 2m2TK,

]3 � m1 + m2,

M2 � 2 sup
t0≤t≤t0+2T

‖r(t)‖.

(19)

Besides,m1,m2,T, M1, ρ, ω1,K, and K1 here are the same
as those in Lemma 1.

Proof. For convenience, denote y(t) to be shorthand for
y(t, t0, y0) and r(t) to be shorthand for r(t, t0, r0), which are
the states of systems (2) and (7), respectively. -us from (2)
and (7), we have

yi(t) − ri(t) + Gi ri(t)(  − Gi r
0
i 

� 
t

t0

− ai yi(s) − ri(s)(  + 
n

j�1
bij fj yj(s)  − fj rj(s)   + 

n

j�1
cij gj yj(s)  − gj rj(δ(s))  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
ds.

(20)
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Utilize (A2) and norm inequation for (20), i ∈ N; that is

‖y(t) − r(t)‖ − G(r(t)) − G r
0

 
�����

�����

≤ 
n

i�1


t

t0

ai yi(s) − ri(s)


 + 
n

j�1
L
1
j bij



 yj(s) − rj(s)



⎡⎢⎢⎣

⎧⎪⎨

⎪⎩

+ 
n

j�1
L
2
j cij



 yj(s) − rj(δ(s))



⎤⎥⎥⎦ds

⎫⎪⎬

⎪⎭

≤ 
n

i�1


t

t0

ai yi(s) − ri(s)


 + 
n

j�1
L
1
j bij



 yj(s) − rj(s)



⎡⎢⎢⎣

⎧⎪⎨

⎪⎩

+ 
n

j�1
L
2
j cij



 yj(s) − rj(s)


 + rj(s) − rj(δ(s))


 ⎤⎥⎥⎦ds
⎫⎪⎬

⎪⎭

≤ 
t

t0



n

i�1
ai


 yi(s) − ri(s)


 + 
n

i�1
L
1
i 

n

j�1
bji



 + L
2
i 

n

j�1
cji



⎛⎝ ⎞⎠ yi(s) − ri(s)


⎡⎢⎢⎣

+ 
n

i�1


n

j�1
L
2
i cji



 ri(s) − ri(δ(s))


⎤⎥⎥⎦ds.

(21)

Based on Lemma 1 and Remark 3, for t0 ≤ t ≤ t0 + 2T,
we can derive

‖y(t) − r(t)‖

≤ 
t

t0

max
i∈N

ai


 + L

1
i 

n

j�1
bji



 + L
2
i 

n

j�1
cji





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
‖y(s) − r(s)‖ds

+ 
t

t0

max
i∈N

L
2
i 

n

j�1
cji





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
‖r(s) − r(δ(s))‖ds + G(r(t)) − G r

0
 

�����

�����

≤ m1 + m2(  
t

t0

‖y(s) − r(s)‖ds + m2 
t

t0

(‖r(δ(s))‖ + ‖r(s)‖)ds + 2k sup
t0≤t≤t0+2T

‖r(t)‖{ }

≤ m1 + m2(  
t

t0

‖y(s) − r(s)‖ds + 2m2T(1 + ρ)‖(r(t))‖ + 2m2TK + kM2

≤ ]1‖r(t)‖ + kM2 + ]2 + ]3 
t

t0

‖y(s) − r(s)‖ds,

(22)

where

]1 � 2m2T(1 + ρ),

]2 � 2m2TK,

]3 � m1 + m2,

M2 � 2 sup
t0≤t≤t0+2T

‖r(t)‖.

(23)
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Applying the Gronwall inequation and (A6), for
t0 + T ≤ t ≤ t0 + 2T, we derive&ecmath;

‖y(t) − r(t)‖≤ ]2 + kM2 + ]1‖r(t)‖( exp 2]3T 

≤ ]2 + kM2(  sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ } · exp 2]3T  + ]1 sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ } · exp 2]3T 

≤ ]1 + ]2 + kM2( exp 2]3T  sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ },

(24)

for (]2 + kM2)exp 2]3T > 0 in Remark 3. Subsequently, by Definition 1 and (24), for
t0 + T≤ t≤ t0 + 2T, we further have

‖r(t)‖≤ ‖y(t) − r(t)‖ + ‖y(t)‖

≤ ]1 + ]2 + kM2( exp 2]3T  sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ } + ‖y(t)‖

≤ ]1 + ]2 + kM2( exp 2]3T  + α exp − β t − t0( (   sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ }

≤ ]1 + ]2 + kM2( exp 2]3T  + α exp(− βT)  sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ }

� C sup
t∈ t0+T,t0+2T[ ]

‖r(t)‖{ },

(25)

with C � α exp(− βT) + (]1 + ]2 + kM2)exp 2]3T . Denote

F(ρ, k) � α exp(− βT) + ]1 + ]2 + kM2( exp 2]3T 

� α exp(− βT) + 2m2T(1 + ρ) + 2m2TK + kM2 exp 2 m1 + m2( T ,
(26)

since F(ρ, k) is strictly and continuously monotonous in
terms of variable ρ on the interval [1, +∞), from-eorem 1
and (A7), we have

F(1, k) � α exp(− βT) + 4m2T + 2m2TK + kM2( exp 2 m1 + m2( T < 1, (27)

and

F(∞, k)> 1. (28)

Hence, on the one hand, there is a unique ρ∈ (1, +∞)

which makes F(ρ, k) � 1 true. From assumption (A5), let

Γ(θ) � m2θ + m1θ 1 + m2θ( exp m1θ < 1, (29)

such that θ1(θ1 > 0) satisfy inequation (29), and surely θ1
satisfy (A5). Obviously,

ρ(θ) �
1

1 − Γ(θ)
∈ (1, +∞) (30)

holds towards any θ ∈ (0, θ1). Hence, there is a unique
θ∈ [0, θ1), which makes it possible for ρ � ρ. -en, if we
assume that θ2 satisfies (27), θ3 is the unique positive so-
lution of (26).

Let

θ4 � min θ3, min sup θ1, θ2   , (31)

by virtue of the monotonicity of F(·) and ρ(·), we know that
0<F(ρ, k) � C< 1 holds when 0< θ< θ4, and we obtain the
interval length of PCA so far.

On the other hand, surely, we know that there is some
k< k such that F(1, k)< 1 from (27). Let θ � 0 in (27); then
the bound to k can be described as
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k< 2M1 + M2( 
− 1

[1 − α exp(− βT)]exp − 2 m1 + m2( T  − 4m2T ,

(32)

Denote ξ � − (ln C)/T; according to (25), we can obtain

sup
t0+T≤t≤t0+2T

‖r(t)‖≤ exp(− ξT) sup
t0≤t≤t0+T

‖r(t)‖. (33)

Consequently, for any positive integer l ∈ Z+, when
t≥ t0 + (l − 1)T, by the uniqueness of solution [27], we can

express the solutions of the NPRNN in the following flow
modality:

r(t) ≡ r t; t0, r
0

  � r t; t0 + (l − 1)T, r t0 + (l − 1)T; t0, r
0

  .

(34)

Taking (33) and (34) into account, it follows that

sup
t0+lT≤t≤t0+(l+1)T

‖r(t)‖

� sup
t0+(l− 1)T+T≤t≤t0+(l− 1)T+2T

r t; t0 + (l − 1)T, r t0 + (l − 1)T; t0, r
0

  
�����

�����

≤ exp(− ξT) sup
t0+(l− 1)T≤t≤t0+lT

‖r(t)‖

≤ exp(− lξT) sup
t∈ t0 ,t0+T[ ]

‖r(t)‖

� C exp(− lξT),

(35)

where C � supt∈[t0 ,t0+T]‖r(t)‖. Hence, in the time interval
[t0 + lT, t0 + (l + 1)T], l ∈ Z+, we obtain

‖z(t)‖≤C exp(− lξT)

≤C exp ξ − t + t0 + T( ( 

≤C exp(ξT)exp − ξ t − t0( ( .

(36)

In this way, the NPRNN model (7) achieves exponen-
tially global stability. □

Remark 5. Few studies have been finished to comprehen-
sively consider the influence of robustness and exponentially
global stability on NPRNN model by giving the upper
bounds of PCAs and NTs. In this paper, from Lemma 1, by
the method of norm scaling inequality technique, the re-
lationship between the generalized PCA state r(δ(t)) and
the state r(t) at present is clarified. From -eorem 1, by
utilizing Gronwall Lemma, norm scaling inequality tech-
nique, and the scientific method of controlling variables, the
interval length of PCAs and the maximum scope of NT
compression coefficient of NPRNN (7) are derived
intuitively.

Remark 6. -e interval length of PCAs and the maximum
scope of NT compression coefficient can be estimated by
software tool MATLAB. -e order of calculation is as fol-
lows: firstly, we choose suitable T � (ln α/β)> 0. Further-
more, since α, β, L1

i and L2
i are known and other parameters

can be computed in terms of Remark 3, i ∈ N. -us, the
bound of k can be calculated easily by (32). Additionally, we
select the appropriate k and substitute it into transcendental
equation (18) with other parameters together so that the
length of the argument interval can be acquired. Finally, a
comprehensive selection of values that satisfy both k and θ
inequality conditions in -eorem 1 can ensure the expo-
nential stability of NPRNN (7).

4. Numerical Examples

For the sake of exploring the robustness of the EGS of
NPRNN, we derive two important indicators: the supremum
of the interval length of PCA θ and the feasible upper range
of NTcompression coefficient k in this paper.-us, there are
two elucidative examples to testify the efficiency for the
criteria in -eorem 1.

Example 1. Ee following bistate RNN is considered:

_y1(t)

_y2(t)

⎛⎝ ⎞⎠ �

− 2 0

0 − 1
⎛⎝ ⎞⎠

y1(t)

y2(t)

⎛⎝ ⎞⎠ +

0.02 0.01

0.01 0.02
⎛⎝ ⎞⎠

sin
y1(t)

20
 

sin
y2(t)

20
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)
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By calculation, we easily get that RNN (37) can achieve
exponentially global stability when we set suitable param-
eters α � 1, β � 0.5; one can see Figures 1 and 2.

Next, in the presence of the neutral terms and piecewise
constant arguments, (37) becomes

d
dt

r1(t) − k sin r1(t)( 

r2(t) − k sin r2(t)( 

⎛⎝ ⎞⎠ �
− 2 0

0 − 1
⎛⎝ ⎞⎠

r1(t)

r2(t)

⎛⎝ ⎞⎠ +
0.02 0.01

0.01 0.02
⎛⎝ ⎞⎠

sin
r1(t)

20
 

sin
r2(t)

20
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

− 0.001 0.002

0.002 − 0.001
⎛⎝ ⎞⎠

sin r1(δ(t))( 

sin r2(δ(t))( 

⎛⎝ ⎞⎠.

(38)

Fix two consequences: θq  � q/9 , ϖq  � (2q + 1)

/18}, q ∈ N. Define activation functions fj(rj(t)) and
gj(rj(t)) here as sin(rj(t)/20) and sin(rj(δ(t))), respec-
tively, so we have L1

1 � L1
2 � 1/20, L2

1 � L2
2 � 1, where

j � 1, 2. -en by calculation, we can obtain m1 � 2.0015,
m2 � 0.001, ]3 � 2.0025.

According to -eorem 1 and (32), let T � 0.3> ((ln α)

/β) � 0, and then we have

k< 0.25 × [1 − exp(− 0.15)] × exp(− 1.2015) − 0.0012  � 0.0102.

(39)

From -eorem 1, if we set

f1(θ) � m2θ + m1θ 1 + m2θ( exp m1θ  � 1, (40)

the unique positive solution of (40) θ1 � 0.2833 is the
supremum of (A5). Solving

f2(θ) � α exp(− βT)

+ 4m2T + 2m2TK + kM2( exp 2 m1 + m2( T  � 1,

(41)

the unique positive solution of (41) θ2 � 0.2832 is the
supremum of (A7). So we get

min θ1, θ2  � 0.2832. (42)

Let θ3(θ3 > 0) be the supremum of equation (18); then we
can obtain θ3 � 0.2829 by MATLAB. So

θ< θ4 � min θ3, min θ1, θ2   � min 0.2829, 0.2832{ } � 0.2829.

(43)

Due to the monotonicity of f1(θ) and f2(θ) in (40) and
(41), it is easy to get that (A5) and (A7) hold when θ � 1/9,
k � 0.01.

So, in the case that if the real selected values are all lower
than the derived values, that is, the criteria in-eorem 1 and
(A1)–(A7) are all satisfied, NPRNN (7) will be exponentially
globally stable if we take θ � 1/9 � 0.1111< θ4 � 0.2829 and
k � 0.01< 0.0102. -en the simulations of the NPRNN
model with the interval length of the argument θ � 1/9 and
the bound to neutral term compression coefficient k � 0.01
of state r1(t) and r2(t) are given in Figures 3 and 4.-at is to
say, if the interval length of PCA θ and the neutral term
compression coefficient k are all lower than the results given
in -eorem 1, transient behavior will remain exponentially
stable.

Example 2. Ee following one-dimensional dynamical system
is considered:

_y(t) � − 3.1y(t) + 0.1f(y(t)). (44)

Let f(·) � tanh(·), according to many existing criteria,
the neurodynamic system (44) can be stable when we take
α � 1, β � 3. Figure 5 illustrates the convergence stability of
RNN (44).

In what follows, if we add neutral terms and piecewise
constant arguments to system (44), we can get the NPRNN
(45) as

d
dt

(r(t) − k sin r(t)) � − 3.1r(t) + 0.088 tanh(r(t)) + 0.002 tan h(r(δ(t))). (45)

Similarly, if we fix two consequences θq  � q/10  and
ϖq  � (2q + 1)/20 , according to the characteristics of (45),

we can easily get L1
1 � L2

1 � L1
2 � L2

2 � 1. -en the parameters
that we need by easy calculation are listed as m1 � 3.188,
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m2 � 0.002, ]3 � 3.19. By -eorem 1, let T � 0.25> (( ln α)

/β) � 0. Substituting them into (32), we get

k< 0.25 × [1 − exp(− 0.75)] × exp(− 1.595) − 0.002  � 0.0263.

(46)

Suppose that θ1 and θ2 satisfy (A5) and (A7), respec-
tively. Put the parameters of Remark 3 into (A5) and (A7),
respectively, and we can get

min sup θ1, θ2   � 0.1778. (47)

Next, we can get θ3 � 0.1774 in -eorem 1 by using
MATLAB when other essential parameters are provided;
then we obtain that

θ4 � min θ3, min sup θ1, θ2    � 0.1774. (48)

Moreover, since the increasing monotonicity of expo-
nential function (26), the solution θ4 � 0.1774 also satisfies
assumptions (A5) and (A7), respectively. Hence, the con-
ditions in the assumptions and theorem are all satisfied. So if
we take k � 0.01, θ � 0.1, the convergence stability of r(t) of
NPRNN system (45) can be seen in Figure 6.

Furthermore, several unstable cases are given to illustrate.
In Figure 7, where θ � 0.1, k � 1.02, which are not

suitable for conditions in-eorem 1, the state trajectories of
NPRNN (45) are unstable.

In Figure 8, where k � 0.01, θ � 0.5, which are not fit for
the conditions in -eorem 1, the state trajectories of
NPRNN (45) are unstable.

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (t)

y 1
 (t

)

Figure 1: Stable behavior of y1(t) of RNN (37).

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (t)

y 2
 (t

)

Figure 2: Stable behavior of y2(t) of RNN (37).
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Figure 3: -e EGS of r1(t) with θ � (1/9), k � 0.01 in (38).

0 1 2 3 4 5 6 7 8
−10
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−6

−4
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2

4

6

8

10

t

Be stable

r 2
 (t
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Figure 4: -e EGS of r2(t) with θ � (1/9), k � 0.01 in (38).
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Figure 5: Stable trajectory of y(t) in (44).
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In Figure 9, where k � 1.02, θ � 0.5, which are unsuitable
with the conditions in -eorem 1, the state trajectories of
NPRNN (45) are unstable.

5. Conclusion

-roughout the paper, we mainly analysed the robustness of
EGS of NPRNN. Firstly, we provided a leading Lemma 1 to
clarify the relationship between r(δ(t)) and r(t). Secondly, we
respectively estimated the maximum interval length of the
PCAs and the scope of NT compression coefficient that the
disturbed NPRNN can tolerate to remain stable. Additionally,
we theoretically testified that if the bounds of the interval length
of PCAs and NTcompression coefficient are all lower than the
upper bounds derived herein,NPRNNwill still remain stable. In
the end, two examples were provided to show that if the real
selected values are all lower than the derived values, the system
will hold steady. Conversely, as long as one of the two selected
values does not satisfy the theoretical result deduced, the system
would be destabilized. In other words, we have successfully
verified the robustness of the NPRNN model proposed herein.
At the same time, we can see from the figures that the trajectory
of NPRNNdecays exponentially to stability; that is, we also have
achieved the robustness of EGS of NPRNN. -e criteria pro-
vided here aremeaningful, which can providemore possibilities
for future design and application of NPRNN or any other
differential systems with neutral terms and piecewise constant
arguments. For instance, future investigations may aim to
consider the complex-valued type or fractional-order type of
NPRNN with other disturbed factors.
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Figure 7: Unstable trajectory of r(t) of (45) with θ � 0.1, k � 1.02.
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