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�is paper is concerned with the asymptotic optimality of quantized stationary policies for continuous-time Markov decision
processes (CTMDPs) in Polish spaces with state-dependent discount factors, where the transition rates and reward rates are
allowed to be unbounded. Using the dynamic programming approach, we �rst establish the discounted optimal equation and the
existence of its solutions. �en, we obtain the existence of optimal deterministic stationary policies under suitable conditions by
more concise proofs. Furthermore, we discretize and incentivize the action space and construct a sequence of quantizer policies,
which is the approximation of the optimal stationary policies of the CTMDPs, and get the approximation result and the rates of
convergence on the expected discounted rewards of the quantized stationary policies. Also, we give an iteration algorithm on the
approximate optimal policies. Finally, we give an example to illustrate the asymptotic optimality.

1. Introduction

�is paper deals with the in�nite horizon discounted con-
tinuous-time Markov decision processes (CTMDPs), as well
as studies the asymptotic optimality of quantized stationary
policies of CTMDPs, and gives the convergence rate results.
�e discount factors are state-dependent, and the transition
rates and reward rates are allowed to be unbounded.

It is well-known that the discounted CTMDPs have been
widely studied as an important class of stochastic control
problems. Generally speaking, according to the various
forms of discount factors, the in�nite horizon discounted
CTMDPs can be classi�ed into the following three groups:
(i) MDPs with a �xed constant discount factor α, see, for
instance, Doshi [1], Dynkin and Yushkevich [2], Feinberg
[3], Guo [4, 5], Guo and Song [6], Guo and Hernndez-Lerma
[7], Hernndez-Lerma and Lasserre [8, 9], Puterman [10],
and the references therein; (ii) MDPs with varying (state-
dependent or state-action dependent) discount factors, for
instance, see Feinberg and Shwartz [11], Gonzlez-Hernndez

et al. [12], Wu and Guo [13], Wu and Zhang [14], and the
references therein; (iii) MDPs whose the discount factor is a
function of the history, see Hinderer [15], for example. �is
paper will study the in�nite horizon discounted CTMDPs in
the case of the group.

For the discounted criterion of MDPs, there are many
works on the existence of solutions to the discounted op-
timality equation and of discounted optimal stationary
policies, see, for instance, [1, 4, 6, 7, 16] for the CTMDPs and
[8–10, 13–15] for the discrete-time Markov decision pro-
cesses (DTMDPs). �ese references, however, are on the
discounted MDPs with a constant discount factor or the
discounted DTMDPs with varying discount factors. Re-
cently, the discounted CDMDPs with state-dependent dis-
count factors are studied in [16], in which the authors
established the discounted reward optimality equation
(DROE) and obtained the existence of discounted optimal
stationary policies. However, in [16], the discussion is re-
stricted to the class of all randomized stationary policies (i.e.,
the policies are time-independent). Following these ideas,
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still within the discounted continuous-time MDPs, models
with Polish spaces are studied in this paper. We will extend
some results in [16] to the case of all randomized Markov
policies and obtain the existence of discounted optimal
stationary policies by more concise proof.

Although the existence of the optimal policies is proved,
it is difficult to compute an optimal policy even in the
stationary policies class for nonfinite Polish (i.e., complete
and separable metric) state and action spaces. Furthermore,
in applications to networked control, the transmission of
such control actions to an actuator is not realistic when there
is an information transmission constraint (imposed by the
presence of a communication channel) between a plant, a
controller, or an actuator. .us, from a practical point of
view, it is important to study the approximation of optimal
stationary policies. Several approaches have been developed
in the literature to solve this problem for finite or countable
state spaces, see [17–20]. Lately, for infinite Borel state and
action spaces, [21, 22] give the asymptotic optimality of
quantized stationary policies in stochastic control for
DTMDPs. Inspired by these, in this paper, we are concerned
with the asymptotic optimality of quantized stationary
policies in CTMDPs with Polish spaces. To the best of our
knowledge, the corresponding asymptotic optimality for
CTMDPs with varying (state-dependent) discount factors
has not been studied.

.erefore, this paper contains the following three main
contributions:

(a) For the CDMDPs with state-dependent discount
factors, we extend some results in [16] to the case of
all randomized Markov policies, and the proof of the
existence of discounted optimal stationary policies is
simplified under mild conditions and gives an al-
gorithm to get ε-optimal policies.

(b) We obtain that the deterministic stationary quan-
tizer policies are able to approximate the optimal
deterministic stationary policies under mild tech-
nical conditions and thus show that one can search
for approximate optimal policies within the class of
quantized control policies.

(c) For the asymptotic optimality, we give the corre-
sponding convergence rates results.

.is paper is organized as follows. In section 2, we in-
troduce the models of CDMDPs with the expected dis-
counted reward criterion and state the discounted optimality
problem. In section 3, under suitable conditions, we prove
the main result on the existence of the solutions to the
discounted optimal equation (DOE) and the existence of
optimal stationary policies. In section 4, we give an iteration
algorithm on the ε-optimal policies. In section 5, we establish
conditions under which quantized control policies are as-
ymptotically optimal and give the corresponding conver-
gence rate results and the rates of convergence on the

expected discounted rewards of the quantized stationary
policies. Finally, we illustrate the asymptotic optimality by
an example in Section 6.

2. The Markov Decision Processes and
Discounted Optimal Problem

Consider the model of continuous-time Markov decision
processes M as follows:

M ≔ S, (A(x)⊆A, x ∈ S), q(•|x, a), α(x), r(x, a) , (1)

where S is the state space, A(x) are sets of admissible actions,
and A is a compact action space. S and A are assumed to be
Polish spaces (i.e., complete and separable metric spaces)
with Borel σ-field B(S) and B(A), respectively. A(x) and
K ≔ (x, a)|x ∈ S, a ∈ A(x){ } are Borel subsets of A and
S × A, respectively. q(•|x, a) denotes the function of tran-
sition rates, which satisfy the following properties:

(P1) q(•|x, a) is a signed measure on B(S) for each
fixed (x, a) ∈ K, and q(B|•, •) is a Borel-measurable
function on K for each fixed B ∈B(S)

(P2) 0 ≤ q(B|x, a) <∞ for all (x, a) ∈ K and
x ∉ B ∈B(S)

(P3) q(•|x, a) is conservative, that is, q(S|x, a) � 0 for
all (x, a) ∈ K, and then, 0≤ − q( x{ }|x, a)<∞
(P4) the model in (1) is supposed to be stable, that is, for
each x ∈ S, it holds that

q
∗
(x) ≔ sup

a∈A(x)

− q( x{ }|x, a) <∞. (2)

.e discount factors α(x) are the nonnegative mea-
surable functions on S. Finally, the reward rate function
r(x, a) is assumed to be Borel-measurable on K. Note that,
r(x, a) is allowed to be unbounded from both above and
below, and it can be regarded as a cost rate rather than a
reward rate only.

.e definitions of the randomized Markov policy
≔ (πt, t≥ 0), randomized stationary policy φ, and (deter-
ministic) stationary policy f are given by [8] [Definitions
2.2.3 and 2.3.2]. .e sets of all randomized Markov policies,
randomized stationary policies, and (deterministic) sta-
tionary policies are denoted byΠ,Φ, and F, respectively. It is
clear that F ⊂ Φ ⊂ Π, and for each π � (πt, t≥ 0) ∈ Π, x ∈ S,
and B ∈B(S), we define the associated functions of tran-
sition rates qπ(•|x, πt) and reward rates rπ(x, πt) by

qπ B|x, πt(  ≔ 

A(x)

q(B|x, a)πt(da|x), rπ x, πt( 

≔ 

A(x)

r(x, a)πt(da|x).

(3)
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In general, we also write as q(B|x, πt) and r(x, πt), re-
spectively. Furthermore, for each φ ∈ Φ, we define the
functions of transition rates and reward rates by

q(B|x, φ) ≔ 

A(x)

q(B|x, a)πt(da|x), rπ(x,φ)

≔ 

A(x)

r(x, a)φ(da|x).

(4)

In particular, we write them as q(B|x, f) and r(x, f),
respectively, when φ � f ∈ F, that is,
q(B|x, f) � q(B|x, f(x)) and r(x, f) � r(x, f(x)). Also,
for each ∈ S, we denote

q(x, f) ≔ − q( x{ }|x, f(x)). (5)

For any fixed policy π � (πt, t≥ 0) ∈ Π, q(•|x, πt) is also
called an infinitesimal generator (see Doshi [1]). As is well
known, any transition function pπ(s, x, t, B) depending on π
such that

lim
τ⟶0+

pπ(t, x, t + τ, B) − δx(B)

τ
� q B|x, πt( . (6)

for all x ∈ S and B ∈B(S) is called a Q-process with
transition rates q(•|x, πt), where δx(B) is the Dirac measure
at x ∈ S. By Guo [4], there exists a minimal Q-process
pmin
π (s, x, t, B) with transition rates q(·|x, πt), but such a

Q-process might not be regular, that is, there may exist
pmin
π (s, x, t, S)< 1 for some x ∈ S and t≥ s≥ 0. To ensure the

regularity of the Q-process, we propose the following “drift
conditions.”

Assumption 1. .ere exists a measurable function w1 ≥ 1 on
S, and constants c1 ≠ 0, b1 ≥ 0 and Mq > 0 such that

(a) for all (x, a) ∈ K, 
S
w1(y)q(dy|x, a)≤ c1w1(x) + b1

(b) For each x ∈ S, q∗(x)≤Mqw1(x)

Remark 1.

(a) .e function w in Assumption 1 (a) is used to guar-
antee the finiteness of the optimal value function as
below, and by [4] [Remark 2.2(b)], it is an extension
of the “drift condition” in Lund et al. [23] for a
time-homogeneous Q-process. Moreover, As-
sumption 1 (b) is used to guarantee the regularity of
the Q-process, and it is not required when the
transition rates are bounded (i.e.,
supx∈Sq∗(x)<∞).

(b) Under Assumption 1, it holds that pmin
π (s, x, t, S) ≡ 1

by Guo [4] [.eorem 3.2]. .en, the Q-process with
transition rates q(•|x, πt) is regular and unique.
Hence, we write pmin

π (s, x, t, B) simply as
pπ(s, x, t, B). Since it is time-homogeneous, we
discuss the case that the initial time is s � 0, and then,
we write pπ(0, x, t, B) simply as pπ(x, t, B).

As it is well known (e.g., see Doshi [1] and Guo [5]), for
each π � (πt, t≥ 0) ∈ Π and the initial state x ∈ S, there

exists a unique probability space (Ω,B(Ω), Pπ
x), where the

probability measure Pπ
x is completely determined by

pπ(x, t, B) (see Guo [6], Section 2.3]), and a state and action
process x(t), a(t), t≥ 0{ } with the transition probability
function pπ(x, t, B) such that (see Guo [5], Lemma 2.1])

P
π
x(x(t) ∈ B) � pπ(x, t, B), P

π
x(a(t) ∈ Γ|x(t) � j)

� πt(Γ|j), ∀Γ ∈B(A).
(7)

.e expectation operator corresponding to Pπ
x can be

denoted by Eπ
x. Moreover, for each x ∈ S, π ∈ Π and t≥ 0, the

expected reward is given by

E
π
xr x(t), πt(  ≔ 

S
r y, πt( pπ(x, t, dy). (8)

Now, we state the discounted optimality problem. For
each π ∈ Π and x ∈ S, the expected discounted reward
criterion is defined as

J(x, π) ≔ E
π
x 

∞

0

e
− 

t

0
α(x(s))ds

r x(t), πt( dt
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

and the corresponding optimal value function is given by

J
∗
(x) ≔ sup

π∈Π
J(x, π). (10)

Also, a policy π∗ ∈ Π is called optimal policy if
J(x, π∗)≥ J(x, π) for all x ∈ S and π ∈ Π. Our main aim in
Section 3 is to give conditions for the existence of optimal
deterministic stationary policies.

3. The Existence of Optimal Stationary Policies

In this section, the existence and uniqueness of the dis-
counted optimal equation (DOE) are shown, and the ex-
istence of the optimal policies is given for the CTMDPs M

defined in (1).
Note that, for any given measurable function w≥ 1 on S,

a function v on S is called w− bounded if the w− weighted
norm ‖v‖w ≔ supx∈S|v(x)/w(x)| is finite. Such a function w

is called a weight function. It is clear that
Bw(S) ≔ v: ‖v‖w <∞  is a Banach space for all real-valued
measurable functions v on S. To guarantee the finiteness of
the optimal value function, we need the following
assumptions.

Assumption 2. Let w1 and c1 be as in Assumption 1. For each
x ∈ S, suppose that the following conditions hold:

(a) A(x) is a compact set
(b) .e function r(x, a) is continuous on a ∈ A(x), and

for each (x, a) ∈ K, there exists a constant M1 > 0
such that |r(x, a)|≤M1w1(x)

(c) .e discount factor α(x) is continuous on S, and
there is a constant α0 > c1 such that α(x)≥ α0 > c1

(d) For any bounded measurable function u(x) on S, the
functions 

S
u(y)q(dy|x, a) and 

S

w1(y)q(dy |x, a)

are continuous on a ∈ A(x)
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(e) .ere exists a nonnegative measurable function
w2(x) on S, and constants c2 > 0, b2 ≥ 0 and M2 > 0
such that q∗(x)w1(x)≤M2w2(x) and


S
u(y)q(dy|x, a)≤ c2w2(x) + b2 for all x ∈ S and

a ∈ A(x)

For each x ∈ S, let m(x) be any positive measurable
function on S such that m(x) ≥ q∗(x)≥ 0, and

P(B|x, a) ≔
q(B|x, a)

m(x)
+ δx(B), ∀B ∈B(S), (x, a) ∈ K.

(11)

where δx(B) is Dirac measure (i.e., it is equal to 1 if x ∈ B

and 0 otherwise). It is clear that P(·|x, a) is a probability
measure on S for each (x, a) ∈ K. For any u ∈Bw1

(S),
define an operator T on Bw1

(S) as

Tu(x) ≔ sup
a∈A(x)

r(x, a)

α(x) + m(x)
+

m(x)

α(x) + m(x)



S
u(y)P(dy|x, a)}, ∀x ∈ S.

(12)

And, define a recursive sequence un, n≥ 0  as

u0(x) ≔ −
M1b1

α0 α0 − c1( 
−

M1w1(x)

α0 − c1
, un(x) ≔ Tun− 1(x).

(13)

Now, we give the discounted optimal equation (DOE).

Theorem 1. Under Assumptions 1 and 2 (b)-(c), the fol-
lowing assertions hold.

(a) |J(x, π)|≤ b1M1/α0(α0 − c1) + M1/α0 − c1w1(x) for
all x ∈ S and π ∈ Π, and J(·, π) ∈Bw1

(S)

(b) Let u∗ ≔ limn⟶∞un, then we have u∗ ∈Bw1
(S), and

it is the solution of the following discounted optimal
equation (DOE):

α(x)u(x) � sup
a∈A(x)

r(x, a) + 
S
u(y)q(dy|x, a) , ∀x ∈ S.

(14)

Proof. (a) By the assumptions, we have

|J(x, π)| � E
π
x 
∞

0
e

− 
t

0
α(x(s))ds

r x(t), πt( dt
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦





≤ 
∞

0
E
π
xe

− α0t
r x(t), πt( 


dt,

≤M1 
∞

0
e

− α0t
E
π
x w1(x(t)) dt≤M1 

∞

0
e

− α0t
e

c1t
w1(x) +

b1

c1
e

c1t
− 1  dt,

�
b1M1

α0 α0 − c1( 
+

M1

α0 − c1
w1(x),

(15)

where the last inequality holds by Guo [4] [.eorem
3.2(b)]. .en, J(x, π) ∈Bw1

(S) for each x ∈ S, and
part (a) holds.

(b) First, we obtain un  is monotone and nondecreasing
by a similar calculation as in Ye and Guo [16]
[Equation (15)]. Furthermore, it is clear that the
operator T is monotone and nondecreasing. .en,
we have un  is monotone and nondecreasing, which
yields that u∗ ≔ limn⟶∞un ≥ un for all n≥ 0.

Next, we show that u∗ ∈Bw1
(S). Note that w1(x) ≥1 by

Assumption 1, which yields that

u0(x)


≤
M1b1

α0 α0 − c1( 
+

M1w1(x)

α0 − c1
≤

M1 b1 + α0( 

α0 α0 − c1( 
w1(x).

(16)

.en, by induction argument, for all n≥ 1, we have

un(x)


≤ sup
a∈A(x)

M1w1(x)

α0 + m(x)
+

m(x)

α0 + m(x)


S

b1M1

α0 α0 − c1( 
+

M1

α0 − c1
w1(y) P(dy|x, a) ,

�
M1b1

α0 α0 − c1( 
+

M1w1(x)

α0 − c1
≤

M1 b1 + α0( 

α0 α0 − c1( 
w1(x).

(17)
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.us,
|u∗| � |limn⟶∞un|≤M1(b1 + α0)/α0(α0 − c1)w1(x), that is,
u∗ ∈Bw1

(S).
Last, we show Tu∗ � u∗. By the monotonicity of T and

un, we have Tu∗ ≥Tun � un+1 for all n≥ 0, and so Tu∗ ≥ u∗.
On the other hand, by the definition of the operator T,

we have

un+1(x)≥
r(x, a)

α(x) + m(x)
+

m(x)

α(x) + m(x)


S
un(y)P(dy|x, a).

(18)

.en, letting n⟶∞, by Hern a′Hernndez-Lerma and
Lasserre [9], [Lemma 8.3.7], we obtain

u
∗
(x)≥

r(x, a)

α(x) + m(x)
+

m(x)

α(x) + m(x)


S
u
∗
(y)P(dy|x, a),

(19)

which follows that u∗ ≥Tu∗. .us, we have Tu∗ � u∗, that is,
u∗ is the solution of DOE in (14). □

Remark 2. .eorem 1 is not only the generalization of the
control model with a constant discount factor in Guo [4]
[.eorem 3.3(a)-(b)] but also the model in Ye and Guo [16]
whose policies are restricted within the family Φ of all
randomized stationary policies.

.e following Lemma 1 is a direct consequence of [16]
[.eorem 3.2].

Lemma 1. Under Assumptions 1 and 2, for each x ∈ S and
φ ∈ Φ, the expected discounted reward criterion J(x, φ) is the
unique solution of the following equation:

α(x)u(x) � r(x,φ) + 
S
u(y)q(dy|x,φ). (20)

Lemma 2. Under Assumptions 1 and 2, for each x ∈ S,
φ ∈ Φ, and u ∈Bw1

(S), the following assertions hold.

(a) if

α(x)u(x) ≥ r(x,φ) + 
S
u(y)q(dy|x, φ), (21)

then, we have u(x)≥ J(x,φ).
(b) if

α(x)u(x) ≤ r(x,φ) + 
S
u(y)q(dy|x, φ), (22)

then we have u(x)≤ J(x, φ).

Proof. By (21), there exists a nonnegative measurable
function v(x) on S such that

α(x)u(x) � r(x,φ) + v(x) + 
S
u(y)q(dy|x,φ). (23)

Now, let r(x, a) � r(x, a) + v(x), and we get the new
Markov decision processes:

M ≔    S, (A(x)⊆A, x ∈ S), q(·|x, a), α(x), r(x, a) , (24)

in which only the reward rate function is different from the
model in (1). Moreover, for each x ∈ S, φ ∈ Φ, the expected
discounted reward criterion is given by

J(x,φ) ≔ J(x,φ) + 
∞

0
E
φ
x e

− 
t

0
α(x(s))ds

v(x(t))dt
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥ 0.

(25)

By Lemma 1, we have u(x) � J(x, φ)≥ J(x,φ), which
gives part (a).

Similarly, we can prove (b). □

Remark 3. Lemma 2 is the generalization of Ye and Guo [16]
[Lemma 6.3].

Theorem 2. Under Assumptions 1 and 2, for each x ∈ S, the
optimal value function J∗(x) is the solution of DOE in (12),
and there exists a (deterministic) stationary policy f∗ ∈ F

such that

α(x)J
∗
(x)≥ r x, f

∗
(  + 

S
J
∗
(y)q dy|x, f

∗
( . (26)

Proof. By .eorem 1(b), for each x ∈ S and π ∈ Π, we have

α(x)u
∗
(x)≥ r x, πt(  + 

S
u
∗
(y)q dy|x, πt( , (27)

which together with Lemma 2(a) yields that u∗(x)≥ J(x, π),
and then, u∗(x)≥ J∗(x). Note that 

S
u∗(y)q(dy|x, a) is

upper semicontinuous on a ∈ A(x); then, by [9] [Lemma
8.3.8], we can obtain that there exists a policy f∗ ∈ F such
that

α(x)u
∗
(x) � r x, f

∗
(x)(  + 

S
u
∗
(y)q dy|x, f

∗
(x)(  ,

(28)

for all x ∈ S. .us, by Lemma 1, we have
u∗(x) � J(x, f∗). □

Remark 4.

(a) .eorem 2 shows that the optimal value function is a
solution to the DOE ((21)]) and ensures the exis-
tence of an optimal (deterministic) stationary
policy.

(b) By the construction of the new Markov decision
processes, the proof of .eorem 2 is more concise
than in [16] .eorem 3.3.

4. An IterationAlgorithmfor ε-OptimalPolicies

In this section, we provide an iteration algorithm for
ε-optimal policies.

In fact, for the operator T on Bw1
(S) in Section 3, with

m(x) � q∗ + 1, it holds that
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‖Tu − Tv‖w1
≤ λ‖u − v‖w1

, for all, u, v ∈Bw1
(S). (29)

.en, by Algorithm 1, we have

un+1 − u
∗
≤ un+1 − Tun+1


 + Tun+1 − u

∗


� Tun − Tun+1


 + Tun+1 − Tu
∗
,

≤ λ un+1 − un

����
����w1

w1(x) + λ un+1 − u
∗����
����w1

w1(x),

(30)

which yields that

un+1 − u
∗����
����w1
≤

λ
1 − λ

un+1 − un

����
����w1

. (31)

By a similar argument, we have

J g, fε(  − un+1
����

����w1
≤

λ
1 − λ

un+1 − un

����
����w1

, (32)

and then,

J g, fε(  − u
∗����
����w1
≤

2λ
1 − λ

un+1 − un

����
����w1
≤ ε. (33)

5. Asymptotic Optimality of Quantized
Stationary Policies

5.1. Approximation of Deterministic Stationary Policies. In
Section 3, we give the existence of the deterministic sta-
tionary policies for the CTMDPs in (1) under suitable
conditions. However, in practice, sometimes, the action
space cannot satisfy the continuity conditions in theoretical
research. .us, in this section, we will discretize and in-
centivize the action space, so that we can construct a se-
quence of policies, namely “quantizer policies,” which is the
approximation of the deterministic stationary policies of the
CTMDPs in (1).

To this end, we first give the definitions of quantizers and
deterministic stationary quantizer policies.

Definition 1. A measurable function f: S⟶ A is called a
quantizer from S to A, if f(S) ≔ f(x) ∈ A: x ∈ S  is finite.
Let F denote the set of all quantizers from S to A.

Definition 2. A policy is called a deterministic stationary
quantizer policy, if there exists a constant sequence π �

πn, n≥ 0  of stochastic kernels on A given S such that
πn(·|x) � δf(x)(·) for all n for some f ∈ F, where δf(x)(·) is
Dirac measure as in (11).

For any finite set Λ ⊂ A, let F(Λ) denotes the set of all
quantizers having range Λ, and let SF(Λ) denotes the set of
all deterministic stationary quantizer policies induced by
F(Λ).

Denote the metric on A as dA, and then, the action space
A is totally bounded by its compactness. For any fixed in-
teger k≥ 1, there exists a finite point set ai 

nk

i�1 such that for
all a ∈ A,

min
1≤i≤nk

dA a, ai( ≤
1
k

, (34)

where ai 
nk

i�1 is called the 1/k− net in A. From this, for any a
deterministic stationary policy f ∈ F, we can construct a
sequence of quantizer policies to approximate to f by the
following methods.

Lemma 3 (The construction of quantizer policies). Let
Λk ≔ ai 

nk

i�1 is the 1/k− net in A, for each x ∈ S and de-
terministic stationary policy f ∈ F, we define

fk(x) ≔ argmin
a∈Λk

dA(f(x), a). (35)

<en, fk k≥ 1 is a deterministic stationary quantizer
policy sequence, and fk converges uniformly to f as k⟶∞.

Proof. Lemma 3 holds obviously by [21] [Section 3].
We also call fk k≥ 1 as the quantized approximations of

f. Next, we show their expected discounted rewards also
satisfy the approximation. For this purpose, we need the
following conditions as follows. □

Assumption 3. Let c1 be as in Assumption 1, for each x ∈ S,
suppose that q( x{ }|x, a) and q(B|x, a) are setwise contin-
uous in a ∈ A(x) for each B ∈B(S) and x ∉ B, that is, if
ak⟶ a, then q(·|x, an)⟶ q(·|x, a) setwise.

Lemma 4. Suppose that Assumptions 2 and 3 hold. Let f ∈ F

be a deterministic stationary policy of the control model in (1)

Step 1. (Initialization). Choose any ε> 0, let w1 ≥max 1, 2b1/α0 − c1  in Assumption 1, and for each x ∈ S, let
u0(x) ≔ − M1b1/α0(α0 − c1) − M1w1(x)/α0 − c1
Step 2. (Iteration). For each x ∈ S, let
un+1(x) ≔ max

a∈A(x)
r(x, a)/α(x) + q

∗
+ 1 + q

∗
+ 1/α(x) + q

∗
+ 1

S
un(y)P(dy|x, a) 

where P(dy|x, a) ≔ q(dy|x, a)/q∗ + 1 + δx( y )..
Step 3. (Approximation value). If
un+1 − unw1

≤ ε(1 − λ)/2λ
where λ ≔ α0 + c1/2 + q∗ + 1/α0 + q∗ + 1≤ 1, go on step 4, otherwise increment n by 1 and return to step 2.
Step 4. ( ε-optimal policy). For each x ∈ S, choose
fε(x) ∈ argmax

a∈A(x)

r(x, a)/α(x) + q∗ + 1 + q∗ + 1/α(x) + q∗ + 1
S
un+1(y)P(dy|x, a) ,

and fε is ε-optimal policy.

ALGORITHM 1: (An iteration algorithm).
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and fk k≥ 1 be the quantized approximations of f as in
Lemma 3, then for each x ∈ S, the strategic measures P

fk
x 

induced by the quantized approximations fk of f converge to
P

fk
x  in the weak topology. <erefore, E

fk
x r(x(t), a(t))

converges to E
f
x r(x(t), a(t)).

Proof. .e proof is similar to that of [21], Proposition 3.1,
and by Assumption 3 and the definition of the strategic
measures P

f
x as in [6], [Section 2.3] or [5], [Section II], we

can get Lemma 4 holds.
Now, we give the approximation result on the expected

discounted rewards of the deterministic stationary quantizer
policies. □

Theorem 3. Suppose that Assumptions 1–3 hold. Let f ∈ F

be a deterministic stationary policy of the control model in (1),
and fk k≥ 1 be the quantized approximations of f as in
Lemma 3, then for each x ∈ S, we have

lim
k⟶∞

J x, fk(  � J(x, f). (36)

Proof. By the definition of the expected discounted reward
criterion, we can get

J x, fk(  − J(x, f)


 � 
∞

0
e

− 
t

0
α(x(s))ds

E
fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t))) dt



,

≤ 
T

0
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t))) dt



,

+ 
T

0
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t))) dt



.

(37)

Note that, by Lemmas 3 and 4, we have

E
fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t)))



,

≤ E
fk

x r x(t), fk(x(t))(  − E
fk

x r(x(t), f(x(t)))


,

+E
fk

x r(x(t), f(x(t))) − E
f
x r(x(t), f(x(t)))



,

⟶ 0,

(38)

which yields that


T

0
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t)))





dt⟶ 0(k⟶∞).

(39)

On the other hand, we have


∞

T
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t)))



dt,

≤ 
∞

T
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t)))



 dt,

≤M1 
∞

T
e

− α0t
E

fk

x w1(x(t)) + E
f
x w1(x(t)) dt,

≤ 2M1 
∞

T
e

− α0t
e

c1t
w1(x) +

b1

c1
e

c1t
− 1  dt,

� 2M1
w1(x)

α0 − c1
e

− α0− c1( )T
+

b1

c1 α0 − c1( 
e

− α0− c1( )T
−

b1

α0c1
e

− α0T
 ,

(40)

where the last inequality holds by [4] [.eorem 3.2(b)].
.en, we have


∞

T
e

− α0t
E

fk

x r x(t), fk(x(t))(  − E
f
x r(x(t), f(x(t)))



dt⟶ 0, (41)

as T⟶∞. By (40), we can get
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lim
k⟶∞

J x, fk(  � J(x, f). (42)
□

5.2. Rates of Convergence

Definition 3. Let ‖•‖TV denote the total variation distance
between measures P1 and P2 on the probability space
(Ω,F), which satisfies

P1 − P2TV

����
����2 sup

D∈F(Ω)

P1(D) − P2(D)


. (43)

Assumption 4. For each x ∈ S, suppose that the model (1)
satisfies the following conditions:

(a) A is a compact subset of Rd for some d ≥ 1
(b) For all (x, a1), (x, a2) ∈ K, there exists a constant

K1 > 0 such that

r x, a1(  − r x, a2( 


≤K1dA a1, a2( . (44)

(c) For all (x, a1), (x, a2) ∈ K and the function of
transition rates q(·|x, a), there exists a constant
K2 > 0 such that

q ·|x, a1(  − q ·|x, a2( 
����

����TV
≤K2dA a1, a2( . (45)

By Lemma 3 and Assumption 4, the following Lemma
holds.

Lemma 5. For any measurable function f: S⟶ A, we can
construct a sequence of quantizers fk k≥ 1 from S to A, and
there exists some constant K3 > 0 such that

sup
x∈S

dA f(x), fk(x)( ≤K3(1/k)
1/d

. (46)

Now, we give the convergence rates result.

Theorem 4. Suppose that Assumptions 1–4 hold. Let f ∈ F

be a deterministic stationary policy of the control model in (1)

and fk k≥ 1 be the quantized approximations of f as in
Lemma 3, then for each x ∈ S, it holds that

J(x, f) − J x, fk( 


≤
K3(1/k)

1/d

α0

K1 +
b1M1K2

α0 α0 − c1( 
+

M1K2

α0 − c1
w1(x) .

(47)

Proof. By Lemma 1, we can get

α(x)J(x, f) � r(x, f) + 
S
q(dy|x, f) ,

α(x)J x, fk(  � r x, fk(  + 
S
J y, fk( q(dy|x, f).

(48)

.en, by Lemma 5 and .eorem 1, we have

α0 J(x, f) − J x, fk( 


≤ α(x) J(x, f) − J x, fk( ( 


,

≤ r(x, f) − r x, fk( 


 + 
S
q(dy|x, f) − 

S

J y, fk( q dy|x, fk( 





,

≤K1dA f(x), fk(x)(  + sup
x∈S,π∈Π
≤K1K3(1/k)

1/d
+

b1M1

α0 α0 − c1( 
+

M1

α0 − c1
w1(x) K2dA f(x), fk(x)( ,

� K3(1/k)
1/d

K1 +
b1M1K2

α0 α0 − c1( 
+

M1K2

α0 − c1
w1(x) ,

(49)

f*

*fk

f*  an
d 

f k*
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Figure 1: .e optimal policy f∗(x) and f∗k (x) as k � 15.
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which yields that

J(x, f) − J x, fk( 


≤
K3(1/k)

1/d

α0

K1 +
b1M1K2

α0 α0 − c1( 
+

M1K2

α0 − c1
w1(x) .

(50)

□

6. An Example

In this section, we give an example to illustrate ourmain results.
Consider a control problem of hypertension. As it is well

known, we can describe the blood pressure with Gaussian
distribution, and thus, the quantity of blood pressure may
take values in S ≔ (− ∞,∞). When the current amount of
blood pressure is at x ∈ S, a controlled amount a is given by
a ∈ A � A(x) ≔ [L1, L2] for each x ∈ S with L1 > 0. .e rate
of change of blood pressure is given as follows:

q(B|x, a) ≔ a(|x| + 1)


B− x{ }

1
���
2π

√ e
− (y− x)2/2dy − a(|x| + 1)δx(B)

,

(51)

for (x, a) ∈ K (x, a)|x ∈ S, a ∈ A(x){ } and B ∈B(S), where
π is the circumference ratio, and δx(·) is the Dirac measure

at x. It is clear that q(·|x, a) is a transition rate function. We
denote by r(x, a) ≔ n0(x2 + n1|x| − n2a

2) the cost of taking
control a when the current amount of blood pressure is at
x ∈ S, and regard a as an action. .e discount factor is
defined by α(x) ≔ 1/|x| + 1 + β for x ∈ S with a constant
β> L1/2. Suppose that the constants nk(k � 0, 1, 2) satisfy
that

(i) n0 > 0, n1 > 1 + 1/β and n2 � ρ2/4(βρ − 1), where
ρ ≔ n1(β + 1) − (β + 2)

(ii) ρL2 > ρL1 > 2(βρ − 1)

Let w1(x) � x2 + 1, w2(x) � x4 + 1 and
q∗(x) � L1(|x| + 1), and then, by Steps 1–4 of the iteration
algorithm in Section 4, the approximate optimal value is

J
∗
(x) � ρn0x

2
+ 2ρ − n1 + 1( n0|x| + ρ − n1 + 1( n0, (52)

and the optimal stationary policy is

f
∗
(x) ≔

L1, |x|<U,

2(βρ − 1)

ρ
(|x| + 1), U≤ |x|≤V,

L2, |x|>V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(53)

where U ≔ ρL1/2(βρ − 1) − 1, V ≔ ρL2/2(βρ − 1) − 1.
Now, we can construct a sequence of quantizer policies

of f∗ as follows:

f
∗
k (x) ≔

L1, |x|<U,

2(βρ − 1)

ρ
U +

(2j + 1)

2
k0 + 1 , k0j≤ |x| − U< k0(j + 1), j � 0, 1, . . . , k,

L2, |x|>V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where k0 ≔ V − U/k.
Now, we compute f∗, f∗k , and J∗ by assigning values to

parameters β, L1, L2, n1, and n2 as follows:

β �
1
2
, L1 �

1
2
, L2 �

6
7
, n0 � 1, n1 � 4, (55)

then, the optimal value is J∗(x) � 7/2x2 + 4|x| + 1/2, and the
optimal stationary policy is

f
∗
(x) ≔

1
2
, |x|<

1
6
,

3
7

(|x| + 1),
1
6
≤ |x|≤ 1,

6
7
, |x|> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)
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.e quantizer policies f∗k of f∗ are

f
∗
k (x) ≔


1
2
, |x|<

1
6
,

 
1
2

+
3
7k

5
6

j + 
5
12

 ,
5
6k

j≤ |x| −
1
6
<

5
6k

(j + 1), j � 0, 1, . . . , k,


6
7
, |x|> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Furthermore, the asymptotic approximation of the op-
timal policy f∗(x) is given by Figures 1 and 2 when k � 15
and k � 100, respectively. .is verifies f∗k (x)⟶ f∗(x) for
each x ∈ S, and by .eorem 3, it holds that
lim

k⟶∞
J(x, fk) � J(x, f).

7. Conclusions

In this paper, we are concerned with the asymptotic
optimality of quantized stationary policies in CTMDPs
with Polish spaces and varying (state-dependent) discount
factors. First, we establish the discounted optimal equa-
tion (DOE) and give the existence of its solutions..en, by
a relatively simple proof, we obtain the existence of op-
timal deterministic stationary policies under suitable
conditions in .eorem 2. Meanwhile, we generalize the
relevant conclusions of Ye and Guo [16] in.eorem 1 and
Lemma 2. Next, we discretize and incentivize the action
space, construct a sequence of policies, namely “quantizer
policies,” and obtain the approximation results and the
rates of convergence for the optimal policies on the
CTMDPs in (1) as in .eorem 3. Finally, we give an
example to illustrate the asymptotic optimality.
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