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This paper proposes a hybrid model based on decomposition for constrained optimization problems. Firstly, a constrained
optimization problem is transformed into a biobjective optimization problem. Then, the biobjective optimization problem is
divided into a set of subproblems, and different subproblems are assigned to different Fitness functions by the direction vectors.
Different from decomposition-based multiobjective optimization algorithms in which each subproblem is optimized by using the
information of its neighboring subproblems, the neighbors of each subproblem are deFined based on corresponding direction
vector only in the method. By combining three main components, namely, the local search model, the global search model, and the
direction vector adjusting strategy, the population can gradually move toward the global optimal solution. Experiments on two
sets of test problems and Five real-world engineering design problems have shown that the proposed method performs better than

or is competitive with other compared methods.

1. Introduction

Constrained optimization has a wide application background
in many important Fields, such as economics, engineering, and
science [1-3]. In general, the mathematical deFinition of a
constrained optimization problem (COP) is as below:

min f (X), X = (x1,...,%4) € Q,1;<x;<u;st: g, (X) <0,
r=1,...,kh,(X)=0, w=1,...,z,
(1)

where X represents a d-dimensional solution vector. f (X)
represents the objective function. h,, (X) and g, (X) denote
z-equality constraints and k-inequality constraints. x; is
restricted by the upper and lower bounds u; and [,
respectively.

In COPs, an equality constraint is generally converted
into the following inequality forms.

|h, (X)|-¢<0, w=1,...,2, (2)

where £ denotes a small positive value (i.e., 107*). In order to
judge whether a solution X in COPs is a feasible solution, we

must consider its overall constraint violation degree, which
is computed as below:

k .
G(X) = Z max{0, g, (X)} + zl max{O, Ay, (X) - f”»,

r=1
(3)

where G (X) >0 and X satisFies the constraints if and only if
G(X)=0.

Evolutionary algorithm (EA), which is a metaheuristic
algorithm, has been adopted to deal with COPs in the past
two decades. When EAs are employed to solve COPs, the
constraint-handling techniques (CHTs) should be consid-
ered. The current popular CHTs include the penalty function
methods [4-7], the multiobjective optimization methods
[8-13], the feasibility rule methods [14-19], the € con-
strained methods [20-22], and the hybrid methods [23-26].
In the penalty function methods, a penalty Fitness function
is deFined by adding a penalty term to the objective function.
In the feasibility rule methods, the feasible individuals are
superior to the infeasible individuals. The € constrained
method is a representative CHT, in which the € level is
utilized to relax the constraints. And the hybrid method
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solves COPs by combining multiple constraint-handling
techniques.

The multiobjective optimization methods have been
adopted to solve COPs in the last two decades. These
methods always transform a COP into a biobjective opti-
mization problem (BOP), in which one objective is the
overall constraint violation degree G(X) and another ob-
jective is the original objective f(X). Then, the multi-
objective optimization techniques, such as the Pareto
dominance or the aggregation method, are utilized to
compare the individuals. For example, Wang et al. [27]
employed a dynamic hybrid model for solving COPs, in
which Pareto dominance is employed for the comparison.
Gao et al. [28] proposed a dual-population method to solve
COPs, where f (X) and G(X) are optimized by the corre-
sponding subpopulation, respectively. Moreover, Wang
et al. [29] utilized the correlation between the objective
function and the constraints to deal with COPs.

Decomposition method [30] is a representative multi-
objective optimization method. To solve COPs through the
decomposition-based multiobjective optimization methods,
the transformed BOP is converted into a set of subproblems;
that is, a group of Fitness functions are constructed by
assigning different direction vectors between f(X) and
G (X). Generally, in the decomposition-based multiobjective
optimization method, each individual optimizes a sub-
problem by combining the information of its neighboring
individuals. However, little effort to optimize each sub-
problem by using the information of its direction vector in
the objective space.

Based on the above analysis, a hybrid search model for
constrained optimization, called HyCO, is designed to solve
COPs in this paper. First of all, a BOP is decomposed into K
subproblems. Then, to balance the diversity and conver-
gence, the local and global models are employed to optimize
these subproblems. During the local search model, the whole
population is decomposed into K subpopulations by
adopting the classiFication operator, and each subpopula-
tion optimizes a subproblem. During the global search
model, the whole population is guided by a deFined search
direction toimprove the convergence. In the process, dif-
ferential evolution (DE) is utilized to generate the offsprings,
and the direction vectors are adjusted to Fit the characteristic
of COPs. Furthermore, a simple restart strategy is proposed
by Wang et al. [31] to handle complex constraints. The
performance of HyCO is tested on IEEE CEC 2010, IEEE
CEC 2017, and Five engineering problems. The results show
that HyCO is more competitive than other selected methods.

2. Multiobjective Optimization and
Vector Angle

2.1. Multiobjective Optimization. Some details of multi-
objective optimization problem (MOP) are introduced in
this section. Generally speaking, a MOP can be expressed as

min F(X) = (f, (X),..., f,(X))st: X €, (4)

where S =[]~ [a;, b;] represents the n-dimensional decision
space. f;(X) denotes the ith objective function. For two
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solutions X and Y, some concepts related to MOP are in-
troduced as follows.

Definition 1. X is said to dominate Y (ie, X<Y). If
Viel,.p, fy(X)< f;(Y)and i e 1,..p, f;(X) < f; (V).

Definition 2. X* € § is called a Pareto optimal solution. If
3X €S, such that X<X*.

Definition 3. A set of all Pareto optimal solutions is called
the Pareto set (PS).

Definition 4. The Pareto front (PF) is the set of all Pareto
optimal objective vectors (i.e., PF = {F(X)|X € PS}).

2.2. Vector Angle. In MOPs, the vector angle represents the
angle between two individuals in the objective space. Typ-
ically, for two individuals X; and X, the vector angle be-
tween them can be computed as below:

T
Fx (X)) Fx(X,) )
, (5
[ (X0 e = (X,
where F (Xj) = (fy (Xj),f;‘ (Xj),...,f; (Xj)) is the jth

individual’s normalized objective vector, and f} (X;) is
computed according to the following equation:

_flxg) -z
Zmax _ Z;nin

1

angle(Xj,Xq) = arccos<

£1(%) ’ 6)
where Z™™ and Z™ represent the minimum and maximum
values of the ith objective. f; (X ;) represents the ith objective
function value. | - || represents the norm of a vector. Gen-
erally, the vector angle is used to maintain the population
diversity for MOPs [32, 33]. SpeciFically, if the vector angle
of two individuals is small enough, then their search di-
rections are similar. On the contrary, a large vector angle of
two individuals means the different search directions, and
the diversity between them can be maintained. Motivated by
the above considerations, a new clustering method is
designed in HyCO and the population (P) would be clus-
tered into K subpopulations according to the vector angle to
maintain the diversity.

3. Proposed Method

3.1. Motivation. When using EAs to solve COPs, there are two
important issues need to be solved: firstly, achieving the balance
between the diversity and convergence; secondly, achieving the
balance between the constraints and objective function. In
HyCO, the local and global search models based on decom-
position are proposed to balance the diversity and convergence.
Specifically, in the local search model, a clustering method is
designed to divide the population into several subpopulations,
and each subpopulation optimizes a subproblem to maintain
the population diversity. In the global search model, a direction
vector is deFined to guide the evolution and enhance the
population convergence. In addition, a direction vector
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Input: The population size m, the number of subpopulations K, and the total number of function evaluations T_FEs.
Output: The best feasible solutions in P.

(1) Initialize a population randomly P = {X,, ..., X,,};

(2) Calculate f(X;) and G(X;) of each individual X; in P.

(3)  while stopping conditions are not satisfied do

(4) Execute the local search model;
(5) Execute the global search model;
(6) Execute DVA;

(7) Execute the restart strategy;

(8) end while

ALGoriTHM 1: HyCO.

A
A
z v
] -
././ (fno‘rm (X), G norm (X))
(e
JX)

FIGURE 1: Illustration of the angle between the direction vector and the normalized objective vector.

Input: The population P = {X,, ..., X,,}.

Output: K subpopulations P = {SubP,, ..., SubP;}.
(1) Calculate the direction vectors {(Aj, 1- Aj)} (j=1,...,k) according to DVA;
(2) for j=1: K do

(3) Calculate the angle 0y , according to (9);

(4) Find the corresponding minimum [m/K] individuals, which are the minimum distance to the direction vector (A »1=24)),to
form a subpopulation;

(5) Eliminate these solutions from P;

(6) end for

ArGoriTHM 2: Classification operator.

subpopulationK

A

G (X)

subpopulation2

subpopulationl

>
»

—\\" A
JX)

FIGURE 2: Illustration of the subpopulation assignment.

adjustment strategy (DVA) is used in HyCO to balance the Based on the above considerations, this paper utilizes the
objective and constraints, which can guide the population to  local and global search models based on decomposition to
converge to the feasible optimal solution. solve COPs.
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Input: Entire population P'.

(3) fori=1:kdo
(4) Set SubP?+1 = &;

(13) end for
(14) end for

Output: Updated subpopulation SubP; (i = 1,...,K).
(1) Divide the population into K subpopulations P' = {SubP/, ..
(2)  Calculate the direction vectors (/\f, 1- Aﬁ) (i=1,...,K) by Algorithm 7;

5 enerate offsprin ubP." = s orithm 4;
(5) G ffspring OSubP’"' = {UT, ..., Ul } by Algorith

(6) Select the direction vector (A},1-A) corresponding to SubP!*!;
(7) for i = 1: m/K do

(8) if g» (U%IA)) < g™ (X;ME) then

9) SubPi*! = SubPi*! UU;;

(10) else

11) SubPi*! = SubPi*! UX;;

12) end if

.»SubP%} by Algorithm 2

ALGORITHM 3: Local search model.

(1) for j=1: K do
(2)  Set OSubP; =@

(12) end for

Input:SubP! (i = 1,...,K): Initial subpopulations.
Output:0SubP! (i = 1,.. ., K): Offspring subpopulations.

3) for j=1,...,m/K do

(4) Randomly generate a F value in [0, 1];

(5) if rand < 0.5 then

(6) Generate a candidate solution U} according to (10);

(7) else

(8) Generate a candidate solution U! according to (11) and (12);
9) end if
(10) OSubP; = OSubP; uuU
@11 end for

ALGORITHM 4: Local search algorithm.

Input: Initial population P'.

(1)  Set P! = &;
(2) Calculate )Li according to (13);

(4) fori=1:mdo

(6) Pt+1 — Pt+l UUE;
7) else

(8) Pt+1 — Pt+1 UXf;
9) end if

(10)  end for

Output: Updated population P!,

(3)  Generate an offspring population OP' = {U%, ...

(5) if g (UHIA)) < g% (X!|AL) then

,U! } by Algorithm 6;

ALGoRrITHM 5: Global search model.

3.2. HyCO. In HyCO, a transformed BOP is first decom-
posed into K subproblems. Next, the local and global search
models are designed to optimize these subproblems, and
DVA is proposed to adjust the direction vector. The detailed
steps of HyCO are provided in Algorithm 1.

DE [34] is employed to generate the offsprings since its
powerful search performance. Then, the weighted sum
approach is adopted to compare the fitness of two
candidate solutions. For a solution X!, its weight sum
can be deFined as below:
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Input: Initial population P*, Direction vector (A!,1-A%).
Output: Offspring population OP'.
(1)  Set OP' = &;
2) fori=1:mdo
3) Randomly generate an F value from {1.0,0.8, or 0, 6};
(4) Randomly generate a CR value from {1.0,0.2, or, 1};
(5) if rand < 0.5 then

6) Create a candidate solution U! according to (14);
(7) else
(8) Create a candidate solution U! according to (15);
9) end if

(10) OP' = OP U W5

(11)  end for

ALGORITHM 6: Global search algorithm.

(1) Set DV = &;
(2) if ¢/T<0.85 then
(3) e=¢ey(1-t/T)?, cp = —(loge, + Bllog (1 - p));

(4) else
(5) e=0;
(6) end if

(7)  Calculate the proportion of feasible solutions (pf) in P;
(8) if (t/T)20.85]pf =0.85||Gy, = € then
©) &=107"8;

(10) else
1n &= (1/1+ WMy
(12) endif

(13) fori=1: K do

) A= Gim-&

@15) DV =DVU (A, 1-1);
(16) end for

ALGORITHM 7: DVA.

TaBLE 1: The population size m, the number of subpopulations K, and the total number of function evaluations T_FEs.

Test functions T_FEs m K
18 COPs (d = 10) from CEC 2010 2.0E+05 80 14
18 COPs (d=30) from CEC 2010 6.0E + 05 100 15
28 COPs (d=50) from CEC 2017 1.0E + 06 100 15
28 COPs (d=100) from CEC 2017 2.0E+06 100 16
gws( X:| /13 ) _ /\; fnorm ( Xlt) + (1 _ A; )Gnorm( X:)> (7) respectively. t represents. the current generat?on pumber.
G! . represents the minimum overall constraint violation.
where A,1- )L;-) is the direction vector. G!, represents the
. , . . maximum overall constraint violation.

fnorm( Xt) _ f (Xi) = frmin Gnorm( Xt) _ G(Xi) ~ Gpin )\ In the following sections, the local search model, the
! fho— o ! G o= Goin global search model, and DVA are introduced, respectively.

iy
K™ 3.3. Local Search Model. The purpose of the local search

(8)  model is to optimize each subproblem from different search
directions and Find the promising search directions. In this
model, the whole population is divided into K subpopula-
tions by a classiFication operator and each subpopulation is
used to optimize its assigned subproblem.

where £ is a parameter in DVA. f' . and f! represent the

min max
minimum and maximum objective function values,
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TaBLE 3: Rankings obtained by the Friedman’s test for HyCO and
other compared algorithms on 18 COPs with 10d from CEC 2010.

Algorithm Ranking
HyCO 3.25
DeCODE 3.3333
AIS-IRP 3.3611
FROFI 3.4722
ITLBO 3.6667
ECHTDE 3.9167

TaBLE 4: Results of HyCO and other compared algorithms by the
multiple-problem Wilcoxon’s test on 18 COPs with 10 d from CEC
2010.

HyCO vs. R™ R~ p a=0.1 a=0.05
FROFI 106.0 65.0 >0.2 No No
ITLBO 82.5 70.5 >0.2 No No
DeCODE 87.5 66.0 >0.2 No No
AIS-IRP 87.0 66.0 >0.2 No No
ECHTDE 93.0 59.5 >0.2 No No

To introduce the classification operator, the vector angle
between the direction vector and the normalized objective
vector is firstly defined as shown in Figure 1 and calculated
as follows:

) F(X;)- w(lj)
O e L e e[

i=1,....mj=1,...,k

)

where F(X;) = (f™™(X;),G""™(X;)) is the ith individ-
ual’s normalized objective vector. w (A )= (A pl- /\j) is the
direction vector, and F(X;) -w(A;) denotes the inner
product between F(X;) and w(/\]-). Then, the classification
operator is given in Algorithm 2.

As shown in Figure 2, each subpopulation owns a region
which centered by a direction vector. Note that the Kth
subpopulation contains all the remaining individuals in P,
and the size of each subpopulation may not be equal. When
the direction vector is adjusted, all individuals will be
reclassified by the classification operator. Therefore, the
individuals may be classified to the subpopulations different
from the previous one, which results in the coevolution of
different subpopulations. The whole process of the local
search model is given in Algorithm 3.

In the process of local search, two modiFied DEs are
employed to generate the offsprings. Their formulations are
given as follows:

(i) DE/ModiFied/1
X X.
(10)

(ii) DE/ModiFied/2

U=X;+F- (X, - X))+ F- (X, - X,3), if f(X,)<f(X)

Xij if rand, <rand,
b T x

rl,j+m

. )
-H;j, otherwise

j=L..d, if f(X,)=f(X) (11)

Xpnj = Xpap if 97 (X2lh) <g™ (X514)
Y Xr3,j - XrZ,j’ lf gws (X3|A1) < gws (XrZMi) ’

H. .=

where X; and U; represent the ith target vector and
trial vector, respectively. X;; and U;; represent the jth
dimension of them. X, and X, denote the best
individual and the mean vector in the subpopulation,
respectively. X,,, X,,, and X,, represent three in-
dividuals in P, which satisty X,, #X,, #X,; # X;.
Xy1,j» X1,j> and X5 ; represent the jth dimension of
X1 X5, and X5, respectively. ] is a random value in
[-1, 1]. I is an integer selected from {1, 2}. F denotes
the scaling factor. {A;,1 —\;} represents the ith di-
rection vector. rand, and rand, are randomly
generated from [0, 1].

As shown in (10), each subpopulation is guided by its
best individual, which prevents the population from

trapping into the local optimal solution. As shown in (11)
and (12), the information of the individual with the smaller
weighted sum is employed to generate the candidate solu-
tions, which can enhance the rate of convergence. The
procedure of the local search algorithm is described in
Algorithm 4.

3.4. Global Search Model. In the local search model, each
subproblem is optimized by corresponding direction vector,
which may lead to the slow convergence rate. Candidate
solutions are generated by using the individuals within one
subpopulation, resulting in the weak information exchange
among different subpopulations. Therefore, the diversity can
be maintained but the convergence cannot be proved in the
local search process. In order to improve the convergence,
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TABLE 6: Rankings obtained by the Friedman’s test for HyCO and
other compared algorithms on 18 COPs with 30 d from CEC 2010.

Algorithm Ranking
HyCO 2.3056
DeCODE 2.6389
FROFI 2.9444
ITLBO 4
AIS-IRP 4.3333
ECHTDE 47778

TaBLE 7: Results of HyCO and other compared algorithms by the
multiple-problem Wilcoxon test on 18 COPs with 30d from CEC
2010.

HyCO vs. RY R~ p a=01 a=0.05
FROFI 119.0 42.0 7.24E-02 Yes No
ITLBO 164.0 7.0 5.42E - 04 Yes Yes
DeCODE 103.5 67.5 >0.2 No No
AIS-IRP 138.0 28.0 1.15E-02 Yes Yes
ECHTDE 134.0 19.0 6.04E - 03 Yes Yes

the global search model is proposed. In this model, a di-
rection vector is deFined to guide the whole population as
follows:

A = Z?:l /li (12)

where (A;,1—A;) is the direction vector that a subproblem
has been improved. a is the number of improved sub-
problems. The framework of the global search model is
described in Algorithm 5.

In the process of global search, two DE operators are
combined to generate the offsprings. Their formulations are
introduced as follows [30, 35, 36]:

(i) DE/rand-to-best/1/bin
Vi = Xrl +F- (Xbest - Xrl) +F- (Xr2 - Xr3)
Vi,j,

Uij = X..
i,j°

ifrand; < CRorj = ji4nas (13)

otherwise,

(ii) DE/current-to-rand/1
U;=X;+rand- (X, - X;)+F- (X,, - X,3), (14)

where V; represents the ith mutant vector. V; ; de-
notes the jth dimension of it. 71, r2, and 3 are three
integers in P, which satisfy r1#r2#r3#i. X is
the best individual according to the weighted sum.
CR denotes the crossover probability. And j,,.4 is a
random value in {1,...,d}.

With respect to (14), the solution X, is utilized for en-
hancing the convergence. In (15), a randomly chosen solution
X,, is employed for promoting the diversity. In this paper,
these two operations are executed with a probability of 0.5. Its
effectiveness has been validated in [22, 37]. The whole process
of the global search algorithm is introduced in Algorithm 6.

3.5. DVA. DVA is the major component when solving the
transformed BOP through the local and global search
models based on decomposition. For MOPs, the image of all
Pareto optimal solutions is distributed on the PF [38].
However, for a BOP, only one global optimal solution needs
to be obtained. Therefore, the direction vectors need to be
adjusted to Fit the characteristic of COPs. DVA is proposed
by Wang et al. [30], and the direction vector is adjusted
according to the sigmoid function as follows:

1

f = Ty
L+l

(15)

where T represents the maximum generation number. y and
T are two positive values to control the change trend of &.
Moreover, the € constrained method is proposed to deter-
mine whether ¢ should be reduced to a small number for
COPs. The details of DVA are given in Algorithm 7.

4. Results and Discussion

4.1. Experiment Settings. To test the performance of HyCO,
two sets of COPs are adopted. The first set contains 36 COPs
from IEEE CEC 2010 [39] and the second set involves 56
COPs from IEEE CEC 2017 [39]. They have different
characteristics, such as multimodality, extremely strong
nonlinearity, rotated landscape, and so on. The population
size (m), the number of subpopulations (K), and the total
number of function evaluations (T_FEs), which are reported
in Table 1, where d represents the dimension of COPs. In
addition, each COP runs 25 times independently. y in the
restart strategy is set to 10™% p and f8 in the € constrained
methods are set to 0.85 and 6, respectively. In (15), I' and y
are set to 30 and 0.75, respectively.

4.2. Experiments on the 36 COPs from IEEE CEC 2010.
First of all, 36 COPs from CEC 2010 are tested in this section.
Five competitive methods are selected: FROFI [40], ITLBO
[41], DeCODE [30], AIS-IRP [42], and ECHTDE [43]. The
experimental results of these methods are obtained from the
literature [30, 37]. Since the true optimal value of this test
suite is unknown, the “Mean O” and “S” are selected as the
comparison criterion. “Mean O” and “S” are the mean and
standard deviation of the results, respectively. Furthermore,
the multiple-problem Wilcoxon’s test and the Friedman’s
test are obtained via KEEL software [44].

In the case of COPs with 10d, the results of “Mean O”
and “S,” the Friedman’s test, and the multiple-problem
Wilcoxon’s test are given in Tables 2-4, respectively. In
Table 2, “V” represents any feasible solutions of the com-
pared algorithm cannot be found after the evolution. “+,”
“x,” and “~” represent that HyCO is worse than, competitive
with, and better than the selected method, respectively. It
can be seen from Table 2 that HyCO surpasses FROFI,
ITLBO, DeCODE, AIS-IRP, and ECHTDE on 6, 7, 5, 9, and
9 test problems, respectively. In contrast, FROFI, ITLBO,
DeCODE, AIS-IRP, and ECHTDE outperform HyCO on 3,
4,3, 6, and 6 test problems, respectively. As shown in Table 4,
the R™ values cannot exceed the R* values in all comparisons.
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FiGure 3: Convergence graphs of HyCO on six representative COPs from IEEE CE C2010. (a) C07, C10, and C14 with 10d. (b) C07, C10,

and C14 with 30d.

Furthermore, according to the Friedman’s test, HyCO ob-
tains the First rank. Based on these considerations, HyCO is
superior to other compared methods on 18 COPs with
10 d from CEC 2010.

In terms of d =30, all results are recorded in Tables 5-7,
respectively. As described in Table 5, HyCO is superior to
FROFI, ITLBO, DeCODE, AIS-IRP, and ECHTDE on 6, 14,
6, 15, and 15 test problems, respectively. In contrast, FROFI,
ITLBO, DeCODE, AIS-IRP, and ECHTDE exhibit better
performance than HyCO on 1, 0, 2, 2, and 1 test problems,
respectively. From Table 6, HyCO obtains the first rank. In
addition, according to the multiple-problem Wilcoxon’s test,
the R values cannot exceed the R" values in all comparisons,
and p <0.05 can be seen in three cases (i.e., HyCO vs. AIS-
IRP, HyCO vs. ECHTDE, and HyCO vs. ITLBO). In
summary, HyCO exhibits better performances than other
compared methods on 18 COPs with 30 d from CEC 2010.

4.3. Experiments on the 56 COPs from IEEE CEC 2017. To
evaluate the performance of HyCO on complicated COPs,
56 high-dimensional COPs from IEEE CEC 2017 are
employed. Two methods, which are derived from the
competition at IEEE CEC 2017, are selected as the com-
petitors: LSHADE44 [45] and UDE [46]. The results are
reported in Table 8. The test functions C17, C18, C19, C26,
C27, and C28 cannot find feasible solutions by these three
algorithms, and thus they are removed from the comparison.

As described in Table 8, with respect to 28 COPs with
50 d from CEC 2017, HyCO surpasses LSHADE44 and UDE
on 12 and 16 test problems, respectively. However,
LSHADE44 and UDE provide better results on 6 and 2 test
functions, respectively. In terms of 28 COPs with 100 d from
CEC 2017, HyCO outperforms LSHADE44 and UDE on 12

and 17 test functions, respectively, while LSHADE44 and
UDE perform better than HyCO on 7 and 3 test problems,
respectively. Therefore, HyCO exhibits better performance
for high-dimensional COPs.

4.4. Visualization of the Evolution Process. The convergence
graphs of HyCO on six representative COPs are plotted in
Figure 3. As shown in Figure 3, at the early evolving stage,
the convergence speed is slow, and the local search model
plays an important role in guiding the population to explore
more promising areas. Along with the evolution, the con-
vergence rate becomes faster, and some individuals in the
population are feasible. At this time, the global search model
plays an important role in guiding the population toward the
feasible region sufficiently. Therefore, the local and global
search models proposed in this paper can achieve a balance
between convergence and diversity.

4.5. Sensitivity of Parameter K. The effect of the number of
subpopulations K on HyCO is investigated in this section;
the numerical experiments are conducted on five different
Kvalues: 8, 10, 12, 14, and 16. The results on 18 COPs with
30d from CEC 2010 are given in Table 9. As shown in
Table 9, HyCO achieves the best results when K=15.
Specially, HyCO with K =15 provides better results than
K=8,K=10,K=12,K=14,and K=16,0n38, 6,4, 4, and 3
test problems, respectively, While HyCO with K=38,
K=10, K=12, K=14, and K= 16 perform better than that
with K=150n0, 1, 0, 0, and 1 test problems, respectively.
Therefore, K =15 is a suitable parameter for 18 COPs with
30 d from CEC 2010.
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TaBLE 10: Experimental results of HyCO and CMODE for five engineering design problems.

Problem Criteria CMODE HyCO
Three-bar truss design problem Mean O £ § 2.66 E+02+1.44E+ 00— 2.65E + 02+ 8.90E - 01
Pressure vessel design problem Mean O+ § 5.89E+03+1.69E — 04= 5.89E+03+1.38E+00
Tension/compression spring design problem Mean O + § 7.17E - 03 + 8.52E — 06— 7.15E-03 +1.57E - 06
Speed reducer design problem Mean O + S 3.01E+03+3.63E+ 00— 3.00E+03+1.48E+00
Gear train design problem Mean O + S 3.40E - 02 + 1.89E - 05~ 3.40E—-02+7.08E-18
- 3

+ 0

= 2

4.6. Real-World Application. To test the performance of Acknowledgments

HyCO in real-world COPs, five engineering design problems
are adopted. The details of these five engineering problems
are obtained from the literature [47]. CMODE [48], which is
a representative constrained optimization method, is se-
lected as a competitor. The maximum number of evaluations
of these five problems are set to 500, 70000, 10000, 10000,
and 5000, respectively. The population size and the number
of subpopulations are set to 100 and 15. The parameters of
CMODE are consistent with the original literature. The
results of these two methods are reported in Table 10.

As shown in Table 10, HyCO outperforms CMODE on 3
engineering design problems, while CMODE cannot be
better than HyCO in any problems. In summary, HyCO is
effective for solving the real-world engineering optimization
problems.

5. Conclusion

In this paper, HyCO is designed to solve COPs. In the
method, the local and global search models are designed to
balance both diversity and convergence. To balance con-
straints and objective function, the direction vector is ad-
justed according to the direction vector adjustment strategy.
Experiment results on three benchmark test suites, namely,
36 COPs from IEEE CEC 2010, 56 COPs from IEEE CEC
2017, and 5 real world engineering design issues, demon-
strate the following conclusions: (1) HyCO is competitive
than other selected methods. (2) The local and global search
models can achieve the balance between diversity and
convergence. (3) The direction vector adjustment strategy
can guide the population to converge to the feasible optimal
solution.

In our future research, it is meaningful to design a self-
adaptive the direction vector adjustment strategy in HyCO
to solve high-dimensional test functions. In addition, online
learning [49-51] will be introduced into constraint opti-
mization in the future.
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