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In this paper, we consider the following Kirchho� problem − (a + b∫
R3
|∇u|2dx)Δu + λV(x)u � |u|p− 2u, inR3

u ∈ H1(R3)


 where a, b> 0

are constants, λ is a positive parameter, and 4<p< 6. Under suitable assumptions on V(x), the existence of nontrivial solution is
obtained via variational methods.  e potential V(x) is allowed to be sign-changing.

1. Introduction and Main Results

In this paper, we consider the following Kirchho� type
problem:

− a + b∫
R3
|∇u|2dx( )Δu + λV(x)u � |u|p− 2u, inR3

u ∈ H1 R3( ),




(1)

where a, b> 0 are constants, λ is a positive parameter,
4<p< 6, and the potential V satis�es the following
conditions:

(V1)V ∈ C(R3, R) and V is bounded below
(V2) there exists a constant c> 0 such that the set
x ∈ R3: V(x)≤ c{ } is nonempty and
meas x ∈ R3: V(x)≤ c{ }< +∞, where meas denote the
Lebesgue measure in R3

 is kind of assumptions was �rst introduced by Bartsch
and Qiang Wang [1] in the study of the nonlinear
Schrödinger equations and has attracted the attention of
several researchers.

In recent years, the Kirchho� problem on a bounded
domain Ω ⊂ RN

− a + b∫
R3
|∇u|2dx( )Δu + V(x)u � |u|p− 2u, inΩ,

u � 0, on zΩ ,




(2)

has been studied by many authors (see, for example, [2–8]).
More recently, many researchers focused on the Kirchho�
problem de�ned on the whole space R3, i.e., the following
problem:

− a + b ∫
R3

|∇u|2dx Δu + λV(x)u � f(x, u), inR3

u ∈ H1 R3( ),




(3)

where V: R3⟶ R is a potential function and
f ∈ C(R3 × R, R). In [9], Wu studied (3) by using a sym-
metric Mountain Pass  eorem under the following as-
sumptions about potential V
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(V) V ∈ C(R3, R), inf
x∈R3

V(x)≥ a0 > 0, where a0 > 0 is a
constant. Moreover, for any M> 0 , meas x ∈ R3: V􏼈

(x)≤M}< +∞, where meas denotes the Lebesgue measure
in R3.

Under this condition, by Lemma 3.4 in [10], the em-
bedding H1(R3)↪LsR3 is compact for any s ∈ [2, 6). Hence,
the corresponding results in [9] have been obtained by using
the variational techniques in a standard way. In [11–13], the
authors considered Kirchhoff type problem (3) with a steep
potential well. Precisely, the potential function satisfies the
following conditions besides (V2):

(V3)V ∈ C(R3, R) and V≥ 0 on R3

(V4)Ω � intV− 1(0) is a nonempty open set with locally
Lipschitz boundary and Ω � V− 1(0)

By using this conditions, Sun andWu [11] considered (3)
in the case where the nonlinearity f(x, s) is asymptotically
k-linear (k � 1, 2, 4) with respect to s at infinity. Du et al.
[12] studied (3) when f(x, u) behaves like |u|p− 2u with
4<p< 6 and proved the existence and asymptotic behavior
of ground state solutions. Zhang and Du [13] investigated
the existence and asymptotic behavior of positive solutions
for (3) by combining the truncation technique and the
parameter-dependent compactness lemma for b small and λ
large in the case where f(x, u) behave like |u|p− 2u with
2<p< 4. For more results about Kirchhoff type problems,
we refer the reader to [14–18] and the references therein.

Under the assumption of (V1), the potential V may
change sign. ,e purpose of this paper is to consider the
multiplicity of solutions for (1) in this case. To our best
knowledge, there is no existence result of solutions for (1)
with sign-changing potentials. Our main result as follows.

Theorem 1. Suppose that (V1) and (V2) and 4<p< 6 hold.
)en, system (1) possesses infinitely many distinct pairs of
nontrivial solutions whenever λ> 0 is sufficiently large.

2. Preliminaries

As a matter of convenience, without loss of generality, we
may assume that a � 1 and b � 1. Consequently, we are
dealing with the Kirchhoff type problem as

− 1 + 􏽚
R3

|∇u|
2
dx􏼒 􏼓Δu + λV(x)u � |u|

p− 2
u, inR

3

u ∈ H
1

R
3

􏼐 􏼑.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Let

H
1

R
3

􏼐 􏼑 � u ∈ L
2

R
3

􏼐 􏼑: ∇u ∈ L
2

R
3

􏼐 􏼑􏽮 􏽯, (5)

be the usual Sobolev space with the standard inner product
and norm as follows:

(u, v) � 􏽚
R3

[∇u∇v + uv]dx,

‖u‖ � 􏽚
R3

|∇u|
2

+ u
2

􏼐 􏼑dx􏼒 􏼓
1/2

.
(6)

In our problem, we work in the space defined by

Eλ � u ∈ H
1

R
3

􏼐 􏼑: 􏽚
R3

|∇u|
2

+ λV
+
(x)u

2
􏼐 􏼑dx< +∞􏼚 􏼛,

(7)

with the inner product and the norm as follows:

〈u, v〉Eλ
� 􏽚

R3
∇u · ∇v + λV

+
(x)uv( 􏼁dx,

‖u‖Eλ
� 〈u, u〉

1/2
Eλ

,

(8)

where V±(x) � max ±V(x), 0{ } and V(x) � V+(x) −

V− (x). It follows from the conditions (V1) and (V2) and the
Hölder and Sobolev inequalities that

􏽚
R3

|∇u|
2

+ u
2

􏼐 􏼑dx≤􏽚
R3

|∇u|
2dx + Vc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2/3

􏽚
Vc

|u|
6dx􏼠 􏼡

1/3

+
1
c

􏽚
R3/Vc

V(x)u
2dx

≤max 1 + Vc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2/3

S
− 1

, c
− 1

􏼚 􏼛􏽚
R3

|∇u|
2

+ V(x)u
2

􏼐 􏼑dx,

(9)

which implies that the embedding Eλ↪H1(R3) is contin-
uous. Here, S is the best constant for the embedding of
D1,2(R3) in L6(R3). Combine with the continuity of the
following embedding:

H
1

R
3

􏼐 􏼑↪ L
s

R
3

􏼐 􏼑, 2≤ s≤ 6. (10)

,ere is a constant as > 0 such that

‖u‖s ≤ as‖u‖Eλ
, ∀u ∈ Eλ. (11)

As a consequence, the functional Iλ: Eλ⟶ R given by

Iλ(u) �
1
2

􏼒 􏼓􏽚
R3

|∇u|
2

+ λV(x)u
2

􏼐 􏼑dx +
1
4

􏼒 􏼓 􏽚
R3

|∇u|
2

􏼒 􏼓
2

−
1
p

􏼠 􏼡􏽚
R3

|u|
pdx. (12)

is well defined, and it is of class C1 with derivative
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< Iλ′(u), v>� 􏽚
R3
∇u∇vdx + 􏽚

R3
λV(x)uvdx + 􏽚

R3
|∇u|

2dx􏽚
R3
∇u∇vdx − 􏽚

R3
|u|

p− 2
uvdx. (13)

for all u, v ∈ Eλ. As in [19], let

Fλ � u ∈ Eλ: suppu ⊂ V
− 1

([0,∞))􏽮 􏽯, (14)

and denote the orthogonal complement of Fλ in Eλ by F⊥λ .
Consider the eigenvalue problem

− Δu + V
+
(x)u � μV

−
(x)u, u ∈ F

⊥
λ . (15)

In view of (V1) and (V2), the quadratic form
u↦􏽒

R3V
− (x)u2dx is weakly continuous. We have the fol-

lowing proposition.

Proposition 1 (see Lemma 2.1 in [19]). Suppose (V1) and
(V2) and V− ≠ 0 hold. )en, for each fixed j,

(i)μj(λ)⟶ 0 as λ⟶ +∞
(ii)μj(λ) is a non-increasing continuous function of λ
where μj(λ) � infdimM≥j,M⊂F⊥/λsup ‖u‖2Eλ

: u ∈M,􏽮

􏽒
R3λV− (x)u2dx � 1}(j � 1, 2, 3, . . .) is sequence of

positive eigenvalues of problem (P) satisfying
μ1(λ)≤ μ2(λ)≤ · · · ≤ μj(λ)⟶∞ as j⟶∞ and the
corresponding eigenfunctions ej(λ)􏽮 􏽯

∞
j�1.

Let

E
−
λ � span ej(λ): μj(λ)≤ 1􏽮 􏽯,

E
+
λ � span ej(λ): μj(λ)> 1􏽮 􏽯.

(16)

)en,

Eλ � E
−
λ ⊕Fλ ⊕E

−
λ . (17)

Moreover, dim E−
λ < +∞ for every fixed λ> 0.

To complete the proof of our theorem, we need the
following results.

Theorem 2 (see Theorem 9.12 in [20]). Let E be an infinite
dimensional Banach space, and let I ∈ C1(E, R) be even,
satisfying (PS) condition and I(0) � 0. If E � V⊕X, where V

is finite dimensional and I satisfies the following:

(I1) there are constants ρ, α> 0 such that I|zBρ ∩X≥ α
(I2) for each finite dimensional subspace 􏽥E ⊂ E, there is
an R � R(􏽥E) such that I≤ 0 on 􏽥E/B

R(􏽥E)

then I possesses an unbounded sequence of critical
values.

3. Proof of Main Results

Lemma 1. Suppose that 4<p< 6 and (V1) and (V2) hold.
)en, there exist α, ρ> 0 such that Iλ(u)≥ α for all u ∈ Eλ
with ‖u‖λ � ρ.

Proof. By Proposition 1, for each fixed λ>Λ, there exists a
positive integer nλ such that μj(λ)≤ 1 for j< nλ and μj(λ)> 1
for j≥ nλ. ,us, for any u � u1 + u2 ∈ E+

λ⊕Fλ, we have

Iλ(u) �
1
2

􏼒 􏼓‖u‖
2
Eλ

−
1
2

􏼒 􏼓􏽚
R3
λV

−
(x)u

2
dx +

1
4

􏼒 􏼓 􏽚
R3

|∇u|
2dx􏼒 􏼓

2
−

1
p

􏼠 􏼡􏽚
R3

|u|
pdx

≥
1
2

􏼒 􏼓􏽚
R3
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ λV(x)u
2
1􏼐 􏼑dx +

1
2

􏼒 􏼓‖u‖2
2
Eλ

−
1
p

􏼠 􏼡􏽚
R3

|u|
pdx

≥
1
2

􏼒 􏼓 1 −
1

μnλ
(λ)

􏼠 􏼡􏼠 􏼡‖u‖
2
Eλ

−
1
p

􏼠 􏼡‖u‖
p
p

≥
1
2

􏼒 􏼓 1 −
1

μnλ
(λ)

􏼠 􏼡􏼠 􏼡􏼢 􏼣‖u‖
2
Eλ

− C‖u‖
p
Eλ

≥
1
2

􏼒 􏼓 1 −
1

μnλ
(λ)

􏼠 􏼡􏼠 􏼡 − C‖u‖
p− 2
Eλ

􏼢 􏼣‖u‖
2
Eλ

,

(18)

for all u ∈ Bρ(0), where Bρ(0) � u ∈ E+
λ⊕Fλ: ‖u‖Eλ

< ρ􏽮 􏽯.
Since p> 2, the conclusion follows by choosing ρ sufficiently
small. □

Lemma 2. Suppose that 4<p< 6 and (V1) and (V2) hold.
)en, there is a large r> 0 such that I(u)< 0 on 􏽥E/Br(0).

Proof. Since all norms are equivalent in a finite dimensional
space, there are constants Cp > 0 and C> 0 such that

‖u‖D1,2 R3( ) ≤C‖u‖Eλ
,

‖u‖p ≥Cp‖u‖Eλ
, ∀u ∈ 􏽥E ⊂ Eλ.

(19)

where ‖u‖2D1,2(R3) � 􏽒
R3 |∇u|2dx. Hence, for all u ∈ 􏽥E,
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Iλ(u) �
1
2

􏼒 􏼓‖u‖
2
Eλ

−
1
2

􏼒 􏼓􏽚
R3
λV

−
(x)u

2
dx +

1
4

􏼒 􏼓 􏽚
R3

|∇u|
2
dx􏼒 􏼓

2
−

1
p

􏼠 􏼡􏽚
R3

|u|
p
dx

≤
1
2

􏼒 􏼓‖u‖
2
Eλ

+
C

4
􏼒 􏼓‖u‖

4
Eλ

−
1
p

􏼠 􏼡‖u‖
p
p

≤
1
2

􏼒 􏼓‖u‖
2
Eλ

+
C

4
􏼒 􏼓‖u‖

4
Eλ

−
Cp

p
􏼠 􏼡‖u‖

p
Eλ

.

(20)

Since p> 4, consequently, there is a large r> 0 such that
I(u)< 0 on 􏽥E/Br(0). □

Lemma 3. Let 4<p< 6 and (V1) and (V2) be satisfied.
)en, there exists Λ> 0 such that, for each c ∈ R, Iλ satisfies
the (PS)c condition for all λ≥Λ.

Proof. Let un􏼈 􏼉 be a (PS)c sequence, that is, Iλ(un)⟶ c

and Iλ′(un)⟶ 0. If un􏼈 􏼉 is unbounded in Eλ, up to a
subsequence, we can assume that

un

����
����Eλ
⟶ +∞,

Iλ un( 􏼁⟶ c,

Iλ′ un( 􏼁
����

����⟶ 0,

(21)

as n⟶∞, after passing to a subsequence. Set
wn � un/‖un‖Eλ

, we can assume that wn⇀w in Eλ and
wn(x)⟶ w(x) a.e. x ∈ R3.

If w � 0, since u↦􏽒
R3V

− (x)u2dx ∈ is weakly contin-
uous, we have

o(1) �
1

un

����
����
2
Eλ

⎛⎜⎝ ⎞⎟⎠ Iλ un( 􏼁 −
1
p
〈Iλ′ un( 􏼁, un〉􏼠 􏼡

�
1
2

−
1
p

􏼠 􏼡 −
1
2

−
1
p

􏼠 􏼡􏽚
R3
λV

−
(x)w

2
ndx +

1
4

−
1
p

􏼠 􏼡
1

un

����
����
2
Eλ

⎛⎜⎝ ⎞⎟⎠ 􏽚
R3
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓

2

≥
1
2

−
1
p

+ o(1),

(22)

a contradiction. If w≠ 0, then the setΩ � x ∈ R3: ω(x)≠ 0􏼈 􏼉

has positive Lebesgue measure. For x ∈ Ω, one has
|un(x)|⟶∞ as n⟶∞; Fatou’s lemma shows that
􏽒Ω|un|p− 4w4

ndx ⟶∞ as n⟶∞. ,us, by (9), we obtain

1/p􏽚
R3

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 4

w
4
ndx � 1/2 un

����
����
2
Eλ

− 1/2 un

����
����
2
Eλ

􏽚
R3
λV

−
(x)u

4
ndx + 1/4 un

����
����
4
Eλ

􏽚
R3
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓

2
+ o(1)

≤ 1/2 un

����
����
2
Eλ

+ 1/4 un

����
����
4
Eλ

􏽚
R3
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓

2
+ o(1)

≤C/4 + o(1).

(23)

,is is a contradiction. ,is implies un􏼈 􏼉 is bounded in
Eλ. We assume that ‖un‖Eλ

≤T. Passing to a subsequence if
necessary, we can assume that there exists u ∈ Eλ and A ∈ R

such that
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un⇀u inEλ,

􏽚
R3

|∇u|
2dx⟶ A

2
,

􏽚
R3

|∇u|
2dx≤A

2
.

(24)

,en, Iλ′(un)⟶ 0 implies that

􏽚
R3
∇u∇vdx + 􏽚

R3
λV(x)uvdx + A

2
􏽚

R3
∇u∇vdx − 􏽚

R3
|u|

p− 2
uvdx � 0, ∀v ∈ Eλ. (25)

Taking v � u in (25), we obtain

􏽚
R3

|∇u|
2dx + 􏽚

R3
λV(x)u

2dx + A
2
􏽚

R3
|∇u|

2dx − 􏽚
R3

|u|
pdx � 0, ∀v ∈ Eλ. (26)

Let vn ≔ un − u. It follows from (V1) and (V2) that

vn

����
����
2
2 � 􏽚

V(x)≥c
v
2
ndx + 􏽚

V(x)<c
v
2
ndx≤

1
λc

􏼒 􏼓 vn

����
����
2
Eλ

+ o(1).

(27)

Moreover, Let 0< α<min 6 − p/2, 1􏼈 􏼉, 2<p< 6. ,en,
2< 2(p − α)/2 − α< 6. By Sobolev inequalities and Hölder
inequality, one has

vn

����
����

p

p
� 􏽚

R3
vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− αdx

≤ 􏽚
R3

vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓

α/2
􏽚

R3
vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2(p− α)/2− αdx􏼒 􏼓

2− α/2

� vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α
2 vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− α
2(p− α)/2− α

≤C(λc)
− (α/2)

vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

Eλ
+ o(1),

(28)

we know

o(1) �〈Iλ′ un( 􏼁, un〉

� un

����
����
2
Eλ

− 􏽚
R3
λV

−
(x)u

2
ndx + ∇un

����
����
4
2 − un

����
����

p

p
− ‖u‖

2
Eλ

+ 􏽚
R3
λV

−
(x)u

2dx − A
2 ∇un

����
����
2
2 +‖u‖

p
p

� vn

����
����
2
Eλ

− vn

����
����

p

p
+ A

4
− A

2
‖∇u‖

2
2 + o(1)

≥ vn

����
����
2
Eλ

− vn

����
����

p− 2
p

vn

����
����
2
p

+ o(1)

≥ 1 − 2apT􏼐 􏼑
p− 2

C
p− 2/p

(λc)
− α(p− 2)/2p

􏼔 􏼕 vn

����
����
2
Eλ

+ o(1).

(29)

Letting Λ> 0 be so large that the term in the brackets
above is positive when λ≥Λ, we get vn⟶ 0 in Eλ. Since
vn � un − u and vn⟶ 0, it follows that un⟶ u in Eλ. ,is
completes the proof. □

Proof of )eorem 1. Obviously, I(0) � 0. Furthermore, I is
even. ,e conclusion follows from Lemmas 1–3 and ,e-
orem 1. □
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