Distance Two Surjective Labelling of Paths and Interval Graphs

Sk Amanathulla 1, 2 G. Muhiuddin 1, 2 D. Al-Kadi, 3 and Madhumangal Pal 1, 4

1 Department of Mathematics, Raghunathpur College, Raghunathpur 723101, India
2 Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
3 Department of Mathematics and Statistic, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
4 Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India

Correspondence should be addressed to G. Muhiuddin; chishtygm@gmail.com

Received 18 March 2021; Accepted 28 May 2021; Published 7 June 2021

Copyright © 2021 Sk Amanathulla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Graph labelling problem has been broadly studied for a long period for its applications, especially in frequency assignment in (mobile) communication system, X-ray crystallography, circuit design, etc. Nowadays, surjective $L(2, 1)$-labelling is a well-studied problem. Motivated from the $L(2, 1)$-labelling problem and the importance of surjective $L(2, 1)$-labelling problem, we consider surjective $L(2, 1)$-labelling ($SL21$-labelling) problems for paths and interval graphs. For any graph $G = (V, E)$, an $SL21$-labelling is a mapping $\phi: V \rightarrow \{1, 2, \ldots, n\}$ so that, for every pair of nodes u and v, if $d(u, v) = 1$, then $|\phi(u) - \phi(v)| \geq 2$; and if $d(u, v) = 2$, then $|\phi(u) - \phi(v)| \geq 1$, and every label $1, 2, \ldots, n$ is used exactly once, where $d(u, v)$ represents the distance between the nodes u and v, and n is the number of nodes of graph G. In the present article, it is proved that any path P_n can be surjectively $L(2, 1)$-labelled if $n \geq 4$, and it is also proved that any interval graph (IG) G having n nodes and degree $\Delta > 2$ can be surjectively $L(2, 1)$-labelled if $n = 3\Delta - 1$. Also, we have designed two efficient algorithms for surjective $L(2, 1)$-labelling of paths and interval graphs. The results regarding both paths and interval graphs are the first result for surjective $L(2, 1)$-labelling.

1. Introduction

The frequency assignment problem is bottomed from the problems of distance labelling of graph. In 1992, $L(2, 1)$-labelling was invented by Griggs and Yeh [1] in conjunction with channel assigning problem in a multihop radio network.

For any graph $G = (V, E)$, an $L(2, 1)$-labelling is a mapping $\phi: V(G) \rightarrow \{1, 2, \ldots, n\}$, so that $|\phi(u) - \phi(v)| \geq 2$ if $d(u, v) = 1$ and $|\phi(u) - \phi(v)| \geq 1$ if $d(u, v) = 2$. The span of $L(2, 1)$-labelling of G is $\lambda_{L21}(G) = \max\{\phi(v): v \in V\}$. The $L(2, 1)$-labelling number $\lambda_{L21}(G)$ of G is the smallest natural number p so that G has an $L(2, 1)$-labelling of span p.

A surjective $L(2, 1)$-labelling of $G = (V, E)$ is a mapping $\phi: V \rightarrow \{1, 2, \ldots, n\}$ so that $|\phi(u) - \phi(v)| \geq 2$ when $d(u, v) = 1$ and $|\phi(u) - \phi(v)| \geq 1$ when $d(u, v) = 2$, and it requires that each label, $1, 2, \ldots, n$, be used only once, where n is the number of nodes of G. In Figure 1, we have shown an $L(2, 1)$-labelling of a path with 5 nodes and Figure 2 shows $SL21$-labelling of the same graph. In Figure 1, identical label is used several times but in Figure 2 the labels 1 to 5 are used only once. So, in $SL21$-labelling, there is a more complex task compared to $L(2, 1)$-labelling.

In 1994, Sakai has proved some results regarding distance two labelling of chordal graph. Later, in 2007, Bertossi and Bonuccelli have studied approximate $L(\delta_1, \delta_2, \ldots, \delta_t)$-coloring of trees and interval graphs. Amanathulla and Pal have studied a lot of problems regarding labelling of graphs, like $L(3, 2, 1)$-labelling problems on permutation graphs [2], $L(h_1, h_2, \ldots, h_m)$-labelling problems on interval graphs [3], $L(h_1, h_2, \ldots, h_m)$-labelling problems on circular-arc graphs [4], $L(1, 1, 1)$- and $L(1, 1, 1, 1)$-labelling problems of square of paths [5], and $L(3, 1, 1)$-labelling numbers of squares of paths, complete graphs, and complete bipartite graphs [6]. In 2019, Berhe...
Chang et al. [13] have showed and complete bipartite graph. NZ_hey have shown that subjective labelling for path, cycle, complete graph, caterpillar, graphs with randomly deleted edges [10] and Ranjini et al. published one paper regarding classes of infinite loaded composition of graphs and their Wiener indices. Hosamani et al. [9] have studied graphs with equal dominating and coindices of graphene sheet and C4C8(S) nanotubes and shown that any IG having can be surjectively labelled by λ. Hosamani et al. [9] have studied graphs with equal dominating and coindices of graphene sheet and C4C8(S) nanotubes and shown that any IG having can be surjectively labelled by λ. Hosamani et al. [9] have studied graphs with equal dominating and coindices of graphene sheet and C4C8(S) nanotubes and shown that any IG having can be surjectively labelled by λ.

In 1992, Griggs et al. showed that $\lambda_1(G) \leq \Delta^2 + 2\Delta$ and have proposed a conjecture [1].

In 1993, Jonas [12] has shown that $\lambda_1(G) \leq \Delta^2 + 2\Delta - 4$. Chang et al. [13] have showed $\lambda_1(G) \leq \Delta + \Delta$. Kráľ and Skrekovski [14] proved that $\lambda_2(G) \leq \Delta^2 + \Delta - 1$ and they further improved it to $\lambda_2(G) \leq \Delta^2 + \Delta - 2$ [15].

Different bounds for $\lambda_{1,2,...,n}(G)$ were obtained for different classes of graphs. Some results regarding upper bound of $L(h_1,h_2,...,h_n)$-labelling are shown in Table 1.

In [37], Lingscheit et al. investigated minimal and surjective labelling for path, cycle, complete graph, caterpillar, and complete bipartite graph. They have showed that P_n can be surjectively labelled when $n \geq 7$. Very recently, Amanathulla and Pal have studied SL21-labelling of cycle and circular-arc graph (CAG) and obtained good results for it [38].

$L(2,1)$-labelling of graphs is a rapidly studied problem for its applications in various fields, especially in channel assignment in radio network. In $L(2,1)$-labelling, although there is a light chance to overlap the frequencies in radio network, it cannot be neglected, but in $L(2,1)$-labelling there is no chance to overlap the frequencies, as in this case the labels are distinct. For this reason, in the recent year, SL21-labelling of graph has become a well-studied problem due to its applications. This motivates us to consider SL21-labelling of paths and IGs. Recently, many researchers applied various related concepts on graphs in different aspects (see, e.g., [39–43]).

In the present article, it is shown that any path P_n is surjectively labelled by $L(2,1)$-labelling if $n \geq 4$ and it also showed that any IG having n nodes can be surjectively $L(2,1)$-labelled if $n = 3\Delta - 1$. Two polynomial time algorithms are also established to label a path and an IG by SL21-labelling.

The remainder of this article is organized as follows: in Section 2, some notations and preliminary definitions are given. In Section 3, SL21-labelling of path has been presented. In Section 4, SL21-labelling of IG is investigated. The last section presents concluding remarks.

Table 1: Different types of graphs and their upper bounds.

<table>
<thead>
<tr>
<th>Graphs</th>
<th>$L(h,k)$-labelling numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq \lambda_0 \leq \Delta^2 - \Delta$</td>
<td>[16]</td>
</tr>
<tr>
<td>$\Delta \leq \Delta^1 \leq \Delta^2$</td>
<td>[17]</td>
</tr>
</tbody>
</table>

General graphs	$\Delta + 1 \leq \lambda_1 \leq \Delta^2 + \Delta - 2$	[1, 15]
\lambda_{3,3,2} \leq \lambda_2 \leq \Delta^2 + 2\Delta + 6\Delta	[18]	
\lambda_{4,3,2,1} \leq \lambda_2 \leq \Delta^2 + 2\Delta + 6\Delta	[19]	

Paths	$\lambda_0(P_n) = 0$ or 1	[20]
$\lambda_1(P_n) = 1$ or 2	[21]	
$\lambda_2(P_n) = 2$, 3 or 4	[1]	
For $d \geq 2$, $\lambda_{d,2}(P_n) = 0$, d, $d + 2$ or $d + 4$	[22]	
For $n \geq 2\lambda_{d,3,2,1}(P_n) = 5$, 8, 9, 11 or 12	[23]	

Cycles	For $n \geq 3$, $\lambda_1(C_n) = 1$ or 2	[16]
For $n \geq 3$, $\lambda_1(C_n) = 2$ or 3	[21]	
For $n \geq 3$, $\lambda_1(C_n) = 4$	[1]	
For $n \geq 3$, $\lambda_2(C_n) = 6$, 7, 8 or 9	[22]	
For $n \geq 4$, $d \geq 5$, $\lambda_{d,2,1}(C_n) = d + 4$, $d + 6$, $2d + 1$ or $2d$	[22]	
For $n \geq 3$, $\lambda_{d,3,2,1}(C_n) = 9$, 11, 14 or 13	[23]	

| Complete | $\lambda_{d,1}(K_n) = n - 1$ | [24] |
| $\lambda_{d,2,1}(K_n) = d(n - 1) + 1$ | [22] |

| Complete bipartite | $\lambda_{d,1}(K_{m,n}) = m + n - 1$ | [24] |
| $\lambda_{d,2,1}(K_{m,n}) = d + 2(m + n) - 3$ | [22] |

Planar	$\lambda_1(G) \leq (5/3)\Delta + 1 + 77$	[25]
$\lambda_2(G) \leq 2\Delta + 35$	[26]	
$\lambda_3(G) \leq (5/3)\Delta + 95$	[25]	
$\lambda_{h,k}(G) \leq (5/3)\Delta + 18 + 77k - 18$	[25]	
$\lambda_{d,1,3,2,1}(G) \leq 15(\Delta^2 - \Delta + 1)$	[27]	

Interval	$\lambda_1(G) \leq \Delta + w$	[28]
$\lambda_1(G) \leq \max \{h, 2k\}\Delta$	[29]	
$\lambda_2(G) \leq 6\Delta - 3$	[30]	
$\lambda_{h,k}(G) \leq 10\Delta - 6$	[30]	

Circular-arc	$\lambda_1(G) \leq \Delta^2 - 3\Delta$	[31]
$\lambda_1(G) \leq 2\Delta^2$	[31]	
$\lambda_{h,k}(G) \leq \max \{h, 2k\}\Delta + hw$	[29]	
$\lambda_1(G) \leq \Delta + 3w$	[32]	
$\lambda_2(G) \leq 9\Delta - 6$	[33]	
$\lambda_{h,k}(G) \leq 16\Delta - 12$	[33]	

Permutation	$\lambda_1(G) \leq 2\Delta - 2$	[34]
$\lambda_2(G) \leq \Delta - 1$	[35]	
$\lambda_{h,k}(G) \leq \Delta \leq 2, 5\Delta - 8$	[36]	
$\lambda_2(G) \leq 5\Delta - 2$	[34]	

2. Preliminaries and Notations

A path is a graph $G = (V, E)$, where $(v_1, v_2, \ldots, v_n) \in E$, for all $1 \leq j \leq n - 1$, where $V' = \{v_1, v_2, \ldots, v_n\}$, and it is denoted by P_n. Here, we consider IG (IG) which is not a path, so $\Delta > 2$, because if $\Delta = 2$, then it may be a path.

Let the set of intervals in real line be $I = [I_1, I_2, \ldots, I_n]$, where $I_k = [l_k, r_k]$, $k = 1, 2, \ldots, n$, and l_k and r_k are the left and right endpoints of I_k. For any interval I_k, $k = 1, 2, \ldots, n$, we draw a node v_k and two nodes v_p and v_q have joined by a line segment that if the corresponding intervals have common portion, then we obtain an IG [44]. Throughout the paper, an interval I_k and a node v_k are the same. An IG and its interval representation are shown in Figure 3.

Notations. For any IG G with n nodes and corresponding set of intervals $I = [I_1, I_2, \ldots, I_n]$, we define the following:
From the above result, it is concluded that P_n can be SL21-labelled for $n = 1, 2, 3$. \hfill \square

Theorem 2. The minimum path that can be labelled by SL21-labelling is P_4.

Proof. From Theorem 1, we have $\lambda_{2,1}(P_2) = 3$ and $\lambda_{2,1}(P_3) = 4$, so, for $n < 4$, a path P_n cannot be labelled by SL21-labelling. The labelling pattern $\{3, 1, 4, 2\}$ of path P_4 (see Figure 5) shows that P_4 can be labelled by SL21-labelling. Hence, P_4 is the minimum path that can be labelled by SL21-labelling (Figure 6). \hfill \square

For this path, the node $V = \{v_1, v_2, \ldots, v_{22}\}$. Here, $n > 4$, so this path can be surjectively labelled by $L(2, 1)$-labelling. f^*_ℓ is the SL21-label of the node v_k for $k = 1, 2, \ldots, 22$. According to Algorithm 1, we rearrange the nodes as follows:

$v_2 = v_3$, $v_3 = v_5$, $v_4 = v_7$, $v_5 = v_9$, $v_6 = v_11$, $v_7 = v_{13}$, $v_8 = v_{15}$, $v_9 = v_{17}$, $v_{10} = v_{19}$, $v_{11} = v_{21}$, $v_{12} = v_{14}$, $v_{13} = v_{16}$, $v_{14} = v_8$, $v_{15} = v_{10}$, $v_{16} = v_{12}$, $v_{17} = v_{14}$, $v_{18} = v_{16}$, $v_{19} = v_{18}$, $v_{20} = v_{20}$, $v_{21} = v_{22}$, $v_{22} = v_2$, and v_1 remains unchanged.

Now, node v_k is labelled by k; that is, $f^*_\ell = k$ for each $k = 1, 2, \ldots, 22$. After completion of surjective $L(2, 1)$-labelling of P_{22}, the node and the label of the corresponding node are shown in Figure 7(b).

4. Surjective $L(2, 1)$-Labelling of IGs

Here, some lemmas that we have used to develop the proposed algorithm are presented.

Lemma 1. For any IG G, $|L^2(I_k)| \leq \Delta - 1$, for $I_k \in I$.

Proof. Let G be an IG having n nodes. The labelling of G starts from the leftmost interval. Let node v_k be corresponding to the interval I_k of the IG G. Suppose that in a stage the intervals $I_1, I_2, \ldots, I_{k-1}$ (for some $k = 2, 3, 4, \ldots, n$) are previously labelled by SL21-labelling and the remaining intervals are unlabelled.

Let $|L^2(I_k)| = p$. This means that the number of distinct SL21-labelling for labelling distance two intervals from the interval I_k before labelling I_k is p. Since the degree of the IG G is Δ, there exists an interval I_a (see Figure 8) and those are adjoining to Δ intervals at most. In Figure 8, I_a is adjoining to $I_k, I_{k+1}, I_{k+2}, I_{k+3}$. Among the intervals, some intervals $(I_k, I_{k+1}, I_{k+2}, I_{k+3})$ in Figure 8) are of distance two apart from I_k and among the intervals there is an interval $(I_k$ in Figure 8) whose distance is not two from I_k. Hence, $p \leq \Delta - 1$; that is, $|L^2(I_k)| \leq \Delta - 1$. \hfill \square

Observation 1. For any IG G, $L^1(I_k) \subseteq L^1(I_k)$, for any interval I_k, $i = 1, 2$.

Observation 2. For any IG G, $|L^1(I_k)| \leq \Delta$, for any interval $I_k \in I$.

3. **Surjective $L(2, 1)$-Labelling of Paths**

In this portion, we have presented SL21-labelling of path and have shown that any path P_n is surjectively $L(2, 1)$-labelled if $n \geq 4$. Also, we have presented a greedy algorithm to label a path by SL21-labelling.

Theorem 1. For P_n,

$$\lambda_{2,1}(P_n) = \begin{cases} 1, & \text{if } n = 1, \\ 3, & \text{if } n = 2, \\ 4, & \text{if } n = 3. \end{cases} \quad (1)$$

Proof. Let P_n be a path having n nodes.

Case 1: $n = 1$.

This result holds trivially.

Case 2: $n = 2$.

The labels used are 1 and 3 and hence $\lambda_{2,1}(P_2) = 3$.

Case 3: $n = 3$.

There are two possible cases shown in Figures 4(a) and 4(b). The labelling sequences are $\{3, 1, 4\}$ and $\{1, 4, 2\}$.

From the above result, it is concluded that P_n can be SL21-labelled for $n = 1, 2, 3$. \hfill \square
Input: The nodes of the path P_n $(n > 6)$, $V = \{v_1, v_2, \ldots, v_n\}$.
Output: The SL21-label of the path P_n.

Step 1: Rearrange the intervals as follows:

Case I: n is odd
- $v_n = v_2$;
- $v_{i+1} = v_{2i+1}$, for $i = 1, 2, \ldots, \left(\frac{n-1}{2}\right)$;
- $v_{i+\left(\frac{n-1}{2}\right)} = v_{2i}$, for $i = 2, 3, \ldots, \left(\frac{n-1}{2}\right)$;
- v_1 remains same;

Case II: n is even
- $v_n = v_2$;
- $v_{i+1} = v_{2i+1}$, for $i = 1, 2, \ldots, \left(\frac{n}{2}\right) - 1$;
- $v_{i+\left(\frac{n}{2}\right)-1} = v_{2i}$, for $i = 2, 3, \ldots, \left(\frac{n}{2}\right)$;
- v_1 remains same;

Step 2: Label the node v_i by i, i.e., $f_i^r = i$, for $i = 1, 2, \ldots, n$

end AMPSL21.

Algorithm 1: AMPSPL21.

Figure 4: A path with three nodes and their surjective labels.

Figure 5: A path P_4 labelled by SL21-labelling.

Figure 6: (a) A path with of 14 nodes; (b) the path after rearrangement of the nodes.

Figure 7: A path labeled by SL21-labelling.

Figure 8: A set of intervals.
Theorem 4. Any IGG with n nodes is surjectively labelled if $n = 3\Delta - 1$.

Proof. Since G has n nodes, let $I = \{I_1, I_2, \ldots, I_k\}$. Since we want to label the intervals of an IG by SL21-labelling, every label is used exactly once and the labels must be in $\{1, 2, \ldots, n\}$. So,

$$\lambda_{2,1}(G) \leq 2|L^1(I_k)| + |L^2(I_k)| \leq 2\Delta + (\Delta - 1), \text{ by Lemma 1} \tag{2}$$

$$\leq 3\Delta - 1.$$

Again, since G has n nodes, to label the whole graph by SL21-labelling, n distinct labels must be required. Also, since $\lambda_{2,1}(G) \leq 3\Delta - 1$, in the extreme unfavourable cases $3\Delta - 1$ labels are required to label graph G by $L(2, 1)$-labelling. Again, in SL21-labelling, the highest label is equal to n. Hence, an IGG is surjectively labelled using $L(2, 1)$-labelling if $n = 3\Delta - 1$.

If $n \neq 3\Delta - 1$, then the IG may or may not be labelled by SL21-labelling, because in the worst case $3\Delta - 1$ labels are required to label the IG, which is not equal to n. This contradicts the condition that the used label must belong to $\{1, 2, \ldots, n\}$ and the highest label must be equal to n for SL21-labelling. \square

4.1. Algorithm for Surjective $L(2, 1)$-Labelling of IGs. In this part, two algorithms are designed: one is to compute $L^d(k, I)$ and the other is to compute SL21-label for an IG (Algorithm 2).

Lemma 2. $L^d(p, I)$ for $p = 1, 2$ is correctly computed by Algorithm 2 and the time complexity of the above algorithm is $O(\Delta^2)$.

Proof. According to Lemma 2, for each element $i \in L^d(1, I)$, $L^d(2, I)$ differs from I_k by at least 2 for each $I_k \subseteq L^d(1, I)$. Therefore, $|I - I_k| \geq 2$ for all $I_k \subseteq L^d(1, I)$, for all $I_k \subseteq L^d(1, I)$. So, Algorithm 2 correctly computes the set $L^d(1, I)$ for each $I_k \subseteq I$, $k = 1, 2, \ldots, n$. Again, each element l_{k} of $L^d(2, I)$ differs from I_k by at least 1 for each $I_k \subseteq L^d(1, I)$. Therefore, $|I - I_k| \geq 2$ for all $I_k \subseteq L^d(2, I)$, for all $I_k \subseteq L^d(2, I)$. So, Algorithm 2 correctly computes the set $L^d(p, I)$ for each $k = 1, 2$. As $|L^d|$ is the cardinality of the set of labels L^d, $|L^d(I_k)| \leq |L^d|$ for $i = 1, 2$ and $I_k \subseteq I$, and also $r \leq 3\Delta + 1$, where $r = \max\{L^d(I_k)\} + 2$. So, $L^d(1, I_k)$ is computed by using at most $(\Delta^2 + 1)|L^d|$ times, that is, using $O(\Delta^3)$ times. Similarly, $L^d(2, I_k)$ is computed using at most $(\Delta^2 + 1)|L^d|$ times, that is, using $O(\Delta^3)$ times. Since $|L^d| \leq 3\Delta + 1$, the iterative time for algorithm SLKVL is $O(\Delta^3)$. \square

Lemma 3. For each IGG, $L^d(1, I)$ is the nonempty largest set satisfying distance one condition of $L(2, 1)$-labelling, $l \leq r$, for every $l \in L^d(1, I)$, and $r = \max\{L^d(I_k)\} + 2$, for any $I_k \subseteq I$.

Proof. Since $r = \max\{L^d(I_k)\} + 2$ and $L^d(I_k) \subseteq L^d(I_k)$ (by Observation 1), $\max\{L^d(I_k)\}$, for every $l \in L^d(1, I_k)$, so, $L^d(I_k)$ is a nonempty set. Also, let B be an arbitrary set of labels, which satisfies distance one condition of $L(2, 1)$-labelling, $l \leq r$, for all $l \in B$, and $r = \max\{L^d(I_k)\} + 2$. Then, for $b \in B$, $\max\{L^d(I_k)\} + 2 = 2$. Since, $b \in B \Rightarrow b \in L^d(1, I_k)$. Then, $B \subseteq L^d(1, I_k)$. Since B is arbitrary, $L^d(1, I_k)$ is the largest nonempty set of labels which satisfies distance one condition of $L(2, 1)$-labelling, $l \leq r$, for every $l \in L^d(1, I_k)$, and $r = \max\{L^d(I_k)\} + 2$, for any $I_k \subseteq I$. \square

Lemma 4. For any IGG, $L^d(2, I_k)$ is the nonempty largest set satisfying $L(2, 1)$-labelling condition, $l \leq r$, for every $l \in L^d(1, I_k)$, $r = \max\{L^d(I_k)\} + 2$, and $I_k \subseteq I$.

Proof. Since $r = \max\{L^d(I_k)\} + 2$ and $L^d(I_k) \subseteq L^d(I_k)$, for $i = 1, 2$ (by Observation 1), $\max\{L^d(I_k)\} + 2 = 2$. That is, $\max\{L^d(I_k)\} + 2$ for all $I_k \subseteq L^d(I_k)$, and $\max\{L^d(I_k)\} + 2$ for all $I_k \subseteq L^d(I_k)$. Hence, r is the valid $L(2, 1)$-label of I_k; therefore, $r = \max\{L^d(I_k)\}$. This shows that $L^d(2, I_k)$ is a nonempty set. Also, let B be an arbitrary set of labels which satisfies $L(2, 1)$-labelling conditions, $l \leq r$ for every $l \in B$, and $r = \max\{L^d(I_k)\} + 2$. Then, for $b \in B$, $\max\{L^d(I_k)\} + 2 = 2$. Since, $b \in B \Rightarrow b \in L^d(2, I_k)$. So, $B \subseteq L^d(2, I_k)$. Since B is arbitrary, $L^d(2, I_k)$ is the largest nonempty set of labels which satisfies $L(2, 1)$-labelling, $l \leq r$ for every $l \in L^d(2, I_k)$, and $r = \max\{L^d(I_k)\} + 2$, for any $I_k \subseteq I$. \square

Theorem 5. Algorithm 3 correctly labels an IG by SL21-labelling, where $n = 3\Delta - 1$.

Proof. Let G be an IG with n nodes such that $n = 3\Delta - 1$. We rearranged the nodes so that no two consecutive intervals are adjacent to each other. After rearrangement of the intervals, let $I = \{I_1, I_2, \ldots, I_k\}$ and let $f_1 = 1$ and $L^d(I) = \{1\}$.

We consider circumstances in which the intervals I_1, I_2, \ldots, I_k are already labelled for $k = 2, 3, \ldots, n$ and the remaining intervals are not labelled. In this stage, our aim is to label I_k by $L^d(1, I_k)$. Now, $L^d(2, I_k)$ is the nonempty largest set of labels satisfying $L(2, 1)$-labelling, $l \leq r$ for every $l \in L^d(2, I_k)$, and $r = \max\{L^d(I_k)\} + 2$ for any $I_k \subseteq I$ (by Lemma 4).

Again, $L^d(1, I_k) = L^d(2, I_k) - L^d(I_k)$, so $L^d(1, I_k)$ is the nonempty largest set satisfying SL21-labelling, as the label in $L^d(1, I_k)$ was not used previously to label any interval and also satisfies $L(2, 1)$-labelling. Therefore, $f_k = q$, where $q = \min\{L^d(2, I_k)\}$. Since $L^d(2, I_k)$ is the largest set of labels satisfying SL21-labelling, q is the least surjective label of I_k. Since $L^d(I_k) \subseteq L^d(1, I_k)$, the interval I_k is labelled by using only the labels from $\{1, 2, \ldots, n\}$ which have not been used earlier to label any interval. Since I_k is arbitrary, any IG is surjectively labelled by $L(2, 1)$-labelling by Algorithm 3. \square
Lemma 2 we see that by algorithm AMPSL21 one can compute the sets $L^v(I_k)$ for $k = 2, 3, \ldots, n$.

\medskip

\textbf{Algorithm 2: AMPKVL.}

\medskip

\textbf{Algorithm 3: AMPSL21.}

\medskip

\textbf{Algorithm 4: AMPKL.}

\medskip

\textbf{Theorem 6.} The running time of Algorithm 3 is $O(n\Delta^3)$, where $n = 3\Delta - 1$.

\medskip

Proof. According to Algorithm 3, the SL21-label of the interval I_k is computed. Now by Lemma 2 we see that by algorithm AMPSL21 one can compute the set $L^v(I_k)$ for $k = 2, 3, \ldots, n$. By Lemma 2 we see that the running time of Algorithm 3 is $O(n\Delta^3)$, that is, $O(n\Delta^3)$.

4.1.1. Illustration of Algorithm AMPSL21. We take an IG having 14 nodes (see Figure 9) and label that graph by Algorithm 3. The graph after completion of surjective $L(2, 1)$-labelling is given in Figure 10.

For the above graph, the set of intervals $I = \{I_1, I_2, \ldots, I_{14}\}$ and $\Delta = 5$. Here, $3\Delta - 1 = 14 = n$, so this IG can be
surjectively labelled by $L(2,1)$-labelling. f^k_j is the SL21-label of the interval I_k, for $k = 1, 2, \ldots, 14$.

According to Algorithm 3, at first, we rearrange the intervals as follows:

$I_2 = I_3, I_5 = I_6, I_8 = I_9, I_10 = I_11, I_12 = I_{13}, I_{14}$ remain the same.

$f^1_1 = 1$ and $L^1(I_2) = \{1\}$ are also initialized.

Iteration 1: For $k = 2$,

$L^1(I_2) = \{1\}, L^2(I_2) = \phi.$

$L^3(I_2) = \{1, 2, 3\}, L^4(I_2) = \{1, 2, 3\}$.

So, $L^v(I_2) = L^3(I_2) - L^4(I_2) = \{1, 2, 3\} - \{1\} = \{2, 3\}$.

Therefore, $f^2_2 = \min\{L^v(I_2)\} = 2$.

$L^v(I_3) = L^v(I_2) \cup \{f^2_2\} = \{1\} \cup \{2\} = \{1, 2\}$.

Iteration 2: For $k = 3$,

$L^1(I_3) = \{1\}, L^2(I_3) = \phi.$

$L^3(I_3) = \{3, 4\}, L^4(I_3) = \{3, 4\}$.

So, $L^v(I_3) = L^3(I_3) - L^4(I_3) = \{3, 4\} - \{3, 4\} = \{3, 4\}$.

Therefore, $f^3_3 = \min\{L^v(I_3)\} = 3$.

$L^v(I_4) = L^v(I_3) \cup \{f^3_3\} = \{1, 2, 3\}$.

Iteration 3: For $k = 4$,

$L^1(I_4) = \phi, L^2(I_4) = \phi.$

$L^3(I_4) = \{1, 2, 3, 4, 5\}, L^4(I_4) = \{1, 2, 3, 4, 5\}$.

So, $L^v(I_4) = L^3(I_4) - L^4(I_4) = \{1, 2, 3, 4, 5\} - \{1, 2, 3, 4, 5\} = \{\}$.

Therefore, $f^4_4 = \min\{L^v(I_4)\} = 4$.

$L^v(I_5) = L^v(I_4) \cup \{f^4_4\} = \{1, 2, 3, 4\}$.

Iteration 4: For $k = 5$,

$L^1(I_5) = \{1, 3\}, L^2(I_5) = \phi.$

$L^3(I_5) = \{5, 6\}, L^4(I_5) = \{5, 6\}$.

So, $L^v(I_5) = L^3(I_5) - L^4(I_5) = \{5, 6\} - \{5, 6\} = \{\}$.

Therefore, $f^5_5 = \min\{L^v(I_5)\} = 5$.

$L^v(I_6) = L^v(I_5) \cup \{f^5_5\} = \{1, 2, 3, 4, 5\}$.
Iteration 5: For $k = 6$,

$L^1(I_6) = \{4\}, L^2(I_6) = \phi.$

$L^1(I_6) = \{1, 2, 6, 7\}, L^2(I_6) = \{1, 2, 6, 7\}.$

So, $L^{10}(I_6) = L^{11}(I_6) = L^{12}(I_6) = \{1, 2, 6, 7\} - \{1, 2, 3, 4, 5\} = \{6, 7\}.$

Therefore, $f_6^1 = \min[L^{10}(I_6)] = 6.$

$L^2(I_6) = L^1(I_6) \cup \{f_6^2\} = \{1, 2, 3, 4, 5, 6\}.$

In this way, $f_7^2 = 7$, $f_8^3 = 8$, $f_9^3 = 9$, $f_{10}^4 = 10$, $f_{11}^4 = 11$, $f_{12}^4 = 12$, $f_{13}^4 = 13$, and, finally, $f_{14}^4 = 14$.

The nodes and the corresponding labels are shown in Table 2.

5. Conclusion

In $L(2,1)$-labelling, although there is a light chance to overlap the frequencies in radio network, it cannot be neglected, but in $SL21$-labelling there is no chance to overlap the frequencies, as in this case the labels are distinct. The results about $SL21$-labelling are clearly welcome. In the future, we can extend this work to other classes of intersection graph. So, there is a scope for the new research to study surjective labelling of permutation graph, trapezoid graph, and so forth.

Appendix

Here, an algorithm to compute $A-B$ is presented, where A and B are subsets of $\{1, 2, \ldots, 4\Delta-2\}$ (Algorithm 4).

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Taif University Researchers Supporting Project (TURSP-2020/246), Taif University, Taif, Saudi Arabia.

References

