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Fuzzy and anti fuzzy normal subgroups are the current instrument for dealing with ambiguity in various decision-making
challenges. �is article discusses c-anti fuzzy normal subgroups and c-fuzzy normal subgroups. Set-theoretic properties of union
and intersection are examined and it is observed that union and intersection of c-anti fuzzy normal subgroups are c-anti fuzzy
normal subgroups. Employee selection impacts the input quality of employees and hence plays an important part in human
resource management. �e cost of a group is established in proportion to the fuzzy multisets of a fuzzy multigroup. It was a good
idea to introduce anti-intuitionistic fuzzy sets and anti-intuitionistic fuzzy subgroups, as well as to demonstrate some of their
algebraic features. Product of c-anti fuzzy normal subgroups and c-fuzzy normal subgroups is de�ned, the product’s algebraic
nature is analyzed, and the �ndings are supported by presenting c-anti typical sections with blurring and c-ordinary parts with the
weirdness of well-de�ned and well-established groups of genetic codes.

1. Introduction

�e algebraic theory contains various applications not only
in theocratical and applied mathematics such as algebraic
geometry, cryptography, game theory, and harmonic anal-
ysis but also in other scienti�c �elds like physics, genetics,
and engineering. �e algebraic structures are conventionally
de�ned on a nonempty set by employing binary operations.
�e simplest among them is groupoid, precisely a non-vain
set endowed with a bipartite action. With the inclusions of
di�erent properties, the groupoid can be transformed into
semigroup and monoid group. �e group is a central al-
gebraic structure and serves as a baseline for various alge-
braic structures such as ring, �eld, vector space, and module.

Signi�cate research has been carried out for deep analysis of
algebraic properties and applications ranging from mathe-
matics to DNA structure, cars moving on the road to aircraft
�ying in the air, and wristwatches to complicated computing
systems. Uncertainty, imprecision, and ambiguity are the
common factors associated with real-life decision-making
problems or any kind of experimental data. �e classical
probability theory is sometimes not enough to handle all
such cases. In 1965, Zadeh [1] laid the notation of blurry
place as an ideal framework to incorporate the uncertainty
fragment in logic. �e set is formalized by de�ning a map
called membership responsibility through a nonempty set to
the interval [0, 1], where the images of elements under this
function are called degree or grade of membership. �e
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concept was so inspiring that it grabbed the attention of
researchers from every field of knowledge. Several new
theories are established parallel to the classical ones by
considering the fuzzy sets and logic.

Rosenfeld [2] sought to incorporate fuzzy ideas in group
theory in 1970 and labeled the results as a fuzzy subgroup.
Rosenfeld looked at the basic group theocratic aspects of the
newly discovered algebra. Algebraists later studied the
structural features of fuzzy subgroups. Anthony [3, 4] re-
fined Rosenfeld’s concept by enhancing the need for pictures
of elements and their inverses. )ey are less expensive to
design, cover a broader variety of operating situations, and
are more easily adaptable to plain language concepts.
Fuzzification is the process of transforming a crisp input
value into a fuzzy value through the application of knowl-
edge base information. Zadeh relates the ordinary sets and
fuzzy sets using level sets. Level sets are seen in fuzzy groups,
and it is demonstrated that a flexible selection of a subgroup
G is a hazy subgroup if and only if all of the applied
principles are constituents G (see [5, 6]). Liu [7] established
flexible resilient parts and fuzzy ideals in 1982. Mukherjee
et al. [8–10] suggested an association connecting fuzzy
normal subgroups, fuzzy cosets, and group-theoretic ana-
logs. Kumar et al. [11] solved the problems of sensitive
ordinary groupings and flexible quotients. Tarnauceanu [12]
also introduced the idea of curved typical counterparts for
the group of limited groups. Choudhary et al. and Addis
[13, 14] explored feature sustaining bridges and elementary
presented in this research theorems. Malik et al. [15] and
Mishref [16] developed fuzzy normal series to enhance the
theory of group nilpotency and solubility.

An intuitionistic blurry set [17] is an induction of an
unclear set endowed with two functions from a nonempty
adjust to the interval [0, 1] known as membership and non-
integration function. )e idea is not identical to the oc-
currence and non-occurrence of an event in classical
probability theory as in this case the quantity of the grades of
integration and non-integration could be real in any number
between 0 and 1. In 2017, Al-Husban et al. [18] described a
complex intuitionistic fuzzy normal subgroup. As defined by
Rosenfeld, a blurry subdivision of a category G is a blurry
subdivision if the degree of membership of the product of
two elements is greater than or equal to the minimum of
their individual degrees. )e replacement of minimum by
maximum defines a new type of fuzzy-subgroups called anti
fuzzy subgroups [19]. Onasanya [20] investigated existing
fuzzy group-theoretic properties for anti fuzzy subgroups.
α-anti blurry subdivisions and α-blurry subdivisions are
depicted by Sharma [21, 22]. Shuaib et al. [23, 24] manifested
some characterizations and properties of o-fuzzy subgroups.

Most recently, several generalizations of fuzzy sets and
subgroups [25–31] are developed not only for the sake of
new algebraic structures but also to utilize them for wide
range of applications [32–34]. Advancements in fuzzy sets
are introducedmainly in search of a better andmore efficient
tool to deal with uncertainties more accurately and effec-
tively. Ultimately algebraic structures are also upgraded but
conducting analysis in the generalized fuzzy environment. In
this article, the authors aim to study group theocratic

concepts in an advanced manner by employing the impulse
of c-anti blurry sets. Normal subgroups and their analytic
behavior are examined; also group homomorphisms are
used to define fuzzy extension rules.

2. Preliminaries

Definition 1 (see [14]). A fuzzy set constructed from either a
nonempty set A is a technique η: A⟶ [0, 1].

Definition 2 (see [14]). A grouping (L,⋆) is a semiset L

minus a discrete activity L that meets the following
properties:

(i) Closure. for all a, b ∈ L, the element a⋆b is a
uniquely defined element of L

(ii) Associativity. We have a⋆(b⋆c) � (a⋆b)⋆c for every
a, b, c ∈ L

(iii) Identity. for any a ∈ L, there exists an identity el-
ement e such that e⋆a � a and a⋆e � a

(iv) Inverse. )ere exists an inverse element a− 1 ∈ L for
each a ∈ L such that a⋆a− 1 � e and a− 1⋆a � e

Definition 3 (see [19]). AssumeM is a fuzzy subset (FSS) of a
group L. )en, M is a fuzzy subgroup (FSG) if
M(a− 1b)≥min A(a), A(b){ } for all a, b ∈ L where
A(a), A(b) are fuzzy membership functions.

Definition 4 (see [21]). Assume M is a FSS of a group L.
)en, M is an AFSG (anti fuzzy subgroup) if M(a− 1b)≤
max A(a), A(b){ }, for all a, b ∈ L where A(a), A(b) are fuzzy
membership functions.

Definition 5 (see [32]). A function t∗: [0, 1] × [0, 1]⟶
[0, 1] is said to be a t-conorm on [0, 1] if and only if t∗

satisfies the following properties for all u, v, w, s ∈ [0, 1]:

(i) t∗(u, v) � t∗(v, u)

(ii) t∗(u, t∗(v, w)) � t∗(t∗(u, v), w)

(iii) t∗(u, 0) � t∗(0, u) � u, t∗(1, 1) � 1
(iv) If u≤w and v≤ s then t∗(u, v)≤ t∗(w, s)

Definition 6 (see [32]). Let Sp: [0, 1] × [0, 1]⟶ [0, 1] be
the algebraic sum t-conorm on [0, 1], then it is defined by
Sp(a, b) � a + b − ab, 0≤ a≤ 1, 0≤ b≤ 1.

Tuning is the most laborious and tedious part of building
a fuzzy system. It often involves adjusting existing fuzzy sets
and fuzzy rules. With appropriate examples, the composi-
tion of the fuzzy relations is described in two ways: max-min
composition and max-product composition. )is study also
introduces the composition features of fuzzy relations.

3. γ-Anti FSS (γ AFSS) and Their Attributes

)is section deals with the definition of c-anti fuzzy subset
and some results based on this definition.
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Definition 7 (see [3]). Let M be a nonempty set and H be an
FSS of Mand c ∈ [0, 1]. )en, the FSS is called the c-anti FSS
(c AFSS) of M if

Hc(a) � Sp H(a), 1 − c􏼈 􏼉, for all a ∈M. (1)

Remark 1

(i)

H1(a) � Sp H(a), 1 − 1{ }

� H(a) − H(a) · (0)

� H(a).

(2)

(ii)

H0(a) � Sp H(a), 1 − 0{ }

� Sp H(a), 1{ }

� H(a) + 1 − H(a) · 1

� 1.

(3)

Theorem 1. Let H and K be two arbitrary FSS of M. <en,

(i) (H∪K)c � Hc ∪Kc

(ii) (H∩K)c � Hc ∩Kc

Proof. Consider

(i)

(H∪K)c(a) � Sp (H∪K)(a), 1 − c􏼈 􏼉

� Sp max H(a), K(a){ }, 1 − c􏼈 􏼉

� max Sp H(a), 1 − c􏼈 􏼉, Sp K(a), 1 − c􏼈 􏼉􏽮 􏽯

� max Hc(a), Kc(a)􏽮 􏽯

� Hc(a)∪Kc(a), for all a ∈M

� Hc ∪Kc􏼐 􏼑(a).

(4)

Hence, we have

(H∪K)c(a) � Hc ∪Kc􏼐 􏼑(a). (5)

(ii)

(H∩K)c(a) � Sp (H∩K)(a), 1 − c􏼈 􏼉

� Sp min H(a), K(a){ }, 1 − c􏼈 􏼉

� min Sp H(a), 1 − c􏼈 􏼉, Sp K(a), 1 − c􏼈 􏼉􏽮 􏽯

� min Hc(a), Kc(a)􏽮 􏽯

� Hc(a)∩Kc(a), for all a ∈M

� Hc ∩Kc􏼐 􏼑(a).

(6)

Hence, we have

(H∩K)c(a) � Hc ∩Kc􏼐 􏼑(a). (7)
□

Definition 8. Suppose f: M⟶ N be a category M to
column N component. If H and K are flexible sections (FSS)
of M and N, alternately, then f(H) and f− 1(K) are now the
portrait of soft set H and the inverse image of fuzzy rules K,
respectively, defined as

f(H)(b) �
Sup H(a): a ∈ f

− 1
(b)􏽮 􏽯; iff− 1

(b)≠ ϕ,

1; iff− 1
(b) � ϕ,

⎧⎪⎨

⎪⎩
(8)

for every b ∈ K and f− 1(K)(a) � K(f(a)), for every a ∈ H.

Theorem 2. Let f: M⟶ N be a mapping and HandK be
two FSS of M and N, respectively, then

(a) f− 1(Kc) � (f− 1(K))c

(b) f(Hc) � (f(H))c

Proof.

(a)

f
− 1

Kc􏼐 􏼑(a) � Kc(f(a))

� max K(f(a)), 1 − c􏼈 􏼉

� max f
− 1

(K)(a), 1 − c􏽮 􏽯

� f
− 1

(K)􏼐 􏼑
c
(a).

(9)

Hence, we have

f
− 1

Kc􏼐 􏼑(a) � f
− 1

(K)􏼐 􏼑
c
(a), for all a ∈ H. (10)

(b)

f Hc􏼐 􏼑(b) � Sup Hc(a): f(a) � b􏽮 􏽯

� Sup max H(a), 1 − c􏼈 􏼉: f(a) � b􏼈 􏼉

� max Sup H(a): f(a) � b􏼈 􏼉, 1 − c􏼈 􏼉

� max f(H)(b), 1 − c􏼈 􏼉

� (f(H))c(b).

(11)

Hence, we have

f Hc􏼐 􏼑(b) � (f(H))c(b), for all b ∈ K. (12)

)us, we have proved that the union and intersection
of two c-FSS are also a c-FSS. □

4. Mathematical Dominion of γ-Anti FSGs
(γ AFSGs)

In this section, we have discussed the c-anti fuzzy subgroups
(c-AFSGs) and some results based on c-AFSG.
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Definition 9. Let L be a group and M be a FSS of L and
c ∈ [0, 1]. )en, M is called c-APFSG of L if

(i) Mc(ab)≤max Mc(a), Mc(b)􏽮 􏽯, for all a, b ∈ L

(ii) Mc(a− 1) � Mc(a)

Theorem 3. Let M: L⟶ [0, 1] be a μ-APFSG of a group L,
then

(i) Mc(a)≥Mc(e), ∀a ∈ L and e ∈ L

(ii) Mc(ab− 1) � Mc(e)

Proof. (i)

Mc(e) � Mc aa
− 1

􏼐 􏼑

≤max Mc(a), Mc a
− 1

􏼐 􏼑􏽮 􏽯

� max Mc(a), Mc(a)􏽮 􏽯

� Mc(a)

Hence, Mc(e)≤Mc(a).

(13)

)is implies that Mc(a)≥Mc(e).
(ii)

Mc(a) � Mc ab
− 1

b􏼐 􏼑

≤max Mc ab
− 1

􏼐 􏼑, Mc(b)􏽮 􏽯

� max Mc(e), Mc(b)􏽮 􏽯

� Mc(b)

Hence, Mc(a)≤Mc(b)

Similarly, Mc(b)≤Mc(a).

(14)

)is implies that Mc(a) � Mc(b). □

Theorem 4. Every APFSG of a group L is a c-APFSG of a
group L.

Proof. Let M be an APFSG of a category L and let a and b be
two elements in L. Since M is an APFSG of a group L, then
we have

M a
− 1

b􏼐 􏼑≤max A(a), A(b){ }, for all a, b ∈ L. (15)

To prove

(i) Mc(ab)≤max Mc(a), Mc(b)􏽮 􏽯, for all a, b ∈ L

(ii) Mc(a− 1) � Mc(a), for all a ∈ L

(i) Consider

Mc(ab) � Sp M(ab),1− c􏼈 􏼉

≤Sp max M(a),M(b){ },1− c􏼈 􏼉

�max Sp M(a),1− c􏼈 􏼉,􏽮

· Sp M(b),1− c􏼈 􏼉􏽯

�max Mc(a),Mc(b)􏽮 􏽯

Hence, Mc(ab)≤max Mc(a),Mc(b)􏽮 􏽯, foralla,b ∈ L.

(16)

(ii) Consider

Mc a
− 1

􏼐 􏼑 � Sp M a
− 1

􏼐 􏼑, 1 − c􏽮 􏽯

� Sp M(a), 1 − c􏼈 􏼉

� Mc(a).

(17)

)erefore, M is μ-APFSG of L. □

Note 1. )e converse of )eorem 4 might not be true.

Theorem 5. Union of two c-APFSGs of a group L is also
c-APFSG of L.

Proof. Authorize H and K be two c-APFSGs of a category L.
Let us assume that a, b ∈ L.

(H∪K)c(ab) � Hc ∪Kc􏼐 􏼑(ab)

� max Hc(ab), Kc(ab)􏽮 􏽯

≤max max Hc(a), Hc(b)􏽮 􏽯,􏽮

· max Kc(a), Kc(b)􏽮 􏽯􏽯

� max max Hc(a), Kc(a)􏽮 􏽯,􏽮

· max Hc(b), Kc(b)􏽮 􏽯􏽯

� max (H∪K)c(a),􏽮

(H∪K)c(b)􏽯

Hence, (H∪K)c(ab)≤max (H∪K)c(a),􏽮

· (H∪K)c(b)􏽯.

(18)

Consider

(H∪K)c a
− 1

􏼐 􏼑 � Hc ∪Kc􏼐 􏼑 a
− 1

􏼐 􏼑

� max Hc a
− 1

􏼐 􏼑, Kc a
− 1

􏼐 􏼑􏽮 􏽯

� max Hc(a), Kc(a)􏽮 􏽯

� Hc ∪Kc􏼐 􏼑(a)

� (H∪K)c(a).

(19)

)erefore, H∪K is c-APFSG of L. □
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Example 1. Let L � Z, the set of integers be the group under
the binary operation “+.”

Let us assume the two FSS H and K of Z as

H(a) �
0.3, if a ∈ 3Z,

0.7, otherwise.
􏼨 K(a) �

0.2, if a ∈ 2Z,

0.5, otherwise.
􏼨 (20)

Let us take c � 1. Obviously, H and K are 1-APFSG of Z.
Now, (H∪K)(a) � max H(a), K(a){ }.
To prove: association of two c-APFSG of Z is not a

c-APFSG of Z.

)erefore, (H∪K)(a) �

0.3, if a ∈ 3Z,

0.2, if a ∈ 2Z − 3Z,

0.7, otherwise.

⎧⎪⎨

⎪⎩
Let

a � 9 and b � 2. )en,

(H∪K)(9) � 0.3

(H∪K)(2) � 0.2

(H∪K)(9 − 2) � (H∪K)(7)

max (H∪K)(a), (H∪K)(b){ } � max 0.3, 0.2{ }

� 0.3.

(21)

)erefore, (H∪K)(a − b)〉max (H∪K)(a),(H∪{

K)(b)}. Hence, H∪K is not a 1-APFSG of Z. )erefore,
union of two 1-APFSG of Z is not a 1-APFSG of Z.

Definition 10. Let H and K be two c-APFSGs of groups L1
and L2, respectively. )en, product of μ-APFSGs of H and K

is defined as

Hμ × Kμ � max Hμ(a), Kμ(b)􏽮 􏽯, for all a ∈ L1, b ∈ L2.

(22)

Theorem 6. Let H and K be two c-APFSGs of groups L1 and
L2, respectively. <en Hμ × Kμ is μ-APFSG of L1 × L2.

Proof. Let a1, a2 ∈ L1 and b1, b2 ∈ L2, then (a1, b1), (a2,

b2) ∈ L1 × L2,

Hμ × Kμ a1, b1( 􏼁 a
−1
2 , b

−1
2􏼐 􏼑􏼐 􏼑

� Hμ × Kμ a1a
−1
2 , b1b

−1
2􏼐 􏼑

� max Hμ a1a
−1
2􏼐 􏼑, Kμ b1b

−1
2􏼐 􏼑􏽮 􏽯

≤max max Hμ a1( 􏼁, Hμ a
−1
2􏼐 􏼑􏽮 􏽯, max Kμ b1( 􏼁, Kμ b

−1
2􏼐 􏼑􏽮 􏽯􏽮 􏽯

≤max max Hμ a1( 􏼁, Hμ a2( 􏼁􏽮 􏽯, max Kμ b1( 􏼁, Kμ b2( 􏼁􏽮 􏽯􏽮 􏽯

� max max Hμ a1( 􏼁, Kμ b1( 􏼁􏽮 􏽯, max Hμ a2( 􏼁, Kμ b2( 􏼁􏽮 􏽯􏽮 􏽯

� max Hμ × Kμ a1, b1( 􏼁, Hμ × Kμ a2, b2( 􏼁􏽮 􏽯.

(23)

Hence, Hμ × Kμ((a1, b1)(a−1
2 , b−1

2 ))≤max Hμ × Kμ(a1,􏽮

b1), Hμ × Kμ(a2, b2)}. With appropriate examples, the
composition of the fuzzy relations is described in two ways:
max-min composition and max-product composition. )is
study also introduces the composition features of fuzzy
relations. □

Definition 11. Let H be a c-APFSG of a group L and
c ∈ [0, 1]. For any a ∈ H, the c-AFLCS of H in L is rep-
resented by aHc(g) � Sp H(m− 1), c􏼈 􏼉, for all a, g ∈ L. )e
c-AFRCS is defined as

(Ha)(g) � Sp H ga
− 1

􏼐 􏼑, c􏽮 􏽯, for all a, g ∈ L. (24)

Definition 12. Let H be a c-APFSG of a group L and
c ∈ [0, 1]. )en, H is said to be μ-APFNSG of L if and only if
aH � Ha, for all a ∈ H.

Theorem 7. Every APFNSG of a category L is a c-APFNSG of
L.

Proof. Let H be an APFNSG of a category L. )en, for any
a ∈ H,

aH � Ha

⇒(aH)(g) � (Ha)(g) for allg ∈ L.
(25)

Hence, we have

H a
− 1

g􏼐 􏼑 � H ga
− 1

􏼐 􏼑

⇒Sp H a
− 1

g􏼐 􏼑, c􏽮 􏽯 � Sp H ga
− 1

􏼐 􏼑, c􏽮 􏽯

⇒aHc(g) � Hca(g)

⇒aHc � Hca, for all a ∈ L.

(26)

Hence, H is a c-APFNSG of L. □

Remark 2. )e contrary of the accompanying hypothesis is
not really true.

Example 2. Let L � D3 � 〈u, v: u3 � v2 � e, vu � u2v〉 be
the dihedral group. Let us define the FSG of D3 as

H(a) �
0.6, if a ∈ 〈v〉,

0.4, otherwise,
􏼨 (27)

To prove:H is not a APFNSG of L. Let us take c � 0, then
we have

aHc􏼐 􏼑(g) � Sp H a
− 1

g􏼐 􏼑, 1 − c􏽮 􏽯

� Sp H a
− 1

g􏼐 􏼑, 1􏽮 􏽯

� H a
− 1

g􏼐 􏼑 + 1 − H a
− 1

g􏼐 􏼑

� 1

Hca􏼐 􏼑(g) � Sp H ga
− 1

􏼐 􏼑, 1 − c􏽮 􏽯

� Sp H ga
− 1

􏼐 􏼑, 1􏽮 􏽯

� H ga
− 1

􏼐 􏼑 + 1 − H ga
− 1

􏼐 􏼑

� 1

⇒aHc � Hca.

(28)

)erefore, H is a o-APFNSG of L.
Now,
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H u
2
(uv)􏼐 􏼑 � H u

3
v􏼐 􏼑

� H(ev) � H(v) � 0.6,

H (uv)u
2

􏼐 􏼑 � H(u(uv)u) � H(u(vu)u) � H u u
2
v􏼐 􏼑u􏼐 􏼑

� H u
3
v􏼐 􏼑u􏼐 􏼑 � H((ev)u) � H(vu)

� 0.4

⇒H u
2
(uv)􏼐 􏼑≠H (uv)u

2
􏼐 􏼑.

(29)

⇒H is not c-APFNSG of L.

Theorem 8. Let H be c-APFNSG of a group L. <en,
Hc(b− 1ab) � Hc(a) or Hc(ab) � Hc(ba) for all a, b ∈ L.

Proof. Let H be a c-APFNSG of a group L.

⇒aHc � Hca, for all a ∈ L

⇒ aHc􏼐 􏼑 b
− 1

􏼐 􏼑 � Hca􏼐 􏼑 b
− 1

􏼐 􏼑, b
− 1 ∈ L

⇒Sp H a
− 1

b
− 1

􏼐 􏼑, 1 − c􏽮 􏽯 � Sp H b
− 1

a
− 1

􏼐 􏼑, 1 − c􏽮 􏽯

⇒Hc(ba) − 1 � Hc(ab) − 1

⇒Hc(ba) � Hc(ab);

. (30)

[AsHis a c − AFSGof L soHc(g− 1) � Hc(g) for all
g ∈ L]. □

5. Application

A conventional genetic sequence is made of three base pairs,
and the organization among those DNA bases or RNA is
precise. Mathematically, these genetic codes can be inter-
preted and analyzed by defining appropriate algebraic
structures. )e two main types of nucleic acids are DNA
and RNA which are long chains of repeating nucleotides. In
RNA, the base thymine (A, C, G, T in DNA) replaces with
uracil (U). RNA is formed by the transcription process of
DNA and is mostly involved in protein synthesis. )is
entire process commits to encoding the codons (triplets).
)ese triplets are called standard genetic code SGC [35]. It is
a domain transformation of crisp into fuzzy inputs that are
used to establish the degree of truth for each rule premise.
)e mathematical explanation of gene mutation is provided
by group automorphism, making it simple to identify the
mutation. Different mathematical models suggested binary
interpretation of the GC of the DNA bases. )ese binary
representations suggested that there must exist some partial
order on the codon set. )e partial order on GC is defined
by using chemical Base classes (codon and heterocyclic) and
protonated values. Numerous algebraic structures for ge-
netic code (GC) have been presented to investigate the
consequence of the significant link between the mutational
process and the coding apparatus on protein-coding regions
[36]. Mathematically, a GC is identical to a cube enclosed in
3D space, as a result of steady phylogenetic analyses of DNA
protein-coding regions. Sanchez and Barreto proposed that
GCmay be characterized as such linear average of treatment
in order elliptic groups and suggested that it can be quite

logical to extend it to the whole genome defined on the GC,
where population’s GA in the alike steer to the similar
canonical decomposition into p-groups [37]. )e four-base
Boolean lattice is constructed by considering that bases with
the same hydrogen bond number in the DNA molecule and
with separate chemical types must be supportive elements
in the lattice. By using this complementary behavior of
DNA bases, Sanchez et al. [38–40] define two dual Boolean
codon lattices of GC. )e boolean lattice of the GC is
presumed to be the direct product of three copies of
the four-base two dual Boolean lattices. Here, we will
construct c-anti fuzzy subgroups and c-fuzzy subgroups for
the DNA base. We proceed in the following manner. Let
L � A, C, G, U{ } define a binary operation L as follows:

· A C G U

A A C G U

C C A U G

G G U A C

U U G C A

. (31)

Define blurring subset μ of G as

μ(x) �

1, if x � A,

0.5, if x � C or x � G,

0.3, if x � U.

⎧⎪⎪⎨

⎪⎪⎩
(32)

)en, μ(ab)≥min μ(a), μ(b)􏼈 􏼉 and μ(a− 1) � μ(a) for all
a, b ∈ G imply μ is a fuzzy subgroup of L. Let the fuzzy set η
of L be defined by

η(x) �

0.9, if x � A,

0.7, if x � C orx � G,

0.8, if x � U.

⎧⎪⎪⎨

⎪⎪⎩
(33)

then η is c-APFSG of L as ηc(ab)≤max ηc(a), ηc(b)􏽮 􏽯 and
ηc(a− 1) � ηc(a) for all a, b ∈ L. Consider

ηc(AC) � Sp η(AC), 1 − c􏼈 􏼉

≤ Sp max η(A), η(C)􏼈 􏼉, 1􏼈 􏼉

� max Sp η(A), 1􏼈 􏼉, Sp η(C), 1􏼈 􏼉􏽮 􏽯

� max Sp 0.9, 1{ }, Sp 0.7, 1{ }􏽮 􏽯

� max 0.9 + 1 − 0.9, 0.7 + 1 − 0.7{ }

� max 1, 1{ }

ηc(AC) � 1,

max ηc(A), ηc(C)􏽮 􏽯 � max Sp η(A), 1􏼈 􏼉, Sp η(C), 1􏼈 􏼉􏽮 􏽯

� max Sp 0.9, 1{ }, Sp 0.7, 1{ }􏽮 􏽯

� max 1, 1{ }

� 1.

(34)

)is implies that
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ηc(AC)≤max ηc(A), ηc(C)􏽮 􏽯. (35) )e sixty-four codon system is

L
3

� {AAA, AAC, AAG, AAU, ACA, ACC, ACG, ACU, AGA, AGC, AGG, AGU, AUA, AUC,

AUG, AUU, CAA, CAC, CAG, CAU, CCA, CCC, CCG, CCU, CGA, CGC, CGG, CGU,

CUA, CUC, CUG, CUU, GAA, GAC, GAG, GAU, GCA, GCC, GCG, GCU, GGA, GGC,

GGG, GGU, GUA, GUC, GUG, GUU, UAA, UAC, UAG, UAU, UCA, UCC, UCG, UCU,

UGA, UGC, UGG, UGU, UUA, UUC, UUG, UUU}.

(36)

Using Definition 10, we compute c-APFSG of the sixty-
four codon system as follows:

η(xyz) �

0.9, if x, y or z � A,

0.7, if x, y and z � C orx, y and z � G,

0.8, if x, y or z � U.

⎧⎪⎪⎨

⎪⎪⎩
(37)

)e groups L and L3 are Abelian groups so the c-APFSG
is c-AFNSG.

6. Conclusion

)e goal of this study is to study anti fuzzified normative
segments (c-AFNSG and c-FNSG). As per mathematical
logic, the convergence of any assembly of subdivisions of a
category G is also the division of G. However, the union of
subgroups generally does not obey this rule. However, the
union of any two c-APFNSG is also a c-APFNSG. )e
product of two c-APFNSG of two different groups can be
determined by taking the cross product of the groups under
consideration with a componentwise binary operation. )e
cosets are also introduced which can be further used to
define quotient structure in anti fuzzy subgroups. )e work
provides essential information about normal subgroups in
c-fuzzy and anti fuzzy subgroups. Nilpotent and soluble
groups are governed by defining normal series, precisely, the
chains of normal subgroups. In the future, nilpotent and
soluble c-fuzzy and anti fuzzy subgroups can be defined with
the help of the results presented in this article. c-AFNSG and
c-FNSG are constructed for the dihedral groups. )e group
automorphisms provide the mathematical description of
gene mutation [41]. )e dihedral group is the best example
of finite non-Abelian groups generated by reflections and
rotations of a regular polygon and plays an important role in
group theory, geometry, and chemistry. Group automor-
phisms are observed as the algebra behind gene mutation
here c-AFNSG and c-FNSG are established for the DNA
base and codon system. It is a domain transformation of
crisp into fuzzy inputs to determine the truth’s degree for
each rule premise. )e group automorphism provides the
mathematical description of gene mutation, so it will be easy
to identify the mutation. In future, the automorphism for
c-AFNSG and c-FNSG can be established by considering the
extension principle of fuzzy sets and group homomorphism
to analyze its impact to identify gene mutations.
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