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*is work explores Routh–Hurwitz stability and complex dynamics in models for awareness programs to mitigate the spread of
epidemics. Here, the investigated models are the integer-order model for awareness programs and their corresponding fractional
form. A non-negative solution is shown to exist inside the globally attracting set (GAS) of the fractional model. It is also shown
that the diseasefree steady state is locally asymptotically stable (LAS) given that R0 is less than one, where R0 is the basic
reproduction number. However, as R0 > 1, an endemic steady state is created whose stability analysis is studied according to the
extended fractional Routh–Hurwitz scheme, as the order lies in the interval (0,2]. Furthermore, the proposed awareness program
models are numerically simulated based on the predictor-corrector algorithm and some clinical data of the COVID-19 pandemic
in KSA. Besides, the model’s basic reproduction number in KSA is calculated using the selected data (R0 � 1.977828168). In
conclusion, the findings indicate the effectiveness of fractional-order calculus to simulate, predict, and control the spread of
epidemiological diseases.

1. Introduction

In late 2019, a severe respiratory syndrome, SARS-CoV-2, was
detected in Wuhan, China, causing severe disease (COVID-
19) [1]. Currently, COVID-19 has become a worldwide
pandemic [2, 3]. Although some vaccines have already been
announced, new mutant versions (such as COVID-19-
VUI–2020/12/01) have recently been reported, which might
have different features that reduce vaccines’ effectiveness and
help increase transmissibility and death rates.

Several epidemiological models (EMs) are reported to
discuss the spread of COVID-19 and to better forecast the
predictions in different countries. For example, Ben Fredj
and Chrif presented a model to discuss the disease infection
in Tunisia [4]. In [5], Ivorra et al. studied the spread of
COVID-19 in China. COVID-19 statistical projections for
China and Italy were provided by Alberti and Faranda [6]
and, based on the SEIR model, Annas et al. investigated
COVID-19 in Indonesia [7]. Furthermore, qualitative and
quantitative dynamics have been studied in some recent
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COVID-19 models. For example; Raza et al. proposed a
model for coronavirus pandemic with a delay effect [8].
Abdul Razzaq et al. introduced an optimal control model to
investigate the proficiency of each strategy in reducing the
virulence of SARS-CoV-2 [9]. Chowdhury et al., proposed a
mathematical model considering asymptomatic and
symptomatic disease transmission processes in the COVID-
19 outbreak so as to evaluate the effect of these transmissions
on the virus [10]. Furthermore, Chowdhury et al. proposed
another mathematical model to investigate the dynamics of
viral load within the host by considering the role of T-cells
and natural killer cells [11].

Fractional calculus has been shown to be an essential tool
that has been used in different fields of science [12–27]. A
fractional differential operator is called a nonlocal operator if
it involves integration. *e recently appearing and com-
monly used nonlocal fractional differential operators are the
so-called Caputo’s type [28] and Caputo–Fabrizio’s type
[29]. *e nonlocal fractional operators are classified due to
their kernels. *erefore, fractional modeling has great im-
portance for epidemiological mathematical models because
of its accuracy in describing natural phenomena and the
existence of memory effects that are useful to describe the
dynamical behaviors of biological phenomena. Conse-
quently, the nonlocal fractional differential operators pro-
vide vital tools to describe the complexity existing in natural
phenomena, especially in biological models and EMs. Re-
cently, EMs with fractional derivatives have been reported.
For example, Iqbal et al. studied a fractional-order model of
HIV/AIDS infection [30]. Dokuyucu and Dutta investigated
the Ebola virus based on Caputo–Fabrizio operator [31]. El-
Sayed et al. studied a fractional-order model of plant diseases
based on the Caputo operator [32]. Ameen et al. presented
the problem of fractional optimal control for the SIRV
epidemic model based on the left Caputo fractional deriv-
ative [33]. Naik et al. showed chaotic behaviors in an HIV-1
model with fractional order [34]. In addition, Kumar et al.
reported chaotic dynamics in a fractional-order model of
tumor-immune [35]. Meanwhile, some fractional-order
models describing COVID-19 epidemiological models have
recently appeared. For example, Singh et al. investigated the
dynamics of a fractional-order model of COVID-19 [36].
Higazy introduced a new SIDARTHE model for COVID-19
with fractional derivatives [37]. Dong et al. [38] performed
optimal control for a granular SEIR model using COVID-19
data. Tuan et al. [39] discussed the transmission of COVID-
19 using a fractional mathematical model involving Caputo’s
type that contains a singular kernel. Zhang introduced new
fractional-order models of COVID-19 involving singular
and nonsingular kernels [40]. Yadav and Verma studied a
fractional system of SARS-CoV-2 in the case of Wuhan [41].

Indeed, EMs are considered to be among the most
important models in computational biology where suscep-
tible and infected states are further investigated using an-
alytical and/or numerical tools to study the spread of
infectious diseases and provide awareness to people and
health institutions. Additionally, the EMs are able to mimic
the disease’s impact on a variety of factors and levels, such as

humidity and temperature. *erefore, the models that de-
scribe the interaction between the susceptible, infected state
variables and the variables of the awareness programs
provide more effective awareness strategies to mitigate the
spreading behaviors of infectious diseases or pandemics.
*is applies to SARS-CoV-2 and its variants, especially when
vaccines are in early stages or will not soon be widely
available. Recently, awareness models have been reported;
For example, Sweilam et al. studied a mathematical model
for awareness programs based on Atanga-
na–Baleanu–Caputo (ABC) operators involving multiple
time delays [42]. In [43], Misra et al. introduced a nonlinear
dynamical system for the influence of awareness programs
on the spread of infectious diseases such as flu. *e afore-
mentioned model is described by four coupled ordinary
differential equations in which Misra et al. showed that
awareness programs can be used to control the spread of an
infectious disease, but the disease remains endemic
according to immigration. Hence, this system is a candidate
model to study the COVID-19 pandemic.

*e advantages of the present study can be summarized
as follows: complex dynamics, including quasiperiodic
attractors, are explored in the integer-order awareness
program model given by Misra et al. and its fractional-order
version in the sense of the Caputo definition (as the frac-
tional parameter lies above and below one). *e suggested
awareness models are shown to be applicable to some
COVID-19 data collected from Saudi Arabia (KSA). So, the
study of complex behaviors in such models enables gov-
ernments to control and predict the development of epi-
demic diseases such as SARS-CoV-2, to give qualitative
results, and to raise awareness of potentially critical situa-
tions in many nations with new variations.

Finally, to justify the main motivation of this work, we
point out that the obtained results show that the fractional-
order model is more suitable to handle such dynamics since
the memory concept in the fractional counterpart erases
oscillations in the curves of the model’s steady states; it also
flattens such curves so that the system as a whole settles on
an equilibrium point faster than it would with the classic
integer-order form.

2. Fractional Calculus

*e nonlocal operator with a singular kernel given by
Caputo [44] is described as

D
qα(s) �

􏽒
s

0 (s − ψ)
n− q− 1α(n)

(ψ)dψ􏼐 􏼑

Γ(n − q)
, s ∈ R

+
, (1)

where n − 1< q< n, q> 0 and n ∈ N. *e notation Γ(.) refers
to the Euler’s gamma and α(n)(ψ) denotes dnα(ψ)/dψn. *e
Laplace transform of the Caputo derivative given in the last
equation is described by

ℓ D
qα(t)􏼈 􏼉(s) � s

qℓ(α)(s) − 􏽘
n− 1

k�0
s

q− k− 1α(k)
(0)

⎧⎨

⎩

⎫⎬

⎭. (2)

2 Discrete Dynamics in Nature and Society



Definition 1. *e Mittag-Leffler function of the fractional
parameter q appearing in the Caputo definition of fractional
derivative is defined by Εq(t) � 􏽐

∞
m�0 tm/Γ(1 + mq).

*en, the following lemmas can be introduced:

Lemma 1 (see [45]). Let us assume that η(t)> 0 is a con-
tinuous and differentiable real-valued function. Hence, for
any t≥ t0,

D
q η(t) − η∗ − η∗ ln

η(t)

η∗
􏼢 􏼣≤ 1 −

η∗

η(t)
􏼠 􏼡D

qη(t), η∗ ∈ R
+
, ∀q ∈ (0, 1). (3)

Lemma 2 (see [46]). For example, let us take the following
autonomous system:

D
qη(t) � f(η), 0< q< 1. (4)

Also, let Ω be a bounded closed set. Each solution that
originates in the set Ω remains in this set for every t. If
∃Ρ(η): Ω⟶ R with continuous first partial derivatives that
fulfill the inequalities DqΡ|(2) ≤ 0. In addition, let
Ψ � DqΡ|(2) � 0, η ∈ Ω􏽮 􏽯, and let us assume that Φ is the
largest invariant set ofΨ. @en, every solution η(t) starts inΩ
approaches toΦ as t tends to infinity. In particular, ifΦ � 0{ },

then limη(t)
t⟶∞

� 0.

Henceforth, LAS denotes the locally asymptotically stable
steady state Χ for brevity. @e point Χ of the linearized
n-dimensional fractional-order system is LAS, provided that

arg λk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> qπ
2

, k � 1, . . . , n, (5)

given that 0< q≤ 2 [47] where λk is an eigenvalue of the
system’s Jacobian matrix.

3. The Awareness Program Models

*e integer-order awareness program model [43] is given
here as follows:

dx1

dt
� a − dx1 + Ex2 + fx3 − bx1x2 − cx1x4,

dx2

dt
� − (E + h + d)x2 + bx1x2,

dx3

dt
� cx1x4 − (d + f)x3,

dx4

dt
� gx2 − kx4,

(6)

where the state variables x1, x2, x3, x4 refer to the sus-
ceptible population, infective population, and susceptible
population with awareness and awareness programs’ cu-
mulative density, respectively. *e explanation of these
parameters are given as follows:

(i) a is the recruitment rate
(ii) b refers to infection contact rate
(iii) c represents the dissemination rate of awareness
(iv) d represents the natural death rate
(v) E refers to the rate of recovery,
(vi) f refers to a transfer rate of aware individuals to

susceptible class,
(vii) g represents awareness program implementation

rate,
(viii) h represents death rate according to infection,
(ix) k denotes the program’s depletion rate according

to social problems and ineffectiveness.

All the parameter values are assumed to be positive. It is
also believed that the density of the awareness program
increases at a pace that is proportionate to the number of
infected people in the population.

In fact, inserting the operator Dq into the awareness
program model (6) allows us to better describe the natural
phenomena, obtain more adequacy, and erase oscillations in
the curves of the model’s steady states. *erefore, the
resulting fractional model is a better choice to handle
complex dynamics. Consequently, the fractional counterpart
of the awareness program model (6) is given by

D
q
x1 � a − dx1 + Ex2 + fx3 − bx1x2 − cx1x4,

D
q
x2 � − (E + h + d)x2 + bx1x2,

D
q
x3 � cx1x4 − (d + f)x3,

D
q
x4 � gx2 − kx4,

(7)

where q represents the fractional parameter satisfying
q ∈ (0, 2]. *e systems (6) and (7) have the following
equilibria: the diseasefree point (S0) and the endemic point
(S1). *ey are described as

S0 �
a

d
, 0, 0, 0􏼒 􏼓,

S1 � β1, β2, β3, β4( 􏼁,

(8)

where
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β1 �
d + E + h

b
,

β2 �
ρk

ϑ
,

β3 �
cg(h + E + d) ab − d(E + h) − d

2
􏼐 􏼑

bϑ
,

β4 �
gρ
ϑ

,

ρ � ab(d + f) − dE f + d
2
(E + h + f) + dfh + d

3
􏽨 􏽩,

ϑ � bdhk + bfhk + d
2
(bk + cg) + bdfk

+ cdEg + dgch> 0.

(9)

We define R0 (basic reproduction number) for model (6)
as follows (see ref. [43]):

R0 �
ab

Ed + hd + d
2. (10)

Obviously, the endemic steady state S1 appears only if
R0 > 1.

Remark 1. It is easy to check that ρ> 0 if R0 > 1. Hence,
β4 > 0, when R0 > 1.

Remark 2. We can easily check that β2 > β1 if
ρkd/aϑ>Ed + hd + d2/ab � 1/R0. Hence, β2 > β1 if

1
R0
<

d

a

abk(d + f) − dEf + d
2
(E + h + f) + dfh + d

3
􏽨 􏽩k

bdhk + bfhk + d
2
(bk + cg) + bdfk + cdEg + cfgh

⎧⎨

⎩

⎫⎬

⎭. (11)

To discuss the existence of non-negative solutions inside
a globally attracting set (GAS) of the awareness program
model (7) with q ∈ (0, 1), one proves the following results:

Theorem 1. Suppose that a closed set Ω � (x1, x2, x3,􏼈

x4) ∈ R4
+: xi ≥ 0, i � 1, 2, 3, 4, S≤ a/c}, where xi represents a

state variable of the awareness programs model, S � 􏽐
4
i�1 xi

and c � min(d, k), then Ω is a positively invariant set and is
GAS for the fractional-order awareness programs model (5)
with 0< q< 1.

Proof. It is evident that

D
q
S(t)< a − cS(t). (12)

Applying the Laplace transform, the inequality (12) is
reduced to

S(t)≤ S(0) −
a

c
􏼠 􏼡Εq − ct

q
( 􏼁 +

a

c
, (13)

where Εq(− ctq) represents the Mittag-Leffler function. So,
Εq(− ctq)≤ 1 is bounded. It is clear that S(t)≤ a/c as
S(0)≤ a/c, hence the set Ω of the awareness program model
(7) is positive closed invariant. Now, since lim

t⟶∞
Εq(− ctq) �

0, then for a solution Φ(t) of model (7) and S(0)> a/c, one
gets

lim
t⟶∞
Φ(S(t)) �

a

c
. (14)

*us,Ω is GAS for the awareness program model (7) for
all t> 0. □

4. Local Stability

Here, conditions for the local stability of S0 and S1 are
discussed. *e Jacobian matrix of the awareness program
models (6) and (7) are described as

J x1, x2, x3, x4( 􏼁( 􏼁 �

− bx2 − cx4 − d − bx1 + E f − cx1

bx2 bx1 − E − h − d 0 0

cx4 0 − d − f cx1

0 g 0 − k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Theorem 2. A diseasefree point S0 � (a/d, 0, 0, 0) of the
awareness program models (4) and (5) is LAS when R0 < 1.

Proof. *e Jacobian matrix (11) computed at a diseasefree
steady state S0 � (a/d, 0, 0, 0) has the eigenvalues
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λ1 � − d< 0, λ2 � − k< 0, λ3 � − d − f< 0, λ4 � − Ed +h

d + d2 − ab/d. Clearly, λ1 < 0, λ2 < 0, λ3 < 0 satisfy conditions
(5). Also, λ4 satisfies conditions (3), if R0 < 1. □

To discuss the case of the endemic point
S1 � (β1, β2, β3, β4), let us assume that its eigenvalue equa-
tion has the following form:

Ρ(λ) � λ4 + μ1λ
3

+ μ2λ
2

+ μ3λ + μ4 � 0, (16)

where

μ1 � h + E + 3d + k + f + b β2 − β1( 􏼁 + cβ4,

μ2 � b β2 − β1( 􏼁 + f + h + cβ4 + 3d + E( 􏼁k + b β2 − β1( 􏼁 + E + h + 2d( 􏼁f

+2
1.5d + E

+h + cβ4 + b β2 − β1( 􏼁
􏼠 􏼡d + bhβ2 + c h + E − bβ1( 􏼁β4,

μ3 � 2d + E + h + b β2 − β1( 􏼁( 􏼁f + 3d
2

+ 2 E + h + cβ4 + b β2 − β1( 􏼁( 􏼁d + bhβ2 + c h + E − bβ1( 􏼁β4􏽨 􏽩

k + d
3

+ E + f + h + cβ4 + b β2 − β1( 􏼁( 􏼁d
2

+
bhβ2 + E + h + b β2 − β1( 􏼁( 􏼁f

+c E + h − bβ1( 􏼁β4
􏼠 􏼡d + bβ2 fh + cgβ1( 􏼁,

μ4 �
b d β2 − β1( 􏼁 + d + bβ2( 􏼁h + f(d + E)d( 􏼁 + d

3
+ E + h + cβ4+bd

2 β2 − β1( 􏼁􏼐 􏼑

+d bhβ2 + h + E − bβ1( 􏼁β4c( 􏼁

⎡⎢⎣ ⎤⎥⎦k + bcdg β1β2.

(17)

*en, we assign the notation Δ(Ρ(λ)) to refer to the
discriminant of the polynomial given in (16).

Obviously, the coefficients μi > 0, i � 1, 2, 3, 4, if β2 > β1,
β4 > 0 and the quantity bhβ2 + c(h + E − bβ1)β4 > 0. *e last

inequality holds if b> c dg/hk and ρ> 0. So, according to
Remarks 1 and 2, the following lemma is easily proved: □

Lemma 3. @e coefficients μi > 0, i � 1, 2, 3, 4 when the
following inequalities hold

1
R0
<min 1,

d

a
.

abk(d + f) − dEf + d
2
(E + h + f) + dfh + d

3
􏽨 􏽩k

bdhk + bfhk + d
2
(bk + cg) + bdfk + cdEg + cfgh

⎧⎨

⎩

⎫⎬

⎭, b>
cdg

hk
. (18)

@e conditions of local stability of S1 is governed by the
fractional Routh–Hurwitz (FRH) criterion given by Matouk
[48, 49]:

(i) We define the Routh–Hurwitz determinants
Π1, Π2, Π3 as follows:

Π1 � μ1,

Π2 �
μ1 1

μ3 μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

Π3 �

μ1 1 0

μ3 μ2 μ1
0 μ4 μ3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(19)

If q ∈ (0, 2],Π1 > 0,Π2 > 0,Π3 � 0 and μ4 > 0, then
the endemic steady state S1 � (β1, β2, β3, β4) is LAS.

(ii) If q ∈ (2/3, 2], Δ(Ρ(λ))> 0, μ1 > 0 and μ2 < 0, then
the endemic steady state S1 � (β1, β2, β3, β4) does not
achieve the stability inequalities (3).

(iii) If q ∈ (0, 1/3), Δ(Ρ(λ))< 0 and the coefficients
μi > 0, i � 1, 2, 3, 4 then the endemic steady state
S1 � (β1, β2, β3, β4) is LAS. Also, if
q ∈ (0, 2],Δ(Ρ(λ))< 0, μ1 < 0, μ3 < 0, μ2 > 0 and
μ4 > 0, then the endemic steady state
S1 � (β1, β2, β3, β4) does not achieve the stability
inequalities (3).

(iv) If q ∈ (0, 1),Δ(Ρ(λ))< 0, the coefficients μi > 0, i �

1, 2, 3, 4 and μ3/μ1μ2 + μ1μ4/μ2μ3 � 1 then the en-
demic steady state S1 � (β1, β2, β3, β4) is LAS.
However, if q ∈ [1, 2],Δ(Ρ(λ))< 0 and
μ3/μ1μ2 + μ1μ4/μ2μ3 � 1, then the conditions (3)
are not satisfied by the endemic steady state.

(v) If q ∈ (0, 2], then μ4 > 0 is an imperative condition
for the endemic steady state S1 � (β1, β2, β3, β4) to be
LAS.

Accordingly, the following lemma is easily proved:

Lemma 4. If the following inequalities hold

Discrete Dynamics in Nature and Society 5



1
R0
<min 1,

d

a
.

abk(d + f) − dEf + d
2
(E + h + f) + dfh + d

3
􏽨 􏽩k

bdhk + bfhk + d
2
(bk + cg) + bdfk + cdEg + cfgh

⎧⎨

⎩

⎫⎬

⎭, b>
cdg

hk
, (20)

the endemic steady state S1 � (β1, β2, β3, β4) of the fractional
awareness programs model (7) exists and is LAS given that

(i) 0< q≤ 2,Πi > 0, i � 1, 2 and Π3 � 0,

(ii) q ∈ (0, 1/3) and Δ(Ρ(λ))< 0,

(iii) q ∈ (0, 1),Δ(Ρ(λ))< 0, and
μ3/μ1μ2 + μ1μ4/μ2μ3 � 1.

Remark 3 (see [43]). For q � 1, R0 > 1, then the endemic
steady state S1 � (β1, β2, β3, β4) is LAS if

3c
2

cβ4 + d + f( 􏼁
2 <min

1
3β24

,
d

αβ24
,

2k
2

9g
2 β3 − β1 − β2( 􏼁

2

⎧⎨

⎩

⎫⎬

⎭.

(21)

5. Numerical Simulations in the Awareness
Program Model

Numerical simulations are performed for the awareness
program model (6) to produce four attractors with different
topologies. *e initial conditions are selected as
x1(t) � 1, x2(t) � 0.1, x3(t) � 0.003, and x4(t) � 0.002. *e
numerical simulations are based on four sets of parameter
values. We define a parameter set as a, b, c, d, E, f, g, h, k􏼈 􏼉,
then

A � 0.16, 0.99, 0.75, 0.02, 0.96, 0.08, 0.95, 0.45, 0.2{ },

B � 0.22, 0.95, 0.90, 0.02, 0.96, 0.05, 0.95, 0.95, 0.3{ },

C � 0.45, 0.95, 0.90, 0.01, 0.96, 0.05, 0.95, 0.95, 0.3{ },

D � 0.60, 0.95, 0.90, 0.01, 0.96, 0.05, 0.95, 0.95, 0.3{ }.

(22)

*e computations of the eigenvalues corresponding to
the parameter mentioned in above sets are given by the
following tables:

With the aid of Table 1, it is clear that the eigenvalue
λ4 > 0 for all the abovementioned sets of parameters. So, the
diseasefree point of system (6) is not stable using these
selections of parameter values. Moreover, Table 2 shows that
the endemic point is unstable when the parameters are
selected according to sets A and B. Furthermore, the en-
demic point is LAS when the parameters are selected
according to sets C and D.

In fact, quasiperiodic behaviors occur in 4D systems
when at least two maximal Lyapunov exponents (LEs) are
vanishing or very close to zero. It is observed that quasi-
periodic attractors are obtained using the selections of pa-
rameter sets A and B. *e corresponding LEs are computed
in Table 3 based on Wolf’s algorithm [50]. *e attractors

corresponding to the abovementioned parameter sets are
also depicted in Figure 1, in which Figures 1(a) and 1(b)
illustrate quasiperiodic attractors. To further discuss the
existence of complex dynamics in system (6), we also show
that the coexistence of multiattractors occurs using the
selections of parameter sets A and B as depicted in Figure 2.
*e aforementioned figure shows unstable focus-node
attractor (blue domain) coexists with a quasiperiodic
attractor (red domain).

*e spectrum of LEs related to parameter sets A and B

with varying parameter a is illustrated in Figure 3. Calcu-
lations of the bifurcation diagrams are also illustrated in
Figure 4 where weak chaotic behaviors are shown in
Figure 4(c).

6. Numerical Simulations in the Awareness
Programs Model (7)

*e fractional-order model (7) is also numerically integrated
using the predictor-corrector algorithm [51, 52] with the
parameter sets and initial conditions mentioned above.
According to Table 1 and conditions (5), the diseasefree
point of the fractional-order model (7) is not LAS. In ad-
dition, according to Table 2 and conditions (5), the endemic
point is LAS when the parameters are selected according to
the sets C and D. However, based on Table 2, the endemic
point is not LAS if

q>
2
π
arctan

Im λ3,4􏼐 􏼑

Re λ3,4􏼐 􏼑
⎛⎝ ⎞⎠. (23)

Quasiperiodic attractors are found using the parameter
set A with fractional parameter q � 0.999 and the parameter
set B with fractional parameter q � 0.97. *e obtained
attractors corresponding to the numerical integration of the
awareness programs model (7) with the sets A, B, C, and D

are illustrated in Figure 5 in which quasiperiodic attractors
are given by Figures 5(a) and 5(b). Moreover, computations
of the LEs’ spectrum of the fractional-order model (7) is
carried out using the efficient algorithm by Danca and
Kuznetsov [53]. *e results are shown in Figures 6 and 7.
Computations of the corresponding bifurcation diagrams
are given in Figure 8. Furthermore, computations of the LEs
of the fractional model, based on the algorithm by Danca
and Kuznetsov, is described by Table 4.

Complex dynamics in the awareness programsmodel (7)
are also obtained when q becomes greater than one. In
Figures 9–11, the complex dynamics in the fractional
awareness system (7) are depicted with the orders 1.07, 1.15,

and using different sets of initial states.

6 Discrete Dynamics in Nature and Society



Table 1: Computations of the eigenvalues (λi,s) corresponding to the diseasefree point of the integer-order awareness program model (4).

Parameter set λ1 λ2 λ3 λ4
A − 0.02 − 0.1 − 0.2 6.49
B − 0.02 − 0.07 − 0.3 8.52
C − 0.01 − 0.06 − 0.3 40.83
D − 0.01 − 0.06 − 0.3 55.08

Table 2: Computations of the eigenvalues (λi,s) corresponding to the endemic point of the integer-order awareness programmodel (4). It is
assumed that I �

���
− 1

√
.

Parameter set λ1 λ2 λ3 λ4
A − 0.6952 − 0.0257 0.0014 + 0.3812I 0.0014 − 0.3812I
B − 0.6784 − 0.0266 0.0276 + 0.4448I 0.0276 − 0.4448I
C − 1.1242 − 0.0167 − 0.0398 + 0.6235I − 0.0398 − 0.6235I
D − 1.3501 − 0.0167 − 0.0753 + 0.6579I − 0.0753 − 0.6579I

Table 3: Computations of LEs (Λi,s) of the integer-order awareness program model (6).

Parameter set Λ1 Λ2 Λ3 Λ4
A 0.023980 − 0.017883 − 0.037342 − 0.605040
B 0.012408 0.005288 − 0.072330 − 0.599232
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Figure 1: *ree-dimensional plots of the awareness program model (6) using the parameter set: (a) A; (b) B; (c) C; and (d) D.
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Figure 3: Lyapunov spectrum of the awareness program model (6) vs. a and fixing other values in the parameter set: (a) A and (b) B.
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Figure 4: Bifurcation diagrams of the awareness program model (6) vs. k and fixing other values in the parameter set: (a) A; (b) B; and (c) D.
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Figure 5: *ree-dimensional plots of the awareness programmodel (7) using the parameter sets: (a) A and the fractional-order 0.999; (b) B
and the fractional-order 0.97; (c) C and the fractional-order 0.99; and (d) D and the fractional-order 0.99.
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Figure 6: Lyapunov spectrum of awareness program model (7) with (a)q � 0.999, the parameter set A and varying a and (b) the parameter
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Figure 7: Lyapunov spectrum of awareness programmodel (7) with (a)q � 0.97, the parameter set B and varying a and (b) the parameter set B and
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7. Discussion and Conclusion

*is section examines some COVID-19 data obtained for
KSA [54–56] and collected over the period fromMarch 18 to
August 15, 2020. *e initial value of the total population is
N(0) � 37 × 106, which is divided into three classes x1(0),

x2(0), x3(0). Also, confirmed cases are 299 × 103, recovered
cases are 267 × 103, and the number of deaths due to in-
fection is 3408. In addition, the natural death rate in KSA is
approximately 3.5 per 1000 people. Based on the model’s
assumptions and the collected data of COVID-19, the fol-
lowing selection of parameter values is tested via numerical

simulations Ε � 400, 0.0000157, 0.0002, 0.0035, 0.8923,{

0.2, 0.0005, 0.0114, 0.06}. Basic reproduction ratio R0 is also
computed as follows:

R0 � 1.977828168> 1. (24)

So, the point S0 is not LAS. However, the endemic steady
state S1 � (57783.43949, 11944.52854, 5652.710421,

99.53773787) is LAS since all the eigenvalues satisfy the
conditions (5). Moreover, the discriminant of the eigenvalue
equation of the endemic point is calculated as
Δ(Ρ(λ)) � − 0.2883978794 × 10− 9 < 0, which implies that the
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Figure 8: Bifurcation diagram of the awareness programs model (7) (a) vs. the dynamical parameter a and fixing other values in the
parameter set A and (b) vs. the fractional-order q and using the parameter set A.

Table 4: Computations of LEs (Λi,s) of the fractional-order awareness programs model (7) with initial conditions x1(0) � 1.2, x2(0) �

0.11, x3(0) � 4, x4(0) � 0.2646 and x1(0) � 2, x2(0) � 0.18, x3(0) � 5.6, x4(0) � 0.16, respectively.

Parameter set and fractional order Λ1 Λ2 Λ3 Λ4
Set A and q� 0.999 0.0043 − 0.0001 − 0.0280 − 0.6853
Set B and q� 0.97 0.0089 − 0.0005 − 0.0684 − 0.7560
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endemic state has two complex conjugate eigenvalues.
Obviously, the first statement of the FRH stability condition
(iii) is also satisfied when q< 1/3. *e simulation results il-
lustrate that the model (5) approaches the endemic steady state
quicker than its integer-order form (see Figure 12). Here, the
memory effect in the fractional-order model erases the oscil-
lations in its integer-order counterpart after a few times, which
makes the fractional awareness program model as a whole
settle on the endemic point quicker than it would with the
integer-order version. *erefore, the fractional system (5) is
more suitable for investigating the awareness program model
dynamics using the abovementioned data of COVID-19.

On the other hand, the higher degrees of freedom
existing in the fractional model of awareness programs can
be treated as controllers to stabilize its state variables to the
targeted endemic steady state. Besides, the fractional pa-
rameters are flattening the curves in Figure 12, which can be
used as a good public health strategy to mitigate or slow
down the spread of COVID-19. Hence, the fractional models
achieve more adequacy in estimating the control measures
that affect the spread of SARS-CoV-2 in KSA. Indeed, KSA
presented awareness programs like issuing guidelines in
different languages to raise people’s awareness about nec-
essary precautions against COVID-19 [57]. *e guidelines
include basic information about COVID-19 like symptoms,
methods of transmission, and how to prevent it through
providing full details on methods of using protective
equipment on individuals (such as the proper way to wear
the mask, globes, overall gown, and wash hands), tips for
traveling, the procedure of self-isolation in-home and
quarantine, and medical treatment upon the appearance of
respiratory symptoms. *ese programs were prepared by
MOH in KSA and were broadcasted in different ways, like
TV, newspapers, official websites, and street banners. *e

reported guidelines show positive results in controlling the
spread of SARS-CoV-2 in KSA.

In conclusion, the existence of a nonlocal fractional
operator makes a fractional version of the awareness pro-
grammodel a better choice to predict, control, and handle its
rich variety of complex dynamics and obtain better adequacy
than the integer version. *e resulting higher degrees of
freedom in the fractional version also play an important role
in displaying a rich variety of complex dynamics.

Data Availability

*e numerical data used to support the findings of this study
are included in the article.

Conflicts of Interests

*e authors declare that that there are no conflicts of interest
with this study. *ere are no non-financial competing in-
terests (political, personal, religious, ideological, academic,
intellectual, commercial, or any other) to declare in relation
to this manuscript.

Authors’ Contributions

Matouk directed the study and helped with the inspection.
All the authors carried out the main results of this article,
drafted the manuscript, and read and approved the final
manuscript.

Acknowledgments

*is research has been funded by the Scientific Research
Deanship at University of Ha’il - Saudi Arabia through
project number RG-21 011.

5653.5

5653

5652

5651

5652.5

5651.5

Su
sc

ep
tib

le
 P

op
ul

at
io

n 
w

ith
 A

w
ar

en
es

s

0 500 1000 1500 2000
t (hrs)

2500 3000 3500

q = 0.30
q = 0.50
q = 0.70

q = 0.90
q = 1.00

(c)

99.542

99.541

99.54

99.539

99.538

99.537

99.536

99.535

Cu
m

ul
at

iv
e D

en
sit

y

0 500 1000 1500 2000
t (hrs)

2500 3000 3500

q = 0.30
q = 0.50
q = 0.70

q = 0.90
q = 1.00

(d)

Figure 12: Variation of the state variables of the awareness program models (6) and (7) with time using different values of the fractional
parameter and using the set Ε.

Discrete Dynamics in Nature and Society 13



References

[1] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, and
W. Zhang, “A pneumonia outbreak associatedwith a new
coronavirus of probable bat origin,” Nature, vol. 579, 2020.

[2] F.Wu, “A new coronavirus associated with human respiratory
disease in China,” Nature, vol. 579, pp. 1–10, 2020.

[3] Q. Lin, S. Zhao, D. Gao et al., “A conceptual model for the
coronavirus disease 2019 (COVID-19) outbreak in Wuhan,
China with individual reaction and governmental action,”
International Journal of Infectious Diseases, vol. 93, pp. 211–
216, 2020.

[4] H. Ben Fredj and F. Chrif, “Novel Corona virus disease in-
fection in Tunisia: mathematical model and the impact of the
quarantine strategy,” Chaos, Solitons & Fractals, vol. 138,
2020.

[5] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, and A. M. Ramos,
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