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�is paper uses extreme value theory and exponential generalised autoregressive score models to estimate the tail extremes of
�nancial return series. �e peak-over-threshold method based on the generalised pareto distribution is combined with the EGAS
models and the nonparametric quantile method is used to determine the thresholds in the POTmethod, which is used to calculate
the value-at-risk of �nancial markets and to perform backtesting. �e empirical analysis was conducted on the soybean oil,
rapeseed oil, and palm oil futures indices in the Chinese futures market. �e study demonstrated that the EGAS-POT models
based on nonparametric quantile thresholds can e�ectively characterise tail risk and provide a feasible measure of risk
for investors.

1. Introduction

In recent years, China’s economy has made remarkable
achievements. At the same time, as the Chinese futures
market gradually integrated with the international futures
market. In 2020, 6.153 billion lots and 437.53 trillion yuan
were traded in China’s futures market, accounting for 13.2%
of the total volume in the global futures market. Palm oil,
soybean oil, and rapeseed oil on China’s futures market will
rank second, fourth, and ninth, respectively, in the global
trading volume of agricultural futures and options. Chinese
vegetable oil futures is one of the most widely used varieties
in the Chinese market. Moreover, Chinese vegetable oil
futures are typical in agricultural futures market. �ere is a
substitute or complementary relationship among all varie-
ties, and it is closely related to spot price. In addition, the
price �uctuation of vegetable oils, oilseed, and oilseed meal
has a wide range of in�uence, which has direct or indirect
impact on the living consumption of residents, processing of
food enterprises, and production of livestock enterprises.
Since soybean futures were listed in 1993, oil and oil futures

have gradually realized the integration of upstream and
downstream of the industrial chain and the diversi�cation of
derivatives, such as futures and options. By introducing
foreign traders to participate in the trading of palm oil
futures and options and other kinds of instruments, they can
hedge and avoid risks to a certain extent. China oil futures
price is also a leading indicator to monitor the price �uc-
tuation of oil agricultural products and re�ect the change of
consumer price level. �e price �uctuation not only has the
transmission mechanism from futures to spot market but
also has the cross-market and cross-period relationship. In
the context of accelerating the �nancialisation of agricultural
products and preventing systemic �nancial risks, the role of
agricultural futures market in managing price risks is more
prominent. �erefore, it is of great theoretical and practical
signi�cance to study the risk of vegetable oil futures.

In the context of globalisation, risk measurement has
always been an important part of �nancial risk management
and investors and regulators have studied quantitative tools
for �nancial risk, such as value-at-risk [1] (VaR), for this
purpose. However, as extreme events have had a huge
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impact on financial markets, the volatility in international
financial markets has increased, the risk of a global economic
downturn is growing, and uncertainty about the outlook has
increased dramatically. +e tails of traditional metrics de-
scribing the distribution of returns are underperforming.

+e behaviour of the tails of financial risk has been
assessed by many scholars. McNeil [2], Jondeau and
Rockinger [3], and Da Silva and Mendez [4] showed that the
tails of returns on asset returns have extreme values and do
not follow a normal distribution and that their empirical
distribution is characterised by spikes and thick tails.
+erefore, classical parametric methods based on the as-
sumption of a normal distribution are not suitable for es-
timating risk in financial markets. One of the ideal
alternative parametric methods is extreme value theory
(EVT), and methods based on EVTcan be used on the basis
of VaR. Embrechts [5] discusses the application of EVT to
risk modelling. Manfred Gilli and Evis Kellezi [6] apply EVT
to measure tail risk in six stock market indices, +e results
show that extreme value theory is effective for estimating
extreme events in financial markets and that the POT
method allows better use of information in the data sample
to understand the details of financial market data. McNeil
[7] showed that direct application of EVT can overestimate
or underestimate VaR as the financial asset return series do
not satisfy the assumption of independent homogeneous
distribution, and there is heteroskedasticity. +erefore, the
original income sequence needs to be processed.

Starting from Engle’s autoregressive conditional heter-
oskedasticity [8] (ARCH) model. +e problem of constant
variance of time series variables in traditional econometrics
is solved. More models have been developed to model
volatility, such as the generalised autoregressive conditional
heteroskedasticity [9] (GARCH) model, the exponential
generalised autoregressive conditional heteroskedasticity
[10] (EGARCH) model, and the asymmetric power gener-
alised autoregressive conditional heteroskedasticity [11]
(APARCH) model. +ese models perfectly interpret the
volatility characteristics of time series in financial markets,
such as asymmetry and leverage. As financial markets be-
come more complex. Creal, Koopman, and Lucas [12]
creatively proposed a unified framework for modelling time-
varying parameters, namely the generalised autoregressive
score (GAS) models, which provides a new option for
modelling financial asset return volatility. Nortey et al. [13]
modelled the extreme values of stock index volatility in
Ghana by the autocorrelation of the return series was
corrected and the conditional heteroskedasticity in the
presence of collections. Applying EVT to fit the tails of daily
stock return data for Ghana, the study showed that among
the methods used to estimate the parameters, the maximum
likelihood estimation (MLE) method provides more accu-
rate estimates. Taking the top 10 sector indices of the SSE as
an example, Ping [14] developed a GAS volatility model to
predict and compare the out-of-sample VaR forecasting
effects of the model. +e study showed that the GAS vol-
atility model for time-varying volatility modelling can ef-
fectively use the valid information of the distribution, and
VaR performs better. To analyse the correlation between

different types in the financial market, Rongda and Jianjun
[15] developed a multivariate GAS model to analyse the
interaction between the dependence balances and volatility
between the prices of crude oil and gold, and the results show
that the predictive power of volatility and correlation in the
multivariate GAS model outperforms the DCC-GARCH
model. Lazar and Xiaohan [16] introduced intraday infor-
mation into the GAS model in quantile regression setting to
estimate risk. +e results show that the GAS model, aug-
mented by the implemented volatility metric, consistently
outperforms other models across all indices and various
probability levels.

Traditional time-series models, such as AR model, MA
model and GARCH family model, were mostly used in
previous studies. In addition, they tend to predict the return
series or measure the risk of the return series of stock index.
+ere are few researches on the risk measure of the return
series of agricultural futures and futures index in the fi-
nancial market. In this paper, the time-varying parameters
based on the score function are introduced into the
EGARCH model for the futures index of Chinese vegetable
oils and fats, and the most suitable residual distribution is
selected. A nonparametric method is proposed to select the
threshold value for the extreme value of the filtered stan-
dardized residual sequence, and the EGAS-POT model is
established by combining the extreme value theory. Com-
pared with the traditional threshold selection method, the
utility of the model in risk measurement is investigated and
tested back. Based on the empirical analysis results, some
reasonable suggestions are put forward for the risk man-
agement of vegetable oil futures in China.

2. Materials and Methods

2.1. EGASVolatilityModel. +e GAS model also goes by the
name of dynamic conditional score (DCS) model, Score
driven (SD) model, or dynamic score (DySco) model, is a
time-varying volatile parametric models driven by obser-
vations that allows the model parameters to vary as the score
function of the log-likelihood function changes. +e dy-
namic behaviour of the time-series process is portrayed
through the dynamics of the parametric variables leading to
the variables and exogenous variables. +e EGAS model, on
the contrary, builds on the GAS model using the logarithm
of the conditional variance instead of the conditional var-
iance, allowing for asymmetries in positive and negative
asset returns on volatility, thus allowing the dynamics of the
impact of positive and negative returns on volatility to be
captured effectively.

Assuming that yt is the financial time-series observation,
σt is the time-varying conditional y standard deviation,
which represents the volatility of the time-series data, and
Ft− 1 is the information set at moment t − 1, then the ob-
servation yt probability density function is as follows:

p yt|σt, F
t− 1

 . (1)

+en the expression for the EGAS model based on time-
varying volatile is as follows:
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yt � μ + σtzt,

ln σ2t+1 � ω + 

p

i�1

Aist + 

q
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Bi ln σ2t ,∇t �

z ln p yt|σt, F
t− 1

 

z ln st
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(2)

where when t� 1, σ1 is the unconditional standard deviation,
zt is the standardized residual series, Ai and Bi

(i � 1, 2, . . . , p, j � 1, 2, . . . , q) are time-varying coefficient
matrices, reflecting the time-varying nature of the fluctua-
tions and the aggregation and mean recovery of the fluc-
tuations, respectively, usually p and q can be taken as 1. ω is
the constant vector; It is the information matrix; St is the
deflation matrix; in general, c takes 0, at this time; St is the
deflation matrix is the unit deflation matrix; ∇t is the score
function corresponding to σt, is the core driving term of the
EGAS fluctuation model.

When the standardized residuals zt obey a different
distribution, the expression for the score function changes as
well. For financial time series, the distributions often as-
sumed are: the Gaussian (Normal) distribution (N), the
standard student T distribution (ST), the generalised error
distribution (GED), and the skewed student T distribution
(SKST), where the probability density of the skewed student
T distribution is as follows:

f(z) � bc 1 +
1

v − 2
bz + a

1 + sgn(bz + a)l
 

2
⎡⎣ ⎤⎦

− v+1/2

, (3)

where c � 1/[
����
v − 2

√
B(1/2, v/2)], a � 4λc(v − 2)/(v − 1),

b2 � 1 + 3λ2 − a2, B(·) is the beta function, sgn(·) is the
symbolic function, and z is the variable with the mean value
of 0 and the variance of 1. Parameter v represents the
kurtosis of the skew t distribution. When v is smaller, the
kurtosis is larger, and the thick tail of the spike is more
obvious. λ is an asymmetric coefficient, indicating the
skewness of the skew t distribution. If λ> 0, the distribution
is right, and if λ< 0, the distribution is left. +e skew t
distribution includes normal distribution, skew normal
distribution, and t distribution. When the parameter
v⟶∞ and λ � 0, the distribution is normal distribution.
When parameter v⟶∞. At this time, the distribution is
skew normal distribution. When the parameter λ� 0, the
distribution is t.

When the standardized residuals obey SKST, the score
function is as follows:

∇t �
z ln p yt|σt, F

t− 1
 

z ln σt

�
bzt(v + 1) bzt + a( 

bzt + a( 
2

+ v 1 + sgn bzt + a( λ 
2 − 1.

(4)

As can be seen from the score function, the skewness
parameter v and the kurtosis parameter λ determine the
value of the score function, and as the value of v increases,
the score function becomes more sensitive to extreme values;
the skewness parameter λ reflects the sensitivity of the score
function to shocks on the left side, when the distribution is
left-skewed, the score is relatively more sensitive to shocks
on the right side; when the distribution is right-skewed, the

score is relatively more sensitive to shocks on the left side;
when the distribution is symmetrical, the response of the
score to shocks on both sides is symmetric.

2.2. Extreme Value 2eory. Extreme value theory was in-
troduced by Gnedenk [17]. Also known as the law of small
numbers is primarily concerned with the prediction of rare
events. +e theory aims to investigate the distribution of the
extremes of a sequence, using the generalised pareto distri-
bution or generalised extreme value distribution (GEV) to
approximate the tail distribution of losses. First applied in
hydrology, seismology, and climatology, it is commonly used
to analyse probabilistic rare cases. With the increasing re-
finement of the theory, EVT research has been applied to
science and technology, engineering and other fields, with
Longin [18] pioneering the use of EVT in risk management
with good results. In financial engineering, for the tail char-
acteristics of risk loss distribution, it is usually used to analyse
events with rare probability. It can rely on a small amount of
sample data to obtain the change of extreme value in the
overall distribution when the overall distribution is unknown
and has the ability to estimate beyond the sample data.

+ere are two methods for the application of extreme
value theory: Block maxima (BM) method and peak-over-
threshold (POT) method, as the use of the BMmethod leads
to the absence of extreme data in the block and the loss of
extremely valuable extreme information. +is paper uses the
POT method, which is more widely used in practice.
Clément Dombry and Ana Ferreira [19] show that the POT
method is preferable when considering MLE, and the esti-
mation results are more convincing for extreme data values.

Assume that the data of the random variable sequence is
x1, x2,. . ., xn is independently and identically distributed,
and the distribution function of the random variable is F(x),
let xm be the maximum value of the random variable se-
quence data, by setting the threshold value u(u<xm), and all
the observed data above this threshold value form a data
group Zi , with this data group as the object of modelling,
such that Κi � Zi − u, then we have

Fu(k) � P(Z − u≤ k|X> u), k≥ 0. (5)

+e derivation of the conditional probability formula
leads to the following:

Fu(k) �
F(u + k) − F(u)

1 − F(u)

�
F(Z) − F(u)

1 − F(u)
⇒F(Z)

� Fu(k)[1 − F(u)] + F(u).

(6)

Discrete Dynamics in Nature and Society 3



When the threshold u is taken to be relatively high, the
suprathreshold distribution will converge to the GPD. �e
GPD expression is the distribution function Fu(y) ap-
proximating the Gξ,η′ (y) generalised Pareto distribution.

Fu(k)
u⟶∞
≈ Gξ,η′ (k) �

1 − 1 +
ξ
η
y( )

− 1/ξ

,

1 − η− k/η,




ξ ≠ 0,

ξ � 0,
(7)

where ξ and η are the shape and scale parameters, respec-
tively. When ξ ≥ 0, y≥ 0, indicating a thick tail of the

distribution function, and the presence of extreme values;
when ξ < 0, y ∈ [0, − ξ/η].�e probability density function of
the GPD is known, and hence the log likelihood function of a
sequence of random variables known to obey an indepen-
dent distribution:

L(ξ, η|k) �

− n ln η − 1 +
1
η
k( )∑

n

i�1
ln 1 +

η
ξ
ki( ), ξ ≠ 0,

− n ln η −
1
η
∑
n

i�1
ki, ξ � 0.




(8)

When u is determined, the estimates of ξ and η are
obtained by MLE according to equation (8), and the shape
parameter ξ re�ects the tail of the distribution. At the same
time, the number of observations of the random variable

series data that exceed the threshold u data can be obtained,
denoted as Nu, and the new expression can be obtained by
replacing the value of F(u) with the frequency according to
equation (6):

t t t
2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020
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Figure 1: Daily returns trend.

Table 1: Daily returns observations descriptive statistics.

Statistical characteristics Soybean oil Rapeseed oil Palm oil
Sample size 2767 2728 2767
Minimum value − 0.06447 − 0.10728 − 0.07128
Maximum value 0.05254 0.094483 0.06311
Mean value 1.922e-005 7.0085e-005 9.4054e-006
Standard deviation 0.010503 0.010719 0.012617
Skewness − 0.17887 − 0.21697 − 0.20044
Super kurtosis 2.1892 15.5152 1.9282

Table 2: Jarque-Bera test for daily returns.

X-squared P value
Soybean oil 567.31 6.4547e− 124
Rapeseed oil 27,382.00 0
Palm oil 447.19 7.8144e− 98
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(9)

2.3. VaR Estimation Based on the POT Method. VaR is the
maximum possible loss to an investor owning a single asset
or portfolio of assets at a certain con�dence level p (99%,
95%) and holding period. Its essence is to calculate the tail
quantile of the yield distribution, where the long VaR
corresponds to the lower tail quantile of the yield

distribution and the short VaR corresponds to the upper tail
quantile of the yield distribution. �e expression of VaRp is

VaRp � − inf |x|f(X ≤x)>(1 − p){ }. (10)

Taking equation (9) into equation (10) gives the
following:

-0.06

-0.04

-0.02

0.00

0.02

0.04

R

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

-0.10

-0.05

0.00

0.05

0.10

R R

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
norm quantiles norm quantiles norm quantiles

Y8888 Q-Q plot OI8888 Q-Q plot P8888 Q-Q plot

Figure 2: Normal Q-Q plots of daily returns.
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VaRp �

u −
η
ξ

1 − [− nln(1 − p)]
− ξ

 , ξ ≠ 0,

u − ηln[− nln(1 − p)], ξ � 0.

⎧⎪⎪⎪⎨
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(11)

3. Empirical Analysis

3.1. Data Analysis. +e empirical part uses the Chinese
futures market Soybean oil (Y8888), Rapeseed oil (OI8888),
and Palm oil (P8888) futures indices as raw data (data
source: Flush iFinD), with the sample space selected from 4
January 2010 to 31 May 2021, and the first-order difference
of the logarithm of the daily closing price is used as the daily
log return for ease of processing, that is, Rt � LnPt − LnPt− 1,
where Pt denotes the closing price on day t and Pt− 1 denotes
the closing price on day t − 1. Figure 1 shows a graph of the
daily return series.

Descriptive statistics for the daily return series are shown
in Table 1.

As shown in Table 1, from the description of daily
logarithmic returns, the average returns of soybean oil,
rapeseed oil, and palm oil futures are all near 0, with a range
of 0.117006, 0.201763, and 0.134392, respectively. +e excess
kurtosis coefficient is greater than 0, that is, the logarithmic
rate of return series has a peak. +e skewness is less than 0,
indicating that there are different degrees of left skewness,
indicating that there are more huge falls in the market than
huge rises, that is, there is a negative skewness vegetable oil
futures all exhibit a left-skewed and spiky distribution that
does not obey a normal distribution. +is is the same result
as Balaban’s [20] study on the distribution characteristics of
daily stock returns and their asymmetry.+e test used to test
the daily returns for smoothness is the Jarque-Bera [21] test,
and the results are shown in Table 2. +e original hypothesis
is rejected because the significance is much less than the
critical value of its significance level of 1%, and the series
does not have a unit root, and is a smooth series.

In order to further test the distribution characteristics of
the sample series, Figure 2: normal Q-Q plots of daily returns
was described.+e scattered points on the log-return normal
Q-Q plots were curved at both ends and distributed outside
the 95% confidence level interval of the normal distribution,
indicating that the distribution of log-return is thick-tailed.
To sum up, the original sample sequence follows the dis-
tribution with sharp peak and thick tail deviating to the left,
so the predicted results of VaR calculation method based on
normal distribution are too conservative.

Second, part of the efficiency of financial markets also
reflects the general autocorrelation between raw returns, so
using metrics directly is not feasible. Figure 3: ACF plot
shows that there is no autocorrelation in the daily return
series, and the autoregressive conditional heteroskedasticity
test on the return residual series shows that there is a strong
ARCH effect in the residual series through the ARCH-LM
test. +e POT method requires the sequence of random
variables to meet the requirement of independent identical
distribution, so for the original data with volatility aggre-
gation and leverage effect, so the volatility model needs to be

constructed to filter the return series, and the residual series
of each set of returns obeying independent identical dis-
tribution is found.

3.2. Model Parameter Estimation. In this study, the EGAS
(1,1) model was chosen to filter the data for each set of return
series and to compare the fit of the model under various
hypothetical distributions according to the AIC criterion
and the SC criterion. +e AIC and SC estimation results of
the model are shown in Table 3:

As can be seen from Table 3, the hypothetical distri-
bution with skewed, spiky and thick-tailed characteristics is
significantly better than the symmetric hypothetical distri-
bution, and the hypothetical distribution of raw returns is
chosen as SKST.

According to the parameter estimation results in Table 4,
the parameter A1 was significantly greater than 0, indicating
that the return rate series had obvious time-varying

Table 3: EGAS (1,1) model AIC and SC estimation results.

Assumed distribution AIC SC

Soybean oil

N − 6.3496 − 6.3498
ST − 6.3562 − 6.3937<
GED − 6.3994 − 6.3908
SKST − 6.4038< − 6.3931

Rapeseed oil

N − 6.2403 − 6.2338
ST − 6.6442< − 6.6355<
GED − 6.620 − 6.6121
SKST − 6.6436 − 6.6327

Palm oil

N − 6.0132 − 6.0068
ST − 6.0457 − 6.0372<
GED − 6.0421 − 6.0335
SKST − 6.0472< − 6.0365

Table 4: Results of parameter estimation for EGAS (1,1)-SKST
model.

A1 B1 λ ]

Soybean oil 0.051642 0.990683 − 0.061800 6.800666
Rapeseed oil 0.118198 0.97477 − 0.010878 3.297259
Palm oil 0.047381 0.994420 − 0.063079 7.926744

Table 5: +resholds u selection.

Soybean oil Rapeseed oil Palm oil
Long position u − 1.279089 − 1.070747 − 1.521152
Short position u 1.219153 1.048097 1.188821

Table 6: GPD fitting parameters.

Long position Short position
ξ η ξ η

Soybean oil 0.5710 0.0528 0.2650 0.5560
Rapeseed oil 0.4980 0.3090 0.0386 0.7820
Palm oil 0.0232 0.8240 0.0269 0.5500
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�uctuation characteristics. Parameter B1 is close to 1, which
means that the return rate series has a strong agglomeration,
A1 <B1, which means that the unexpected news impacts the
�uctuation of return, and A1 > 0, it proves that this kind of
shock is positive, that is, the occurrence of �uctuation is
usually followed by a larger �uctuation in the later period. In
terms of distribution parameters, the palm oil futures pa-
rameter ] is larger, re�ecting more extreme risk exposure in
historical data.

3.3. �e POT Method. �e residual series obtained by
constructing the EGAS (1,1)-SKST model satis�es the POT
method requirements such that the residual series Xt{ } �
zt{ } and the distribution function is �tted with GPD model
for data above the threshold extremes. In performing model
estimation, the upper and lower tail thresholds of the re-
sidual series are �rst determined. Caeiro [22] used di�erent
methods for the selection of the thresholds a comparative
analysis was carried out.

In this paper, we adopt a novel nonparametric method
for selecting the threshold u. Applying Grevenko’s theorem
[23], the empirical distribution function is related to the
overall distribution function, thereby improving the accu-
racy of the quantile of the original data series.

Step 1. If the number of data in the residual series is N, let
the parameterM � 100, extract 100 data item by item in the
residual series in time order, select the 2nd to 101 data for the

2nd time, ..., select the ith to i + 99 data for the ith time, and
so on, to obtain (N − M+ 1) data.

Step 2. Based on the con�dence level α, the quantile values
of each group of data were calculated separately using the
historical simulation method combined with the principle of
Mouchel [24] and through Holger Drees [25] in a com-
parative study of random and deterministic thresholds, so
that α� 10% to obtain (N − M+ 1) quantile values.

Step 3. �e average of the selected quantiles is noted as s.
�e value closest to s is found in the new interest sequence,
which is noted as the threshold value u, and u is used as the
threshold value in the POT method.

�e nonparametric method not only e�ectively avoids
the subjective judgement of thresholds based on image
methods that lead to over or improper �tting, but for the
value of α avoids the situation in the POT method where
extreme values are piled up leading to too large a choice of
thresholds and a small sample of extreme value data. �e
results based on the nonparametric threshold selection are
shown in Table 5.

�e results of the nonparametric method of �tting are
shown in Table 6.

In order to test the �tting e�ect of the POTmethod, we
further give Figures 4 to 9 GPD �tting diagnostic plots for
the �tting of the residual series. Observe that the data points
in the graph are concentrated in each distribution curve
except for individual data, proving that the POTmethod �ts
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Figure 4: Soybean oil positive returns GPD �tted diagnostic plots.
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Figure 5: Soybean oil negative returns GPD �tted diagnostic plots.
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the extreme data of the new coupon series well and can
accurately re�ect the tail characteristics of the true loss
distribution of the extreme risk of the returns series.

In order to compare the validity of the nonparametric
method of threshold selection, the Hill estimator [26] and
the mean excess function [27] (MEF) were used to estimate
the VaR values by Figure 10 selecting the threshold u1 and
performing a comparative analysis. �e Hill plots Figure 10
and MEF plots are shown in Figures 10 to 12.

�e thresholds u1 were selected by observing Hill plots
and MEF plots, and the results of the threshold selection are
shown in Table 7.

De�ne the nonparametric method to select the
threshold value of VaR is VaRn, Hill estimation method
and MEF method to select the threshold value of VaR is
VaRm, respectively, at the con�dence level p of 99% and
95% of the VaR value, �e estimation results are shown in
Tables 8 and 9.

0.0

0.2

0.4

0.6

0.8

1.0

Fu
 (x

-u
)

0

1

2

3

4

5

6

Re
sid

ua
ls

0

1

2

3

4

5

6

Ex
po

ne
nt

ia
l Q

ua
nt

ile
s

1e-01

1e-03

1e-05

1e-07

1-
F 

(x
) (

on
 lo

g 
sc

al
e)

x (on log scale)
2 43 5 6 0 50 100 150 200 250

Ordering

2 3 5 64
x (on log scale)

0 1 2 3 4 5 6
Ordered Data

Figure 9: Palm oil negative returns GPD �tted diagnostic plots.

2.89 2.25 1.96 1.80 1.65 1.53 1.45 1.36 1.28 1.21 1.14
Threshold

2.79 2.25 1.98 1.71 1.57 1.50 1.39 1.31 1.24 1.19 1.12
Threshold

Threshold Threshold

15 37 59 81 106 134 162 190 218 246 274 302 330
Order Statistics

15 35 55 75 95 117 142 167 192 217 242 267 292
Order Statistics

2

4

6

8

10

al
ph

a (
CI

, p
 =

0.
95

)

3
4

6
7

5

8

al
ph

a (
CI

, p
 =

0.
95

)

0.5

1.5

2.5

3.5

M
ea

n 
Ex

ce
ss

1
2
3
4
5
6

M
ea

n 
Ex

ce
ss

-4 -2 0 2 -4-6 -2 0 2
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3.4. VaR Backtesting. �e test for VaR takes the Kupiec test
[28], which is a very widely used method of posterior
analysis, by constructing a likelihood ratio (LR) statistic to
test the estimated loss value and the actual loss value, which

passes the test within a certain acceptance range, and under
the original hypothesis, the statistic LR obeys a χ2 distri-
bution with degree of freedom of 1. �e smaller the statistic
LR, the larger the P value, indicating that in the model, the
more accurate and the higher the credibility. When P≥ 0.05,
its validity passed the post hoc test.

LR � 2 ln 1 −
Nu

N
( )

N− Nu Nu

N
( )

Nu

[ ] − 2 ln (1 − p)N− NupNu[ ], (12)
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Figure 12: Palm oil-Hill plots and the MEF plots.

Table 7: �resholds u1 selection.

Soybean oil Rapeseed oil Palm oil
Long position u1 − 1.280722 − 1.007843 − 1.590512
Short position u1 1.213788 1.033504 1.161942

Table 8: VaRn estimation results.

p Long position VaRn Short position VaRn

Soybean oil 95% − 1.640087 1.556682
99% − 2.664474 2.502442

Rapeseed oil 95% − 1.411081 1.421339
99% − 2.677870 2.762528

Palm oil 95% − 2.063909 2.015324
99% − 3.435836 3.185844

Table 9: VaRm estimation results.

p Long position VaRm Short position VaRm

Soybean oil 95% − 1.631120 1.556638
99% − 2.643761 2.501126

Rapeseed oil 95% − 1.386436 1.394525
99% − 2.696885 2.759419

Palm oil 95% − 1.641851 1.580744
99% − 2.667628 2.471242
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where Nu is the number of days to failure and N is the total
number of days observed. Nu/N is the frequency of failure
and p is the confidence level.

+e backtesting for the raw returns of the three futures
indices are presented in Tables 10 and 11 for the long and
short positions under the two threshold selection methods,
respectively.

From Tables 10 and 11, it can be seen that the palm oil
futures index is exposed to greater risk than the other two
futures indices at the 99% and 95% confidence levels. +e
reason is that the gap between China’s production and
demand ranks among the top in the world, and China is
excessively dependent on imports of palm oil. +e EGAS-
SKST-POT model under the threshold selected using the
nonparametric method, the number of days to failure is
closer to the theoretical number of days and the VaR values
of long and short positions under the model pass the model
backtesting, proving that themodel is feasible.+e use of this
approach enables a significant increase in the accuracy of the
model, and out-of-sample forecasting ability. In contrast, the
thresholds based on the Hill estimator and the empirical
mean-excess function deviate significantly and the VaR
values for long and short positions under the model do not
all pass the model backtesting.

4. Conclusion

+e main objective of this paper is to apply EVT and the
EGAS model to the Chinese vegetable oil futures index by

targeting the characteristics of aggregation, persistence and
asymmetry of daily returns in the Chinese stock market.
First, the standard residual series based on the SKST dis-
tribution is inscribed through the EGAS(1,1) model, and a
nonparametric quantile-based approach is adopted to select
the threshold and apply the POT method in extreme value
theory to calculate VaR values and perform backtesting. +e
study shows that the nonparametric method proposed in the
article is able to select suitable thresholds and that suitable
estimates can be obtained by fitting the GPD distribution for
data where the new series exceeds the threshold, as well as
the feasibility of the EGAS model on the China Futures
Index.

Based on the empirical analysis of the value at risk of
soybean oil, rapeseed oil, and palm oil futures indexes, the
following suggestions are put forward:

First of all, in order to prevent the price fluctuation and
risk of vegetable oil futures market, we should give full play
to the price discovery and hedging functions of futures
market. In the current situation of increasing price volatility
in the futures market, it is necessary to strengthen effective
monitoring of vegetable oil futures prices, improve the fi-
nancial market supervision system, and prevent abnormal
price volatility from negatively affecting other futures va-
rieties. By monitoring and real-time analysis of abnormal
events such as agricultural futures market information and
other market information and policy changes, effective
supervision of risk events can be achieved, and then timely
warning can be given before the risk may break out, and
timely response can be made after the risk occurs.

Second, strengthen the construction of futures market,
vigorously develop futures market, increase trading varieties,
control prices, give play to the unity and advance advantage
of futures and options market information, and develop in
the direction favorable to the development of financial
market. Establish cross-sector agricultural product market
risk early warning organization coordinationmechanism. To
solve the problems of incomplete and asymmetric infor-
mation of agricultural products market, we should construct
a multilevel matching and linkage information system of
agricultural products market. Build agricultural market
information sharing platform, form multidepartment or-
ganization and coordination mechanism.

Finally, as a result of the palm oil futures price volatility
compared with other oil futures price volatility is larger, the
sino-us trade friction and imposing import tariffs under the
background of U.S. soybeans, necessary policy interventions
can be taken to reduce oil futures price volatility, focus on
palm oil futures varieties, broaden the import channel,
implementing multiple imports of palm oil, add palm oil
strategic reserve. Participants and investors in relevant in-
dustries should enhance policy attention and market sen-
sitivity, comprehensively consider the factors of market
fluctuations, and further strengthen rational production and
investment awareness. In addition, the government should
improve laws and regulations related to palm oil production
and trade and reasonable market structure to ensure the
safety and virtuous cycle of vegetable oil market and related
markets.

Table 10: VaRn backtesting results.

Soybean oil Rapeseed oil Palm oil
Long position VaRn
p 99% 95% 99% 95% 99% 95%
Nu 33 138 32 146 27 148
LR 0.97685 0.00093 0.78150 0.69594 0.01651 0.69344
P 0.32297 0.97564 0.37668 0.40414 0.89773 0.40499
Short position VaRn
p 99% 95% 99% 95% 99% 95%
Nu 37 160 29 158 27 142
LR 2.87393 3.40267 0.10733 3.43356 0.01651 0.10053
P 0.09002 0.06509 0.74320 0.06388 0.89773 75119

Table 11: VaRm backtesting results.

Soybean oil Rapeseed oil Palm oil
Short position VaRm
p 99% 95% 99% 95% 99% 95%
Nu 34 140 32 151 59 225
LR 1.36344 0.02063 0.78150 1.59221 27.0479 inf
P 0.24294 0.88577 0.37668 0.20701 1.98E− 07 0
Short position VaRm
p 99% 95% 99% 95% 99% 95%
Nu 37 160 29 165 80 239
LR 2.87393 3.40268 0.10733 5.93351 66.2146 inf
P 0.09002 0.06509 0.74320 0.01486 4.04E− 16 0
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