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Under the epidemic, closed management has turned a large number of communities into lonely islands, and the contactless
delivery method of UAV has become the rigid demand in this special period. -is paper studies a collaborative system of multi-
UAV multitruck transportation, which can deliver emergency materials such as medicine to remote areas or closed communities.
In this system, delivery tasks are assigned to multiple trucks and multiple drones on each truck can perform delivery tasks in
parallel, thereby improving delivery efficiency.We study the routing problem of this system specifically formedical supplying road
network and establish mixed-integer model and hybrid algorithm. We show by experiments that the number of trucks has more
significant impact on the optimal solution than the number of drones and the performance of hybrid particle swarm optimization
is better than the performance of the other algorithms.

1. Introduction

Under the epidemic, closed management has turned a large
number of communities into lonely islands, and the con-
tactless delivery method of UAV has become the rigid de-
mand in this special period. Remote areas or closed
communities usually have urgent needs for emergency
supplies such as medicine. However, UAV delivery has
obvious disadvantages: the load weight and load capacity of a
drone are small, and the flight radius of a drone is short
because the drone is powered by a battery. One solution to
these shortcomings is to allow drones to work together with
other types of transportation vehicles to deliver materials,
which leads to a new system of collaborative transportation.
For this new system, how to effectively dispatch drones and
trucks, arrange the distribution path and travel time, and
deliver the goods to the customer on time with minimum
cost, and realize the efficient and low-cost operations of the
system are new hot issues in the current academic and
industry research.

In a joint drone and truck delivery system, a drone can
serve a customer while flying to and from a moving truck.
Compared with pure drone delivery system or pure truck
delivery system, this kind of collaborative delivery system
has obvious advantages: the truck has a dual role of mobile
warehouse and transport resources, which can increase the
effective flight range of drones and allow different delivery
tasks to be parallelized, and drones can extend the duration
of the battery by charging or replacing batteries on trucks,
and so on.

Currently, the optimization of collaborative trans-
portation system, in which trucks and unmanned aerial
vehicles (UAVs) work together to complete the delivery task,
has also been studied more and more. Lin et al. studied the
discrete routing optimization of multi-UAV single-truck
system on road network and created mixed-integer models
and hybrid algorithms [1]. Agatz et al. established an integer
programming to solve the travel salesman problem with
UAVs [2]. Zhen et al. proposed an optimization model for
different scales of routing networks and a nonlinear
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optimization model under different sizes of instances, re-
spectively [3]. Luo et al. proposed a hybrid multiobjective
genetic optimization for path planning of the truck-drone
system [4]. AlMuhaideb et al. provided the adaptive ran-
domized greedy search for the travel salesman problem with
UAVs [5]. Gomez-Lagos et al. studied a new optimization
for one-truck multidrone routing in last-mile delivery and
presented a linear mixed-integer model to optimize the
serving time for all clients [6]. Moshref-Javadi et al. com-
pared some synchronized drone-truck models for cargo
transportation and evaluated these models by a Drone-Truck
Routing Algorithm [7]. Zhen proposed a stochastic planning
formula to handle with any arbitrary distribution of devi-
ation probability of operation time, and a robust formula
suitable to the case where available probability distribution
information is few [8]. Zhen et al. established a column
generation to solve the original model based on set partition.
In [9], Carlsson et al. concluded that the improvement of
efficiency depends on the square root of the ratio of truck
speed and UAV speed [10]. Zhang et al. proposed a drone-
truck system as a tool of postdisaster assessment for hu-
manitarian rescue networks, created a linear mixed-integer
model, and handled this problem by column generation [11].
Das et al. proposed a new synchronization mechanism
between UAV and trucks. -ey created a multiobjective
model which contains two conflicting objectives [12]. Choi
et al. formulated four cases of delivery service with and
without help of UAVs and analyzed the sensitivity of driver
payment rate, demand density, and so on [13]. Zhen focused
on a combination of physics and probabilistic based models
with truck interruption and created mixed-integer pro-
gramming to optimize the expected gross travel time of
driving containers [14].

Although many researchers have done research on
collaborative transportation, few have done research on the
collaborative routing specifically for the topology structure
of road network.-is paper makes up for this deficiency.-e
main innovation point of this paper is to study the col-
laborative routing problem specifically for the topology
structure of road network from a new perspective and
propose models and new algorithms to solve the new
problem. Our research is similar to the research in Lin et al.
[1], but our research is aimed at multi-UAV multitruck
system, while the research in Lin et al. [1] is aimed at multi-
UAV single-truck system.

2. Problem

We introduce a collaborative system for multidrone mul-
titruck transportation, in which delivery tasks are assigned to
multiple trucks, and multiple drones on each truck can
perform delivery tasks in parallel, thereby improving de-
livery efficiency. In the case of transportation of medical
emergency supplies, a medical warehouse needs to send
urgent medical supplies to a few hospitals or families who
urgently need medical care. In this paper, the medical
warehouse is called medical storehouse or supply center, and
the hospitals or families are called medical requirement
points. -e medical storehouse dispatches multiple trucks to

deliver medical supplies to several requirement points
within the prescribed time, while, in addition, multiple
drones were installed on each truck. When any truck ap-
proaches multiple requirement points at the same time, it
sends multiple UAVs to transport materials for these re-
quirement points.-is is called multi-UAV parallel delivery,
which enables more delivery tasks to be completed at the
same time. After completing the delivery task, any UAV will
fly back to the running truck to prepare for the next delivery
task or charge its battery to extend its flight endurance.

2.1.MultidroneMultitruck System on RoadNetwork. We use
G � (V, E) to represent the road network, which is the
network of all roads. In this symbol, E is a set of all roads,
while V is a set of cross-over points of all roads, in which
cross-over points are numbered as 0, 1, . . . , n, and the 0th
cross-over point is the medical storehouse in the case of
medical supplying network.

A road network for medical supplies is shown in Fig-
ure 1. -ere are thirty-two cross-over points, where the 0th
cross-over point is the medical storehouse. -e medical
storehouse 0 is requested to transport medical materials to
some medical requirement points. -e medical storehouse
will dispatch multiple trucks to deliver these requirement
points, and after having completed all the tasks, these trucks
drive back to the medical storehouse.

-e moving routes of multiple trucks and multiple
drones are shown in Figure 2, where the driving routes of
Truck 1 and Truck 2 are denoted by the black thick and blue
thick straight lines with arrow, respectively, and the flying
routes of Drone 1 and Drone 2 are denoted by the red light
and green light lines, respectively.

-e delivering process of multiple drones and multiple
trucks is shown in Figure 2. Truck 1 loads the medical
materials at the medical storehouse and follows the route
indicated by the thick black line with arrow. -e first route,
along which it drives, is 0⟶11⟶ 10⟶ 9. Before almost
arriving at the cross-over Point 9, Truck 1 dispatches Drone
1 in advance to deliver to Point a. When having delivered,
Drone 1 flies back to the moving Truck 1 and loads the next
medical materials and sometimes charge battery when the
electric power is low. -e second route, along which Truck 1
drives, is 9⟶16⟶17. After passing the cross-over Point
16, Truck 1 dispatches Drone 1 in advance to deliver to Point
c. Similarly, when having delivered, Drone 1 flies back to the
moving Truck 1. Before almost arriving at the cross-over
Point 17, Truck 1 dispatches Drone 2 in advance to deliver to
Point d, because Drone 1 is delivering to another Point c. At
last, all the materials on Truck 1 were delivered and Truck 1
is allowed to drive back to the medical storehouse.

Similarly, Truck 2 loads the medical materials at the
medical storehouse and follows the route indicated by the
thick blue line with arrow. -e first route, along which it
drives, is 0⟶ 23⟶ 24. Before almost arriving at the
cross-over Point 23, Truck 2 dispatches Drone 2 in advance
to deliver to Point f. -e second route, along which Truck 2
drives, is 24⟶18⟶ 0. After passing the cross-over Point
24, Truck 1 dispatches Drone 2 in advance to deliver to Point
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e. Next, Truck 2 dispatches Drone 1 in advance to deliver to
Point b, because Drone 2 is delivering to another Point e. At
last, all the materials on Truck 2 were delivered and Truck 2
is allowed to drive back to the medical storehouse.

2.2. Notational Conventions. First, we explain the following
symbols:

‖∗ ‖: we adopt Euclidean distance as in Lin et al. [1].
R: the two-dimensional Euclidean plane.
G: road network of medical emergency supplies.
n: the total of all cross-over points.
V: the set of all cross-over points, V � 0, 1, 2, 3, . . . , n{ }.
μu: the coordinate of the uth cross-over point, which
contains x-coordinate and y-coordinate:

μu � μ1u, μ2u  ∈ R, u ∈ V. (1)

(u, v): a directed linear road, which is a directed linear
segment which starts at the uth cross-over point and
ends at the Vth cross-over point, where u, v ∈ V.
εu,v: a binary number indicating whether (u, v) exists in
the road network G. A directed linear segment from
any cross-over point u to itself does not exist, that is,
(u, u) ∉ E:

εu,v �

1, if (u, v) ∈ E, u≠ v,

0, if (u, v) ∉ E, u≠ v,

0, if u � v.

⎧⎪⎪⎨

⎪⎪⎩
(2)

E: the set of all directed roads,
E � (u, v)|εu,v � 1, ∀u, v ∈ V .
φ0: speed of each truck.
φ1: speed of each drone, where φ0 <φ1.
h: the total number of medical requirement points to be
served.
I: the set of the medical requirement points to be
delivered.
i: point number of medical requirement, i ∈ I.
Pi: the position coordinate of Requirement i,
Pi � (p1

i , p2
i ).

gi: the delivery volume for Requirement i.
m: the total of UAVs in every truck.
K: the set of all the UAVs in every truck.
k: UAV number, k ∈ K.
L: the total number of all trucks.
S: the set of all trucks, S � 1, 2, 3, . . . , L − 1, L{ }.
s: truck number, s ∈ S.
qs: loading capacity of Truck s.
℘s: closed loop driving route of Truck s, ℘s ∈ R.
τs,k: the maximum battery endurance of the kth drone of
Truck s.

2.3. Decision Variables. Next, we explain the following de-
cision variables:

ωs,u,v: a binary number which is one if (u, v) is a part of
the path ℘s of Truck s; otherwise, is zero:

ωs,u,v �

1, if (u, v) ∈ ℘s, u≠ v,

0, if (u, v) ∉ ℘s, u≠ v,

0, if u � v.

⎧⎪⎪⎨

⎪⎪⎩
(3)

θi,s,k: a binary number which is 1 if Requirement i is
served by the kth drone of Truck s; if not, it is 0.
Xi: the take-off point of the drone flying from the truck
to Requirement i.
Yi: the landing point of the drone which flying back to
the truck from Requirement i.

2.4. Routing Problem of the Multidrone Multitruck System.
-e following is the definition of the routing problem of
multidrone multitruck system. In the road network
G � (V, E), every requirement point is numbered as i ∈ I;
the position coordinate and delivery volume of which are
given in advance. And the 0th cross-over point is the medical
storehouse.
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Figure 1: Sample medical supplying network, where storehouse 0
is the medical storehouse.
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Figure 2: -e delivering process of multiple trucks and multiple
drones.
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-e target of the problem is to figure out the flying route
of each UAV and the driving route of each truck. Each truck
loads the medical materials at the medical storehouse and
follows its route to deliver to its requirement points. Each
drone follows its flight route to serve a requirement point
while flying to and from a moving truck.

3. Model

We explain the intermediate variables, and then the pro-
gramming model.

3.1. Intermediate Variables. We use a symbol δs,u to indicate
the moving mileage of Truck s from the medical storehouse
to the uth cross-over point. It is easy to see: δs,0 � 0.

If the uth cross-over point is not located on the driving
route ℘s of Truck s, then a cross-over point v does not exist
so that ωs,v,u � 1. Let δs,u � −1 if u ∉ ℘s.

If the uth cross-over point is located on the driving route
℘s of Truck s, then only one cross-over point v exists so that
ωs,v,u � 1, that is, ∃v, (v, u) ∈ ℘s. -e line length of (u, v) is

μu − μv
����

���� �

�������������������

μ1u − μ1v 
2

+ μ2u − μ2v 
2



. (4)

We can get the following:

δs,u � 
n

v�0
ωs,v,u × δs,v +

�������������������

μ1u − μ1v 
2

+ μ2u − μ2v 
2



 . (5)

In summary,

δs,u �

0, if u � 0,



n

v�0
ωs,v,u × δs,v +

�������������������

μ1u − μ1v 
2

+ μ2u − μ2v 
2



 , if u≠ 0, ∀u ∈ ℘s,

−1, if u≠ 0, ∀ u ∉ ℘s.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

To reduce the difficulty of modelling, we use the fol-
lowing intermediate variables to replace variables: Xi and Yi.

βi,u,v: a binary number denoting whether the launching
point Xi is located on (u, v):

βi,u,v �
1, if Xi ∈ (u, v),

0, if Xi ∉ (u, v).
 (7)

αi: a decimal number denoting that the distance between
Xi and u is divided by the line length of (u, v). Obviously,
αi ∈ [0, 1):

αidef
Xi − μu

����
����

μv − μu
����

����
. (8)

β∗i,u,v: a binary number denoting which segment of ℘s the
point Yi is located on:

β∗i,u,v �
1, if Yi ∈ (u, v),

0, if Yi ∉ (u, v).
 (9)

α∗i : a decimal number denoting that the distance between
Yi and u is divided by the line length of (u, v), so α∗i ∈ [0, 1):

α∗i def
Yi − μu

����
����

μv − μu
����

����
. (10)

According to the above intermediate variables, we can
get the coordinates of Xi and Yi.

x1
i is the x-coordinate of the launching point Xi:

x
1
i � 

n

u�0


n

v�0
βi,u,v × μ1u + αi × μ1v − μ1u  . (11)

x2
i is the y-coordinate of the launching point Xi:

x
2
i � 

n

u�0


n

v�0
βi,u,v × μ2u + αi × μ2v − μ2u  . (12)

y1
i is the x-coordinate of the landing point Yi:

y
1
i � 

n

u�0


n

v�0
β∗i,u,v × μ1u + α∗i × μ1v − μ1u  . (13)

y2
i is the y-coordinate of the landing point Yi:

y
2
i � 

n

u�0


n

v�0
β∗i,u,v × μ2u + α∗i × μ2v − μ2u  . (14)

We use a symbol ξi,s to denote the distance of Truck s

driving from the medical storehouse to launching point Xi:

ξi,s � 

n

u�0


n

v�0


m

k�1
βi,u,v × θi,s,k × δs,u +

�������������������

x
1
i − μ1u 

2
+ x

2
i − μ2u 

2


 .

(15)

-is is equivalent to

ξi,s � 
n

u�0


n

v�0


m

k�1
βi,u,v × θi,s,k × δs,u + αi × μv − μu . (16)

We use a symbol ψi,s to denote the distance of Truck s

driving from the medical storehouse to landing point Yi:

ψi,s � 

n

u�0


n

v�0


m

k�1
β∗i,u,v ×θi,s,k × δs,u +

������������������

y
1
i −μ1u 

2
+ y

2
i −μ2u 

2


 .

(17)

-is is equivalent to

ψi,s � 
n

u�0


n

v�0


m

k�1
β∗i,u,v × θi,s,k × δs,u + α∗i × μv − μu

����
���� . (18)
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We can also get the flight distance of the drone for
delivering to Requirement i:

Xi − Pi

����
���� + Pi − Yi

����
���� �

�������������������

x
1
i − p

1
i 

2
+ x

2
i − p

2
i 

2


+

�������������������

p
1
i − y

1
i 

2
+ p

2
i − y

2
i 

2


.

(19)

3.2. Programming Model

MinimizeR �



h

i�1


L

s�1


m

k�1
θi,s,k × max

1
φ1

Xi − Pi

����
���� + Pi − Yi

����
����  −

1
φ0

ψi,s − ξi,s  , 0   +
1
φ0



L

s�1


n

u�0


n

v�0
ωs,u,v × μu − μv

����
���� .

(20)

Subject to

ωs,u,u � 0, ∀s ∈ S∀u ∈ V, (21)

ωs,u,v ≤ εu,v, ∀s ∈ S∀u, v ∈ V, (22)



n

u�0
ωs,u,v ≤ ∀s ∈ S∀v ∈ V, (23)



n

v�0
ωs,u,v ≤ 1 ∀s ∈ S∀u ∈ V, (24)



n

v�0
ωs,u,v � 

n

t�0
ωs,t,u, ∀s ∈ S∀u ∈ V, (25)

δs,0 � 0 ∀s ∈ S, (26)

δs,u � 
n

v�0
ωs,v,u × δs,v + μu − μv

����
����  ∀s ∈ S∀u ∈ V u≠ 0, (27)

βi,u,v ≤ 
L

s�1


m

k�1
ωs,u,v × θi,s,k  ∀i ∈ I∀u, v ∈ V, (28)

β∗i,u,v ≤ 
L

s�1


m

k�1
ωs,u,v × θi,s,k  ∀i ∈ I∀u, v ∈ V, (29)



n

u�0


n

v�0
βi,u,v � 1 ∀i ∈ I, (30)



n

u�0


n

v�0
β∗i,u,v � 1 ∀i ∈ I, (31)

x
1
i � 

n

u�0


n

v�0
βi,u,v × μ1u + αi × μ1v − μ1u   ∀i ∈ I, (32)

x
2
i � 

n

u�0


n

v�0
βi,u,v × μ2u + αi × μ2v − μ2u   ∀i ∈ I, (33)
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y
1
i � 

n

u�0


n

v�0
β∗i,u,v × μ1u + α∗i × μ1v − μ1u   ∀i ∈ I, (34)

y
2
i � 

n

u�0


n

v�0
β∗i,u,v × μ2u + α∗i × μ2v − μ2u   ∀i ∈ I, (35)

ξi,s � 
n

u�0


n

v�0


m

k�1
βi,u,v × θi,s,k × δs,u + αi × μv − μu

����
����  ∀i ∈ I∀s ∈ S, (36)

ψi,s � 
n

u�0


n

v�0


m

k�1
β∗i,u,v × θi,s,k × δs,u + α∗i × μv − μu

����
����  ∀i ∈ I∀s ∈ S, (37)

ξi,s ≤ψi,s ∀i ∈ I∀s ∈ S, (38)



L

s�1


m

k�1
θi,s,k � 1 ∀i ∈ I, (39)



h

i�1
θi,s,k ×

1
φ1

Xi − Pi
����

���� + Pi − Yi

����
���� ≤ τs,k ∀s ∈ S∀k ∈ K, (40)

ξi,s − ξj,s  × ξi,s − ψj,s  × θi,s,k × θj,s,k ≥ 0 ∀i, j ∈ I∀s ∈ S∀k ∈ K, (41)

ψi,s − ξj,s  × ψi,s − ψj,s  × θi,s,k × θj,s,k ≥ 0 ∀i, j ∈ I∀s ∈ S∀k ∈ K, (42)



h

i�1


m

k�1
θi,s,k × gi ≤ qs ∀s ∈ S, (43)

θi,s,k × gi ≤ ρs,k ∀i ∈ I∀s ∈ S∀k ∈ K, (44)

-e decision variables include θi,s,k, αi, βi,u,v, α∗i , β
∗
i,u,v,

and ωs,u,v, where βi,u,v, β
∗
i,u,v, θi,s,k, or ωs,u,v is a binary number

which is 0 or 1, while αi ∈ [0, 1) and α∗i ∈ [0, 1).
-e above objective and constraints are similar to those

objectives and constraints in Lin et al. [1], but our model is
specifically for multiple UAVs and multiple trucks, while the
model in Lin et al. [1] is specifically for multiple UAVs and
single truck, so the constraints involving multiple trucks are
different from the constraints in Lin et al. [1]. In the fol-
lowing, we only explain the constraints with large differ-
ences. For other constraints, please refer to Lin et al. [1].

Constraints (9) say that if βi,u,v � 1, that is, Xi ∈ (u, v),
then there exists and only exists a unique combination of s

and k such that ωs,u,v × θi,s,k � 1; that is, (u, v) ∈ ℘s, and the
i-th customer point is delivered by the k-th drone of the s-th
truck. Constraints (10) say that if β∗i,u,v � 1, that is,
Yi ∈ (u, v), then there exists and only exists a unique
combination of s and k such that ωs,u,v × θi,s,k � 1; that is,
(u, v) ∈ ℘s, and the i-th customer point is delivered by the
k-th drone of the s-th truck.

4. Algorithm

Like the VRP or TSP problem, our problem is also NP hard,
because to find the shortest or least costly truck path, in the
worst case, all possible truck paths must be checked, which
would be astronomical. It is considered that the large ex-
amples of this kind of problems cannot be solved by exact
algorithm, and an effective approximate algorithm must be
sought for this kind of problems.

Considering that our problem is NP hard, we design
hybrid algorithms to solve the problem in large scale. -ese
hybrid algorithms decompose the original problem into two
smaller problems: the master problem solved by particle
swarm algorithm or genetic algorithm, and the child
problem solved by an approximation method that we
designed. To speed up problem solving, the heuristic method
breaks down the child problem into four smaller problems:
the delivery task allocation of the truck, the delivery order,
the routing of drone delivery, and the allocation of drone
delivery tasks. -is makes every small problem less

6 Discrete Dynamics in Nature and Society



constrained. -e nature of our solution is suboptimal be-
cause we use evolutionary algorithm.

4.1. HybridGenetic Algorithm. -e hybrid genetic algorithm
decomposes the whole problem into two smaller problems: a
master problem solved by genetic algorithm and a child
problem solved by the heuristic, as shown in Figure 3.

4.1.1. Genetic Algorithm for Solving the Master Problem.
We use genetic algorithm to deal with the master problem.
-e genetic algorithm contains several steps: encoding and
decoding of chromosomes, designing fitness function,
population initialization, replication, elite selection, cross-
over operation, mutation operation, producing new species,
and designing termination conditions. In the following, we
only explain two critical steps.

(1) ;e Encoding and Decoding. Because the master problem
only solves the optimal closed transportation path of all
trucks, the chromosomes need to encode only one kind of
decision variables ωs,u,v, using binary code, as shown in
Figure 4. Other decision variables are handled by the child
problem and need not be coded.

A feasible solution corresponding to the above chro-
mosome (i.e., transportation path scheme) can be obtained
through the following decoding process. First, in the first
segment of chromosome, for all genes ωs,u,v with a value of 1,
judge whether the corresponding directed line segment
(u, v) can form a truck closed loop ℘s, which starts from the
storehouse 0 and returns to the storehouse 0 after delivering
all goods, so that a feasible solution of the master problem
can be obtained.

(2) ;e Fitness Function. For the maximization problem, the
general fitness corresponds to the objective function, but, for
the minimization problem, the reciprocal of the objective
function is generally taken. For a solution of the master
problem corresponding to an individual R, to judge its
goodness, one is to see whether it meets the constraints of the
problem. -e second is to calculate the objective function
value of its corresponding subproblem. Specifically, first,
judge whether the solution of the master problem can meet
the closure of the truck driving path. -en, given the so-
lution of the master problem, the optimal flight route for
UAV to deliver goods to each customer point is solved from
the subproblem, and the objective function value of the
subproblem is calculated.-en judge whether the solution of
the subproblem can meet the order of the launching and
landing point of the UAV, and whether it could meet the
constraints such as the maximum endurance mileage of the
UAV. In short, it depends on whether the solutions of the
master problem and its corresponding subproblems meet
the above constraints. If not, these solutions are determined
as infeasible solutions.

For an individual r, the objective function value of its
child problem is Cr ; let Mr indicate whether the solution of
the master problem and its corresponding child problem are
feasible; Mr � 0 means feasible and Mr � 1 means

infeasible; then the fitness Fr of the individual r can be
expressed as follows:

Fr �


p
i�1 Ci + Mi × Γ( 

Cr + Mr × Γ
, r � 1, 2, . . . , p − 1, p, (45)

where Γ is the penalty weight (the weight takes a relatively
large positive number within the value range of the objective
function). -e penalty weight Γ means that when the dis-
tribution path scheme is not feasible, the fitness Fr of the
individual r is greatly reduced.

4.1.2. Heuristic for Solving the Child Problem. -e child
problem is aimed to get the optimal paths of multiple drones
for each requirement point based on a closed moving route
of the truck obtained from the above master problem. We
use the following heuristic to solve it.

(1) For Every Requirement Point, Determine Which Truck to
Deliver for It. For each requirement point Pi, the shortest
distance from the requirement point to all the truck routes is
calculated in turn. Finally, a truck s′ is selected, to the route
of which the shortest distance from the demand point is the
smallest of all routes of the trucks, and the customer will be
delivered by the truck s′:

s′⇒min
s∈S

d Pi,℘s(  � min
s∈S

min
X∈℘s

Pi − X . (46)

(2) For Each Truck, Find Out the Order of Its Requirement
Points. Next, the requirement delivery order of the truck
needs to be determined for each truck, that is, which re-
quirement the truck delivers to first and then which re-
quirement. When the total number of requirement points is
h, all possible delivery orders are factorial of h. If the ex-
haustive method is used to calculate all this delivery se-
quence, the total amount of calculation will be considerable.
-erefore, we adopt the following construction algorithm to
efficiently figure out a good delivering order.

Based on a driving route ℘s of the sth truck, for each
requirement point Pi delivered by the sth truck, figure out the
closest point ⊥i to Pi on this route ℘s. -en decide the
requirement delivering order of the truck according to the
order in which these points ⊥i appear on the route ℘s.
Specifically, if⊥i appears earlier than⊥j on the route ℘s, Pi is
delivered before Pj. Conversely, if ⊥i appears later than ⊥j,
then Pi is delivered after Pj. Figure 5 shows the closest points
to Pi , Pj, and Pk on the route ℘s.

(3) After We Get Truck Paths and Delivering Orders from the
above, Figure Out Drone Paths. When finding the route ℘s of
each truck and requirement delivery order, we need to
handle optimization of drone routing, which can be solved
by the following construction method.

When we solve the above requirement delivery order, for
each requirement point Pi served by a truck, we have cal-
culated the point ⊥i closest to the requirement point Pi on
the truck route.-e corresponding decision variable of UAV

Discrete Dynamics in Nature and Society 7



delivery to requirement point is Xi and Yi. To save time, we
must avoid that the UAV waits for the truck or the truck
waits for the UAV at landing pointYi; that is, when the UAV
reaches the landing point Yi, the truck also reaches the
landing point Yi. -erefore, the total time of the UAV from
the take-off point to the requirement point and then to the
landing point should be equal to the time of the truck driving
from Xi to Yi:

1
φ0

ψi − ξi(  ≈
1
φ1

Xi − Pi

����
���� + Pi − Yi

����
���� . (47)

Assuming that Xi and Yi are symmetrical about the
linear segment from requirement Pi to ⊥i, that is, the

distance from Xi to Pi is equal to the distance from Pi to Yi,
and the distance from Xi to ⊥i is equal to the distance from
⊥i to Yi, an approximate formula can be deduced:

1
φ0

Xi − ⊥i

����
���� ≈

1
φ1

Xi − Pi

����
����. (48)

If it is further approximately assumed that the segment
between Xi and Yi is perpendicular to the segment
between Pi and ⊥i, we can get according to the Pythagorean
theorem:

Xi − Pi

����
���� ≈

������������������

Xi − ⊥i

����
����
2

+ ⊥i − Pi

����
����
2



. (49)

Population initialization

Iteration
termination 

Generate a new population,
decode routes of all trucks

Next customer

Figure out the closest distance to 
which truck route for each 

customer and assign customers 
to it

Next truck

Calculate the delivery order for 
each truck according to the 

customer location served

Next customer
served

Try to make UAVs and trucks
arrive at the landing point at the 

same time. Use Pythagorean 
theorem and symmetry 

approximation to find UAV path

Assign customers to each drone 
by a sequential loop

Next drone
on the truck

Yes

No

Master
problem
using GA
or PSO

Child 
problems 
using 
heuristic

No

No

No

Yes

Yes

Yes

No

Yes

1. Assign 
customers
to trucks

2. Solve 
delivery 
order

3. Solve 
the route 
of UAV

4. Assign 
customers
to drones

Optimal
solution

Begin

Figure 3: -e flowchart of the hybrid algorithm.
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-e approximate solution of Xi can be decided through
the above two formulas. Similarly, the approximate solution
of landing point coordinate Yi can be decided, as shown in
Figure 6:

1
φ0

Yi − ⊥i

����
���� ≈

1
φ1

Yi − Pi

����
����, (50)

Yi − Pi

����
���� ≈

������������������

Yi − ⊥i

����
����
2

+ ⊥i − Pi

����
����
2



. (51)

(4) Decide θi,s,k Based on the above. After the delivery se-
quence of each truck and its UAV route are solved in turn
through the above steps, the decision variables θi,s,k can be
solved one by one through the sequential loop traversal
method. -e solution process is to perform the following
calculations for each truck.

First, for all customer demand points served by a truck,
set allocated� false to indicate that the requirement point
has not been assigned to a UAV of the truck.

Next, for the first and second UAVs of Truck s, re-
quirement points are allocated as follows until all require-
ment points are allocated to one UAV:

(1) For the first UAV of this Truck s, traverse each re-
quirement point served by Truck s in turn according
to the delivery order. First visit the first requirement
point i served by Truck s, set θi,s,1 � 1, and set
allocated� true. -en, visit the second requirement
point j. If the first UAV has returned to the truck
before visiting the second requirement point, set
θj,s,1 � 1, and set allocated� true. Otherwise, set
θj,s,1 � 0, and set allocated� false. And so on until all
requirement points are traversed.

(2) For the second UAV of Truck s, also traverse each
allocated� false requirement point served by Truck s
in turn according to the delivery order; that is, it
skips all allocated� true requirement points that
have been allocated. First visit the first requirement
point i marked as unassigned served by Truck s, set
θi,s,2 � 1, and set allocated� true. -en, access the
second requirement point jmarked as unassigned: if
the second UAV has returned to the truck when

accessing this requirement point j, then set θj,s,2 � 1,
and set allocated� true. Otherwise, set θj,s,2 � 0, and
set allocated� false. And so on until all requirement
points are traversed.

Similarly, the third and fourth UAVs of Truck s are
solved in the same way as the second UAV of Truck s until
the values θi,s,k of all drones are solved.

In short, the above calculation is performed for all trucks
until the values θi,s,k of all UAVs for all trucks are calculated.

4.2. Hybrid Particle Swarm Algorithm. -e hybrid particle
swarm algorithm is generally similar to the hybrid genetic
algorithm, as shown in Figure 3.

5. Experiment

We make experiments under Windows 10 to test the effi-
ciency of our methods, and use C# to write these algorithms.

5.1. Influence of the Number of Drones and Trucks on the
Optimal Solution. -rough the experiment of hybrid par-
ticle swarm optimization, this section will analyse the effect
of the number of drones and trucks on the completion time
of collaborative delivery.

Figure 7 displays the influence of different numbers of
UAVs and different numbers of trucks on the optimal fitness
under different road network sizes and different requirement
numbers, where the horizontal coordinate represents different
number of trucks, (i) represents using only one truck, (ii)
represents using two trucks, and (iii) represents using three
trucks. -e ordinate represents the best fitness. -e greater the
fitness, the closer to the optimal solution, and the faster the
completion time of collaborative delivery. Blue bars represent
using one drone, orange bars using two drones, grey bars using
three drones, yellow bars using four drones, and light blue bars
using five drones. Experiments (a) and (b)were conductedwhen
the network size was 100 and the number of customers was 20

ω1,0,0 ω1,n,n-1 ω1,n,n ωs,0,0 ωs,n,n-1 ωs,n,n ωL,0,0 ωL,n,n-1 ωL,n,n

ω1,u,v ωs,u,v ωL,u,v

………… ………… ……………………………… ……………………

Figure 4: -e structure of the chromosome.

i j k

pi pj
pk

s

Figure 5: In the child problem, we decide the customer delivery
order for each truck.

i

pi

xiψi yi ξi

Figure 6: Decide the launching and landing point of the UAV in
the child problem.
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Figure 7: -e influence of different numbers of drones and trucks on the optimal solution. (a) Network size: 100, requirement number: 20.
(b) Network size: 100, requirement number: 60. (c) Network size: 900, requirement number: 60.
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and 60, respectively. Experiments (c) were conducted when the
network size was 900 and the number of customers was 60.

It can be seen that in experiment (a), when only one
truck is used, the best fitness slightly exceeds 1200. When
using two trucks, the optimum fitness is close to 1400. -e
optimum fitness was over 1600 when using 3 trucks. Sim-
ilarly, in experiment (b), when only one truck was used, the

best fitness did not exceed 2000. When using 2 trucks, the
best fitness exceeds 2000. When using 3 trucks, the optimum
fitness was 2500. Overall, the more trucks used, the better the
optimum fitness.

On the other hand, in experiment (a), when only one
truck was used, the more drones there were, the better fitness
decreased slightly. When two trucks were used, the number
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Figure 8: Comparison of changing process of solving of different algorithms. (a) Network size: 100, requirement number: 20. (b) Network
size: 100, requirement number: 60. (c) Network size: 100, requirement number: 100. (d) Network size: 400, requirement number: 20.
(e) Network size: 400, requirement number: 60. (f ) Network size: 400, requirement number: 100. (g) Network size: 900, requirement
number: 20. (h) Network size: 900, requirement number: 60.
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of drones had little effect on the optimal fitness. When three
trucks were used, there was no significant difference in the
best fitness for different numbers of drones. In experiment
(b), when only one truck is used, when the number of UAVs
increases, the best fitness increases slightly at first and then
decreases slightly. When two trucks were used, the optimal
fitness increased slightly first and then decreased slightly
with the number of drones. A similar trend occurred when
three trucks were used. In conclusion, the number of dif-
ferent drones has little effect on the optimal fitness.

-erefore, the number of different trucks has a signifi-
cant impact on the best fitness, while the number of different
drones has little impact on the best fitness. In order to
achieve faster collaborative delivery completion time, that is,
greater optimum fitness, it is recommended to use more
trucks. Using more drones did little to improve optimum
fitness. When the number of UAVs increases, the optimal
fitness improves slightly at the beginning, but when the
number of UAVs reaches a certain number, the optimal
fitness will not improve.

5.2. Comparison of Different Algorithms. In Figure 8, we
compare four algorithms under different scales of road
networks and different numbers of requirement points,
where the current optimal fitness is represented by the
y-coordinate and the iteration number is represented by the
x-coordinate. -e highness of the current fitness indicates
the closeness to the best solution. -e changing processes of
solving of pure genetic algorithm (GA), pure particle swarm
(PSO), hybrid genetic algorithm (h-GA), and hybrid particle
swarm (h- PSO) are denoted by the blue, grey, orange, and
yellow broken lines, respectively.

We can see that the comprehensive performance of the
basic algorithm is worse than that of the hybrid algorithm.
And the hybrid particle swarm optimization has the best
performance in all algorithms.

6. Conclusions

-is paper focuses on a multi-UAVmultitruck system, which
can deliver medical materials to remote areas or closed
communities. In this system, delivery tasks are assigned to
multiple trucks, and multiple drones on each truck can
perform delivery tasks in parallel, thereby improving delivery
efficiency. We study the routing problem of this system
specifically for medical supplying road network and establish
mixed-integer model and hybrid algorithm. We show by
experiments that the number of trucks has more significant
impact on the optimal solution than the number of drones,
and the performance of hybrid particle swarm optimization is
better than the performance of the other algorithms.

In truck-drone collaborative transportation system,
optimization of route planning is a very complex problem;
this paper is only a preliminary study of this problem, and
the results can be further improved. In the future, research
can be carried out from the following aspects: more con-
straints, path planning in uncertain environment, algorithm
improvement, simulation optimization, and so on.
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