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In recent years, robust performance of the system has been broadly studied as a trending topic among a vast array of scholars. �is
paper discusses the robustness of control laws for complex dynamic networks (CDNs) with a deviation argument. We design two
categories of control laws (linear control law and nonlinear control law) for the undisturbed CDNs to achieve exponential
synchronization. It is intractable to ascertain the range of the deviation function exactly. Hence, some corresponding su�cient
criteria are put forward to ensure exponential synchronization of CDNs with deviation argument when control laws are not
changed. By adopting the Gronwall–Bellman lemma and solving the transcendental equation, we can obtain the admissible upper
limits of the deviating function, to keep the corresponding control laws. In comparison with previous research �ndings, ro-
bustness, deviating argument, and control laws are all considered in this study, which enhances the previous �ndings. Finally, two
emulation examples verify the validity of the analysis.

1. Introduction

More recently, as a vital component of the nonlinear system,
CDNs have been broadly investigated and have found many
potential applications in various domains, including biology,
sociology, physics, network science, engineering, automatic
control, and so on [1–3]. In particular, the dynamical be-
havior of complex systems has �ourished vigorously in the
�eld of control engineering, which has aroused tremendous
interest among scholars [4].

Synchronization is a fairly vital nonlinear phenomenon
widely existing in nature. It has wide-ranging implications
for numerous applications, such as secret communication,
facial recognition, arti�cial intelligence, and associative
memory. Recently, the synchronization of CDNs has been
extensively studied, for instance, quasi-synchronization [5],
cluster synchronization [6], master-slave synchronization
[7], exponential synchronization [8, 9], and so on.

At present, the control law is indispensable in achieving
the synchronization of CDNs. To guarantee synchroniza-
tion, many e¤ective synchronization control laws have been

proposed. On the basis of existing literature [10–12], there
are two main categories of control laws of the systems: linear
control law and nonlinear control law. As we all know, linear
control law is the basis of the control strategy, and the
structure of the controller is relatively uncomplicated.
Compared with linear control law, nonlinear control law has
become an increasingly interesting research topic for re-
searchers from diverse backgrounds. In [8], the exponential
synchronization for a kind of CDN with stochastic per-
turbations and delays was well investigated by utilizing the
time-delayed impulsive controller. In [4], based on the
event-triggered strategy, quasi-synchronization of CDNs
was obtained. In [12], the author addressed robust syn-
chronization between fractional-order CDNs involving
parameter uncertainty and applying the nonlinear control
law. By means of a sliding mode control scheme, global
asymptotical synchronization for CDNs was discussed in
[13].

As a result of imperfect measurements as well as the
�nite switching frequency of ampli�ers, delays are always
inherent in real applications of machine learning, which can
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exacerbate performance and derail the stability of the
models. Generally speaking, time delays are inevitable, and
we can never be too concerned about them. Especially,
deviation argument can have substantial consequences in
the running process of the dynamical system model. As a
matter of fact, numerous biomedical models are inscribed by
differential equations with a deviation argument. In the
process of motion, the deviation function alters the relevant
deviation characteristics, so the differential equation with
deviation argument unites delay and advanced equation.
More precisely, with respect to the study of economics,
biology, and physics, past and future events are crucial to
current decisions. 2erefore, it is of great significance to
discuss the models of retarded and advanced alternating
differential equations. A system with a deviation argument is
a mixture of retarded and advanced systems. Sufficient
conditions on the globally exponentially stable for recursive
systems containing deviating functions were obtained by
virtue of Lyapunov functions in [14]. 2e author utilized
algebraic inequalities to present novel analytical findings
from Mittag-Leffler stability about the fractional-order
model involving deviating arguments in [15]. On the basis of
the comparison principle, valuable theoretic results on the
stability and robustness of interval fuzzy Cohen-Grossberg
networks were presented in [16]. Additionally, a useful
impulsive control law was considered to accomplish the
synchronization in the presence of the deviating argument of
CDN in [9]. In order to elaborate on the convenience and
completeness of CDNs, we will analyze CDNs with deviating
arguments here. Among the above studies, only one in-
vestigated the synchronization of CDNs with deviating ar-
guments. At present, there are few research studies on robust
synchronization control schemes for CDNs with deviating
arguments. 2e objective of our research is to fill the gap.

To our knowledge, some work has been performed on
the stabilization of dynamical systems equipped with de-
viating arguments [14, 17]. Some work has been conducted
on stabilization and synchronization from the perspective of
control [13, 18, 19]. Others have also studied research on
complex dynamic networks with deviating arguments [9],
but their purpose was to study stability rather than ro-
bustness. However, the robustness of control laws in
complex dynamic networks is rarely studied by setting
appropriate parameters for deviation argument.

Motivated by the above-mentioned discussion, we will
find that the presence of deviating arguments will exacerbate
difficulties in achieving synchronization of controlled
complex dynamical networks (CDNs). In view of the lit-
erature [20, 21], it is worth considering the influence of the
deviation argument on the control method. A new issue
arises: can linear control law (nonlinear law) still be kept if a
deviation function occurs in the system? As the deviation
function involves information about the past and future, it is
worthwhile to investigate: under the constraints of linear or
nonlinear control laws, how much is the deviation argument
intensity to allow CDNs to maintain exponential
synchronization?

2erefore, the following is concretely scheduled for this
paper. Some mathematical preliminaries are provided in

Section 2. In view of the two categories of control laws,
several crucial lemmas and theorems are further elaborated
in Section 3. Two emulation examples are mentioned to
validate the feasibility of the analytical results in Section 4.
Finally, Section 5 of this paper carries a concise summary
and outlook for the future research direction.

2. Preliminaries

2.1. Notation. On the basis of this paper, N represents the
sets of natural numbers.Rn andRn×m bemade up of all n real
vectors, all n × m real matrices, respectively. In is denoted as
the n-order identity matrix. Moreover, 0n refers to n × n zero
matrix. ‖ · ‖ means the Euclidean vector norm or the induced
matrix norm. Denote E⊗F as the Kronecker product of
matrices E and F.

Generally, a graph G � (], ε, 􏽥A) has three basic elements.
] � 1, . . . , N{ } signifies the set of nodes; ε � eij􏽮 􏽯, (i, j ∈ ]) is
the set of edges; and the coupling matrix 􏽥A � (aij)N×N, where
aij stands for coupling weight between i th CDN and node j

th CDN. If the message is delivered from j th CDN to i th
(i≠ j) CDN, then aij ≠ 0; otherwise, aij � 0.

Provide two real-valued sequences ρq􏽮 􏽯, ηq􏽮 􏽯, q ∈ N,
such that ρq < ρq+1, ρq ≤ ηq ≤ ρq+1 for all ρq⟶∞ as
q⟶∞.

2.2. Model. Consider a kind of CDN with a deviating ar-
gument consisting of N coupled nodes

_yi(t) � f yi(t)( 􏼁 + c􏽘
N

j�1
aijyj(t) + c􏽘

N

j�1
bijyj(δ(t)) + ui(t),

y t0( 􏼁 � y0 ∈R
n
.

(1)

where yi(t) � (yi1, · · · yin)T ∈ Rn is the state vector of the i

th node; the nonlinear f: Rn⟶ Rn is called continuous
vector-valued function; c stands for the coupling strength;
ui(t) ∈ Rn is defined as the control input vectors of node i;
and aij and bij denote the (i, j)-th term of coupling matrix 􏽥A

and 􏽥B satisfying aii � − 􏽐
N
j�1,j≠ i aij and bii � − 􏽐

N
j�1,j≠ i bij,

respectively. δ(t) is a deviating argument satisfying
δ(t) � ηq ∈ [ρq, ρq+1], if t ∈ (ρq, ρq+1].

Remark 1. Obviously, when t ∈ (ρq, ρq+1], if δ(t)> t, then
the coupling term of system (1) is advanced, and if δ(t)< t,
then the coupling term of system (1) is retarded. Hence,
system (1) is a hybrid CDN, which integrates alternately
advanced and retarded argument.

2e dynamical equation for the isolated node of CDN (1)
is

_s(t) � f(s(t)), (2)

where s(t) allows to be defined by an arbitrary desired state,
that is, the equilibrium point, the periodic orbit, and so on.

Remark 2. Further, in contrast to (1), in case of δ(t) � t, the
CDN (1) turns into the following CDN:
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_xi(t) � f xi(t)( 􏼁 + c 􏽘
N

j�1
aijxj(t) + c 􏽘

N

j�1
bijxj(t) + ui(t),

x t0( 􏼁 � x0 ∈ R
n
.

(3)

Similarly,

_s(t) � f(s(t)), (4)

Also referred to as the dynamical equation of the isolated
node of CDN (3).

Define the synchronization error as ei(t) � xi(t) − s(t),
and subtracting (4) from (3) to obtain the following system:

_ei(t) � f ei(t)( 􏼁 + c 􏽘
N

j�1
aijej(t) + c 􏽘

N

j�1
bijej(t) + ui(t),

e t0( 􏼁 � e0 ∈ R
n
,

(5)

where f(ei(t)) � f(xi(t)) − f(s(t)).
To acquire synchronization, the linear controller is

arranged as

ui(t) � 􏽥Wei(t), i � 1, . . . , N, (6)

where 􏽥W∈ Rn×n represents the feedback controller gain
matrix.

Combining (5) and (6), one has that

_ei(t) � f ei(t)( 􏼁 + c 􏽘
N

j�1
aijej(t) + c 􏽘

N

j�1
bijej(t) + 􏽥Wei(t),

e t0( 􏼁 � e0 ∈ R
n
.

(7)

With a view to simplifying writing, the following
notations:

e(t) � (eT
1 (t), . . . eT

N(t))T, e(δ(t)) � (eT
1 (δ(t)), . . .

eT
N(δ(t)))T, f(e(t)) � (fT(e1(t)), . . . , fT(eN(t)))T, 􏽥A �

(aij)N×N, 􏽥B � (bij)N×N, A � In ⊗ 􏽥A, B � In ⊗ 􏽥B, W � In ⊗ 􏽥W,
are put forward to describe the system. Incorporating these
simplifications, the error system (7) is further characterized
as a compact representation:

_e(t) � f(e(t)) + cAe(t) + cBe(t) + We(t),

e t0( 􏼁 � e0 ∈ R
n
.

(8)

In the same way, we can define error zi(t) � yi(t) − s(t),
and the following error dynamic equation can be obtained
by subtracting (2) from (1)

_z(t) � f(z(t)) + cAz(t) + cBz(δ(t)) + Wz(t),

z t0( 􏼁 � z0 ∈ R
n
.

(9)

As a starting point, we will provide some essential
definitions and required assumptions for this paper.

Definition 1. If the error system (8) is exponential stability,
then the CDN (3) with (4) is described as exponential

synchronization, namely, for any initial value e0 ∈ Rn, there
exist two scalars α> 0 and β> 0 such that for any t ∈ R+,
satisfying ‖e(t)‖≤ α‖e0‖e− β(t− t0):

(D1) Assume that the existence of nonnegative scalar
p, satisfying ‖f(mi(t)) − f(ni(t))‖≤ p‖mi(t) −

ni(t)‖ and f(0n) � 0 for any mi(t) ∈ Rn,
ni(t) ∈ Rn

(D2) 2ere is a positive constant ρ that has the
property ρq+1 − ρq ≤ ρ, for all q ∈ N
(D3) ρ(h1 + 2h2)exp h1ρ􏼈 􏼉< 1

3. Main Results

Under (D1), (D2), and (D3), system (9) has a unique state
z(t; t0, z0) on t> t0 for any initial state (t0, z0). Obviously,
z � 0 is the equilibrium point of system (9). Synchronization,
as a highly representative subject of complex system, has been
paid attention to and researched by many academics, for
example [5–8, 10, 15]. For now, a fundamental point requires
consideration. While keeping the original controller un-
changed, if the deviation argument is added to the CDN, can
synchronization of the system still hold? Obviously, syn-
chronization is not established. How much is the deviation
argument intensity in order to allow the CDNs (1) tomaintain
exponential synchronization when the control law is as valid
as before? On the basis of this fact, we are going to investigate
the robustness of the controller of CDNs (1) with a deviating
argument when the control scheme of the CDNs (2) is fixed.

As we all know, among all kinds of control laws, the most
efficient and concise control law is the linear feedback
controller. What should be noted is that the linear control
law is the foundation of the control system. Compared with
the nonlinear controller, its structure is relatively uncom-
plicated. However, nonlinear control law has become an
increasingly interesting topic of study for researchers from
diverse backgrounds. 2erefore, it is worthwhile to design
two types of controllers for study: the linear feedback
controller and the nonlinear feedback controller.

3.1. -e Linear Feedback Controller. Before describing the
principal theorem of this section, some important lemmas
need to be presented here. 2e following assumptions are
also required:

α exp(− βT) + 2h2α exp 2h1 + 6h2)T}/β< 1,(􏼈 (10)

Remark 3. As can be inferred from2eorem 2 appearing in
[6], the existence and uniqueness of the solution of system
(1) is collectively ensured by (D1), (D2), and (D3).

Lemma 1. Let z(t) stands for the current state of error
dynamic (9) and conditions (D1), (D2), (D3), and (D4) are all
met. So, the following inequality:

‖z(δ(t))‖≤ λ‖z(t)‖. (11)

It exists for any t> 0, where

Discrete Dynamics in Nature and Society 3



λ � 1/ 1 − u1( 􏼁,

u1 � h2ρ + h1ρ 1 + h2ρ( 􏼁exp h1ρ􏼈 􏼉,

h1 � p + c‖A‖ +‖W‖,

h2 � c‖B‖.

(12)

Proof. For the deviation term δ(t) � ηq, define a set
σ � t/t> 0, ρq ≤ t≤ ρq+1􏽮 􏽯, let t ∈ σ, q ∈ N, and then one
obtains

z(t) � z ηq􏼐 􏼑 + 􏽚
t

ηq
(f(z(s))) + cAz(s) + cBz ηq􏼐 􏼑 + Wz(s)ds.

(13)

Combining (D1) and (13), one has that

‖z(t)‖≤ z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

‖f(z(s))‖ + c‖A‖‖z(s)‖ + c‖B‖ z ηq􏼐 􏼑
�����

����� +‖W‖‖z(s)‖􏼒 􏼓ds

� 1 + h2ρ( 􏼁 z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

h1‖z(s)‖ds, (14)

where

h1 � p + c‖A‖ +‖W‖,

h2 � c‖B‖.
(15)

By virtue of the Gronwall–Bellman’s inequality, (14) can
evolve into

‖z(t)‖ ≤ 1 + h2ρ( 􏼁 z ηq􏼐 􏼑
�����

�����􏼔 􏼕exp h1ρ􏼈 􏼉, (16)

Otherwise, for ρq ≤ t≤ ρq+1, similarly, we have

z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖ + 􏽚
t

ηq

‖f(z(s))‖ + c‖A‖‖z(s)‖ + c‖B‖ z ηq􏼐 􏼑
�����

����� +‖W‖‖z(s)‖􏼒 􏼓ds

≤ ‖z(t)‖ + h2ρ z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

h1‖z(s)‖ds≤ ‖z(t)‖ + h2ρ z ηq􏼐 􏼑
�����

����� + h1ρ 1 + h2ρ( 􏼁 z ηq􏼐 􏼑
�����

�����􏼔 􏼕exp h1ρ􏼈 􏼉

≤ ‖z(t)‖ + h2ρ + h1ρ 1 + h2ρ( 􏼁exp h1ρ􏼈 􏼉􏼂 􏼃 z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖ + u1 z ηq􏼐 􏼑
�����

�����,

(17)

where u1 � [h2ρ + h1ρ(1 + h2ρ)exp h1ρ􏼈 􏼉], and h1, h2 are
defined in (15).

Hence, by uniting the aforementioned equation with
similar entries, we further get

1 − u1( 􏼁 z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖. (18)

Accordingly, when δ(t) � ηq, u1 < 1 for (D4), it follows that

z ηq􏼐 􏼑
�����

�����≤ 1 − u1( 􏼁
01

‖z(t)‖

≕ λ‖z(t)‖,
(19)

where λ � 1/(1 − u1). By this means, (11) is effective for
t> 0. □

Remark 4. By virtue of Lemma 1, we establish the link from
the deviating argument z(δ(t)) to the state z(t) and provide
a strong base to prove the subsequent 2eorem 1.

Next, we explore the influence of the deviation argument
on the robustness of exponentially stable of error system (9).

Theorem 1. If assumption (D1) (D2) (D3) (D4) (D5) hold, and
error system (8) is exponential stability, then error system (9) is
exponential stability, that is, system (1) is said to be exponential
synchronization under the linear-type controller (6), if ρ< ρ,
where ρ is the only solution of the transcendental equation:

k2 exp 2k1T􏼈 􏼉 + α exp − βT􏼈 􏼉 � 1, (20)

where k1 � h1 + (2 + λ)h2, k2 � h2(1 + λ)α/β,
λ � (1 − [h2ρ + h1ρ(1 + h2ρ)exp h1ρ􏼈 􏼉])− 1 and T> (ln α)/β.
Here, in addition to h1, h2, λ and T, all of them are consistent
with those defined in Lemma 1.Proof For convenience, e(t) �

e(t; t0, e0) and z(t) � z(t; t0, z0) are expressed by e(t) and
z(t), respectively. According to (8) and (9), as well as the
initial value e0 � z0, one has

z(t) − e(t) � 􏽚
t

t0

[(f(z(s)) − f(e(s))) + cA(z(s) − e(s)) + cB(z(δ(t)) − e(s)) + W(z(s) − e(s))]ds. (21)
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-en,

‖z(t) − e(t)‖ � 􏽚
t

t0

[(f(z(s)) − f(e(s))) + cA(z(s) − e(s)) + cB(z(δ(t)) − e(s)) + W(z(s) − e(s))]ds

��������

��������

≤ 􏽚
t

t0

[‖f(z(s)) − f(e(s))‖ + c‖A‖‖z(s) − e(s)‖ + c‖B‖‖z(δ(t)) − e(s)‖ +‖W‖‖z(s) − e(s)‖]ds.

(22)

In view of (D1) and the norm inequality, for (22), one has

‖z(t) − e(t)‖≤ 􏽚
t

t0

[p‖z(s) − e(s)‖ + c‖A‖‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − e(s)‖ +‖W‖‖z(s) − e(s)‖]ds

≤ 􏽚
t

t0

[(p + c‖A‖ +‖W‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − e(s)‖]ds

≤ 􏽚
t

t0

[(p + c‖A‖ +‖W‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s) + z(s) − e(s)‖]ds

≤ 􏽚
t

t0

[(p + c‖A‖ +‖W‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s)‖ + c‖B‖‖z(s) − e(s)‖]ds

≤ 􏽚
t

t0

[(p + c‖A‖ + c‖B‖ +‖W‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s)‖]ds

≤ 􏽚
t

t0

h1 + h2( 􏼁‖z(s) − e(s)‖ + h2‖z(δ(s)) − z(s)‖􏼂 􏼃ds.

(23)

By Lemma 1, when 0≤ t0 ≤ t, then

‖z(t) − e(t)‖ ≤ 􏽚
t

t0

h1 + h2( 􏼁‖z(s) − e(s)‖ + h2‖z(δ(s))‖ + h2‖z(s)‖􏼂 􏼃ds

≤ 􏽚
t

t0

h1 + h2( 􏼁‖z(s) − e(s)‖ + h2(1 + λ)‖z(s)‖􏼂 􏼃ds

� h1 + h2( 􏼁 􏽚
t

t0

‖z(s) − e(s)‖ds + h2(1 + λ) 􏽚
t

t0

‖z(s) − e(s) + e(s)‖ds

≤ h1 + h2( 􏼁 􏽚
t

t0

‖z(s) − e(s)‖ds + h2(1 + λ) 􏽚
t

t0

‖z(s) − e(s)‖ +‖e(s)‖ds

≤ h1 +(2 + λ)h2􏼂 􏼃 􏽚
t

t0

‖z(s) − e(s)‖ds + h2(1 + λ) 􏽚
t

t0

‖e(s)‖ds.

(24)

Due to the error system (8) is exponential stability,
according to Definition 1, on the interval [t0 − ρ, t0 + ρ], it
comes to the conclusion that

‖e(t)‖≤ α e0
����

����e
− β t− t0( ). (25)

And then,

􏽒
t

t0
‖e(t)‖ds ≤ α e0

����
����

β
. (26)

Furthermore,

‖z(t) − e(t)‖≤ h1 +(2 + λ)h2􏼂 􏼃 􏽚
t

t0

‖z(s) − e(s)‖ds

+ h2(1 + λ)
e0

����
����α
β

� k1 􏽚
t

t0

‖z(s) − e(s)‖ds + k2 e0
����

����,

(27)

Discrete Dynamics in Nature and Society 5



where
k1 � h1 +(2 + λ)h2,

k2 � αh2
(1 + λ)

β
.

(28)

By the Gronwall–Bellman’s inequality, when
t0 + ρ≤ t≤ t0 + 2T, we can acquire

‖z(t) − e(t)‖≤ k2 e0
����

����exp 2k1T􏼈 􏼉. (29)

Since t0 − ρ + T≤ t≤ t0 − ρ + 2T, from (27) and (29), one
has
‖z(t)‖ � ‖z(t) − e(t) + e(t)‖ ≤ ‖z(t) − e(t)‖ +‖e(t)‖

≤ k2 e0
����

����exp 2k1T( 􏼁 + α e0
����

����exp(− βT)

� k2 exp 2k1T( 􏼁 + α exp(− βT)􏼈 􏼉 e0
����

����

≤ 􏽢h sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t)‖,

(30)

where 􏽢h � k2 exp 2k1T􏼈 􏼉 + α exp(− βT).
Denote
H(λ) � k2 exp 2k1T􏼈 􏼉 + α exp(− βT)

� h2(1 + λ)α/β exp 2 h1 +(2 + λ)h2􏼂 􏼃T􏼈 􏼉

+ α exp(− βT).

(31)

By substituting λ � 1 into (31), we can readily get
H(1) � α exp(− βT) + 2h2α exp 2h1 + 6h2( 􏼁T􏼈 􏼉/β< 1. (32)

Clearly that, H(+∞)> 1. In addition, H(λ) is mono-
tonically increasing for λ. Accordingly, there is only one
λ∈ (1, +∞) meeting

H(λ) � 1. (33)

Denote

Γ(ρ) � h2ρ + h1ρ 1 + h2ρ( 􏼁exp h1ρ􏼈 􏼉, (34)

and identify 􏽥ρ as the only one positive solution to Γ(ρ) � 1.
Apparently,

λ(ρ) � (1 − Γ(ρ))
− 1 ∈ (1, +∞), (35)

for ρ ∈ (0, 􏽥ρ). Furthermore, λ is monotonically increasing for
ρ. In this sense, there is the only one positive ρ∈ (0, 􏽥ρ) to satisfy

λ � λ, (36)

and ρ is the only one positive solution to (20).
Consequently, for ρ< ρ,

􏽢h � k2 exp 2k1T􏼈 􏼉 + α exp(− βT)< 1. (37)

Picking out ξ � − (ln􏽢h)/T> 0, and in consideration of
(30), one has

sup
t0− ρ+T≤ t≤ t0− ρ+2T

‖z(t)‖≤ exp(− ξT) sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t)‖.

(38)

Considering the existence and uniqueness of the solution
z(t) of system (9), when t≥ t0 − ρ + (l − 1)T, it holds

z t, t0, z0( 􏼁 � z t, t0 − ρ +(l − 1)T, z t0 − ρ +(l − 1)T, t0, z0( 􏼁( 􏼁.

(39)

From (38) and (39), it follows that

sup
t0− ρ+lT≤ t≤ t0− ρ+(l+1)T

z t, t0, z0( 􏼁
����

����

� sup
t0− ρ+(l− 1)T+T≤ t≤ t0− ρ+(l− 1)T+2T

z t; t0 − ρ +(l − 1)T, z t0 − ρ +(l − 1)T; t0, z0( 􏼁( 􏼁
����

����

≤ exp(− ξT) sup
t0− ρ+(l− 1)T≤ t≤ t0− ρ+lT

z t; t0, z0( 􏼁
����

����

≤ exp(− ξlT) sup
t0− ρ≤ t≤ t0− ρ+T

z t; t0, z0( 􏼁
����

����

� G exp(− ξlT),

(40)

where G � sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t; t0, z0)‖.

To go a step further, there is the only scalar l ∈ N so that
t0 − ρ + lT≤ t≤ t0 − ρ + (l + 1)T, and one can easily show

z t; t0, z0( 􏼁
����

����≤G exp(− ξlT)≤G exp − ξ t − t0( 􏼁 + ξ(T − ρ)􏼈 􏼉

≤G exp(ξT)exp − ξ t − t0( 􏼁􏼈 􏼉.

(41)

Based on Theorem 1, one can readily find that an error
system (9) is exponentially stable, i.e., the system (1) can

achieve exponential synchronization under a designed lin-
ear-type controller (6).

Remark 5. 2eorem 1demonstrates that when an error
system (8) is exponentially stable, the perturbed system (9)
evoked by the deviation argument can still remain expo-
nentially stable as long as the interval length of the devi-
ating argument δ(t) is less than the estimated upper bound.
So, system (1) involving deviating argument is still expo-
nentially synchronous under a designed linear-type con-
troller (6).
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Remark 6. As can be seen in Figure 1, there is a relationship
between the interval length of a deviating argument and time
in the proof of 2eorem 1.

3.2. -e Nonlinear Feedback Controller. To acquire syn-
chronization, the nonlinear controller is defined as

ui(t) � − f xi(t)( 􏼁 + f(s(t)) + 􏽥Rei(t), i � 1, . . . , N, (42)

where 􏽥R∈ Rn×n represents the feedback controller gain
matrix.

With the nonlinear control law (42), system (5) is
reworded to

_ei(t) � c 􏽘

N

j�1
aijej(t) + c 􏽘

N

j�1
bijej(t) + 􏽥Rei(t),

e t0( 􏼁 � e0 ∈ R
n
.

(43)

2at is,

_e(t) � cAe(t) + cBe(t) + Re(t), e t0( 􏼁 � e0 ∈ R
n
, (44)

where R � In ⊗ 􏽥R. Here, in addition to R, all of them are
consistent with previous notations in (8).

In the same way, error systemwithmixed coupling terms
containing deviation arguments is reformulated as

_z(t) � cAz(t) + cBz(δ(t)) + Rz(t), z t0( 􏼁 � z0 ∈ R
n
,

(45)

where R � In ⊗ 􏽥R.
To validate 2eorem 2 more expeditiously, we will in-

troduce Lemma 2. In this subsection, the following as-
sumptions are required:

(i) (D6) ρ(ε1 + 2ε2)exp ε1ρ􏼈 􏼉< 1
(ii) (D7) ε2ρ + ε1ρ(1 + ε2ρ)exp ε1ρ􏼈 􏼉< 1

(D8) 2e following inequality characterize the pa-
rameters of the system (44)

α exp(− βT) + 2ε2α exp 2ε1 + 6ε2( 􏼁T􏼈 􏼉

β< 1
, (46)

where T> (lnα)/β, ε1 � c‖A‖ + ‖R‖, ε2 � c‖B‖.

Lemma 2. Let z(t) stands for the current state of error system
(45) and conditions (D1) (D2) (D6) (D7) are all met. So, we
have the following inequality:

‖z(δ(t))‖≤ κ‖z(t)‖, (47)

-is exists for any t> 0, where

κ �
1

1 − υ1
,

υ1 � ε2ρ + ε1ρ 1 + ε2ρ( 􏼁exp ε1ρ􏼈 􏼉􏼂 􏼃,

ε1 � c‖A‖ +‖R‖,

ε2 � c‖B‖.

(48)

Proof. For the deviation term δ(t) � ηq, define a set
σ � t> 0, ρq ≤ t≤ ρq+1􏽮 􏽯, let t ∈ σ, and q ∈ N, and then, we
have

z(t) � z ηq􏼐 􏼑 + 􏽚
t

ηq

cAz(s) + cBz ηq􏼐 􏼑 + Rz(s)􏼐 􏼑ds. (49)

Combining (D1), we obtain

‖z(t)‖ ≤ z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

c‖A‖z(s) + c‖B‖ z ηq􏼐 􏼑
�����

����� +‖R‖‖z(s)‖􏼒 􏼓ds

≤ z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

(c‖A‖ +‖R‖)‖z(s)‖ds + 􏽚
t

ηq

c‖B‖ z ηq􏼐 􏼑
�����

�����ds

� 1 + ε2ρ( 􏼁 z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

ε1‖z(s)‖ds,

(50)

where

ε1 � c‖A‖ +‖R‖,

ε2 � c‖B‖.
(51)

2erefore, for (50), using the Gronwall–Bellman’s in-
equality, it yields that

‖z(t)‖ ≤ 1 + ε2ρ( 􏼁 z ηq􏼐 􏼑
�����

�����􏼔 􏼕exp ε1ρ􏼈 􏼉. (52)

t0 – p

t0 – p + 2Tt0 – p + T

t0 + p t0 + 2T

(t/s)2TT
Initial time

–T

…………

t0

Figure 1: Relationship between interval length of deviating ar-
gument and time.
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Otherwise, for ρq ≤ t≤ ρq+1, similarly, it follows that

z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖ + 􏽚
t

ηq

c‖A‖z(s) + c‖B‖ z ηq􏼐 􏼑
�����

����� +‖R‖‖z(s)‖􏼒 􏼓ds

≤ ‖z(t)‖ + ε2ρ z ηq􏼐 􏼑
�����

����� + 􏽚
t

ηq

ε1‖z(s)‖ds≤ ‖z(t)‖ + ε2ρ z ηq􏼐 􏼑
�����

����� + ε1ρ 1 + ε2ρ( 􏼁 z ηq􏼐 􏼑
�����

�����􏼔 􏼕exp ε1ρ􏼈 􏼉

≤ ‖z(t)‖ + ε2ρ + ε1ρ 1 + ε2ρ( 􏼁exp ε1ρ􏼈 􏼉􏼂 􏼃 z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖ + υ1 z ηq􏼐 􏼑
�����

�����,

(53)

where υ1 � [ε2ρ + ε1ρ(1 + ε2ρ)exp ε1ρ􏼈 􏼉] and ε1 and ε2 are
defined in (51).

Hence, by uniting the aforementioned equation with
similar entries, we can further require

1 − υ1( 􏼁 z ηq􏼐 􏼑
�����

�����≤ ‖z(t)‖. (54)

Accordingly, when δ(t) � ηq, υ1 < 1 for (D7), it further
derives

z ηq􏼐 􏼑
�����

�����≤ 1 − υ1( 􏼁
01

‖z(t)‖

≕ κ‖z(t)‖,
(55)

where κ � 1/(1 − u1)
− 1. By this means, (47) is available for

t≥ 0. □

Theorem 2. If assumption (D1) (D2) (D6) (D7) (D8) hold,
and error system (44) is exponentially stable, then, error
system (45) is exponentially stable, that is, system (1) is said to
be exponential synchronization under the nonlinear-type

controller (42), if ρ< ρ, where ρ is the only solution of the
transcendental equation:

Λ2 exp 2Λ1T􏼈 􏼉 + α exp − βT􏼈 􏼉 � 1, (56)

where Λ2 � αε2(1 + κ)/β, κ � (1 − [ε2ρ + ε1ρ(1 + ε2ρ)

exp ε1ρ􏼈 􏼉])− 1 and T> (ln α)/β. Here, in addition to ε1, ε2, κ
and T, all of them are consistent with those defined in
Lemma 2.

Proof. For convenience, e(t) � e(t; t0, e0) and
z(t) � z(t; t0, z0) are expressed by e(t) and z(t), respec-
tively. According to (44) and (45), as well as the initial value
e0 � z0, one has

z(t) − e(t) � 􏽚
t

t0

[cA(z(s) − e(s)) + cB(z(δ(t))

− e(s)) + R(z(s) − e(s))]ds.

(57)

2en,

‖z(t) − e(t)‖ � 􏽚
t

t0

[cA(z(s) − e(s)) + cB(z(δ(t)) − e(s)) + R(z(s) − e(s))]ds

��������

��������

≤ 􏽚
t

t0

[c‖A‖‖z(s) − e(s)‖ + c‖B‖‖z(δ(t)) − e(s)‖ +‖R‖‖z(s) − e(s)‖]ds.

(58)

In view of the norm inequality, for (58), one has

‖z(t) − e(t)‖≤ 􏽚
t

t0

[c‖A‖‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − e(s)‖ +‖R‖‖z(s) − e(s)‖]ds

� 􏽚
t

t0

[(c‖A‖ +‖R‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − e(s)‖]ds

� 􏽚
t

t0

[(c‖A‖ +‖R‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s) + z(s) − e(s)‖]ds

≤ 􏽚
t

t0

[(c‖A‖ +‖R‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s)‖ + c‖B‖‖z(s) − e(s)‖]ds

≤ 􏽚
t

t0

[(c‖A‖ + c‖B‖ +‖R‖)‖z(s) − e(s)‖ + c‖B‖‖z(δ(s)) − z(s)‖]ds

≤ 􏽚
t

t0

ε1 + ε2( 􏼁‖z(s) − e(s)‖ + ε2‖z(δ(s)) − z(s)‖􏼂 􏼃ds.

(59)
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By Lemma 2, when 0≤ t0 ≤ t, then

‖z(t) − e(t)‖≤ 􏽚
t

t0

ε1 + ε2( 􏼁‖z(s) − e(s)‖ + ε2‖z(δ(s))‖ + ε2‖z(s)‖􏼂 􏼃ds

≤ 􏽚
t

t0

ε1 + ε2( 􏼁‖z(s) − e(s)‖ + ε2(1 + κ)‖z(s)‖􏼂 􏼃ds

� ε1 + ε2( 􏼁 􏽚
t

t0

‖z(s) − e(s)‖ds + ε2(1 + κ) 􏽚
t

t0

‖z(s) − e(s) + e(s)‖ds

≤ ε1 + ε2( 􏼁 􏽚
t

t0

‖z(s) − e(s)‖ds + ε2(1 + κ) 􏽚
t

t0

‖z(s) − e(s)‖ +‖e(s)‖ds

≤ ε1 +(2 + κ)ε2􏼂 􏼃 􏽚
t

t0

‖z(s) − e(s)‖ds + ε2(1 + κ) 􏽚
t

t0

‖e(s)‖ds.

(60)

Due to CDN, (44) is exponential stability, and according
to Definition 1, on the interval [t0 − ρ, t0 + ρ], it comes to the
conclusion that

‖e(t)‖≤ α e0
����

����e
− β t− t0( ). (61)

And then,

􏽚
t

t0

‖e(t)‖ds ≤ α e0
����

����/β. (62)

Furthermore,

‖z(t) − e(t)‖≤ ε1 +(2 + κ)ε2􏼂 􏼃 􏽚
t

t0

‖z(s) − e(s)‖ds

+
αε2(1 + κ) e0

����
����􏼐 􏼑

β

� Λ1 􏽚
t

t0

‖z(s) − e(s)‖ds + Λ2 e0
����

����,

(63)

where

Λ1 � ε1 +(2 + κ)ε2,

Λ2 � αε2(1 + κ)/β.
(64)

By the Gronwall–Bellman’s inequality, when
t0 + ρ≤ t≤ t0 + 2T, we can expediently acquire

‖z(t) − e(t)‖≤Λ2 e0
����

����exp 2Λ1T􏼈 􏼉. (65)

Since t0 − ρ + T≤ t≤ t0 − ρ + 2T, from (65) and (66),
further we derive

‖z(t)‖ � ‖z(t) − e(t) + e(t)‖

≤ ‖z(t) − e(t)‖ +‖e(t)‖

≤Λ2 e0
����

����exp 2Λ1T( 􏼁 + α e0
����

����exp(− βT)

� Λ2 exp 2Λ1T( 􏼁 + α exp(− βT)􏼈 􏼉 e0
����

����

≤􏽢ι sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t)‖,

(66)

where 􏽢ι � Λ2 exp 2Λ1T􏼈 􏼉 + α exp(− βT).

Denote

Ψ(κ) � Λ2 exp 2Λ1T􏼈 􏼉 + α exp(− βT)

� αε2(1 + κ)exp
2 ε1 +(2 + κ)ε2􏼂 􏼃T􏼈 􏼉

β
+ α exp(− βT).

(67)

By substituting κ � 1 into (74), we can see that

Ψ(1) � α exp(− βT) + 2ε2α exp
2ε1 + 6ε2( 􏼁T􏼈 􏼉

β< 1
. (68)

Clearly that, Ψ(+∞)> 1. In addition, Ψ(κ) is strictly
monotonously increasing for κ. Accordingly, there is the
only one κ∈ (1, +∞) make

Ψ(κ) � 1. (69)

Denote

I(ρ) � ε2ρ + ε1ρ 1 + ε2ρ( 􏼁exp ε1ρ􏼈 􏼉, (70)

and identify 􏽥ρ as the only one positive solution to I(ρ) � 1.
Apparently,

κ � (1 − I(ρ))
− 1 ∈ (1, +∞), (71)

for ρ ∈ (0, 􏽥ρ). Furthermore, κ is increase strictly mono-
tonically for ρ. In this sense, there is the only one positive
scalar ρ∈ (0, 􏽥ρ) satisfy

κ � κ, (72)

and ρ is the only one positive solution for (56).
2us,

􏽢ι � Λ2 exp 2Λ1T􏼈 􏼉 + α exp(− βT)< 1, (73)

for ρ< ρ.
Picking out g � − (ln􏽢ι)/T> 0, and by (67), one gets

sup
t0− ρ+T≤ t≤ t0− ρ+2T

‖z(t)‖ ≤ exp(− gT) sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t)‖.

(74)
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Considering the existence and uniqueness of solution
z(t) of the system (45), when t≥ t0 − ρ + (l − 1)T, it holds

z t, t0, z0( 􏼁 � z t, t0 − ρ +(l − 1)T, z t0 − ρ +(l − 1)T, t0, z0( 􏼁( 􏼁.

(75)

From (75) and (76), we have

sup
t0− ρ+lT≤ t≤ t0− ρ+(l+1)T

z t, t0, z0( 􏼁
����

����

� sup
t0− ρ+(l− 1)T+T≤ t≤ t0− ρ+(l− 1)T+2T

z t; t0 − ρ +(l − 1)T, z t0 − ρ +(l − 1)T; t0, z0( 􏼁( 􏼁
����

����

≤ exp(− gT) sup
t0− ρ+(l− 1)T≤ t≤ t0− ρ+lT

z t; t0, z0( 􏼁
����

����

≤ exp(− glT) sup
t0− ρ≤ t≤ t0− ρ+T

z t; t0, z0( 􏼁
����

����

� Gexp(− glT),

(76)

where G � sup
t0− ρ≤ t≤ t0− ρ+T

‖z(t; t0, z0)‖.

Furthermore, there is only scalar l ∈ N, so that
t0 − ρ + lT≤ t≤ t0 − ρ + (l + 1)T, and one can easily show
that

z t; t0, z0( 􏼁
����

����≤Gexp(− glT)≤Gexp − g t − t0( 􏼁 + g(T − ρ)􏼈 􏼉

≤Gexp(gT)exp − g t − t0( 􏼁􏼈 􏼉.

(77)

By virtue of2eorem 2, one can readily deduce that error
system (45) is exponentially stable, i.e., system (1) can
achieve exponential synchronization under a designed
nonlinear-type controller (42). □

Remark 7. 2eorem 2 clearly indicates that when error
system (42) is exponentially stable, the corresponding
perturbed error system (45) evoked by a deviation argument
can still remain exponentially stable as long as the interval
length of the deviating argument δ(t) is less than the esti-
mated upper bound. Furthermore, system (1) involving a
deviating argument is still exponentially synchronous under
a designed nonlinear-type controller (42).

4. Simulations

Two illustrative examples will be enumerated to show the
validity of conclusions obtained above in this section.

Example 1. Here considering a CDNwith linear control law,
which consists of two nodes:

_xi(t) � f xi(t)( 􏼁 + c 􏽘

2

j�1
aijxj(t) + ui(t),

x t0( 􏼁 � x0 ∈ R
n
,

_s(t) � f(s(t)),

ui(t) � 􏽥Wei(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

In the case of deviation argument, system (78) turns into

_xi(t) � f xi(t)( 􏼁 + c 􏽘
2

j�1
aijxj(t) + c 􏽘

2

j�1
bijxj(δ(t)) + ui(t),

x t0( 􏼁 � x0 ∈ R
n
,

_s(t) � f(s(t)),

ui(t) � 􏽥Wei(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

where i ∈ 1, 2, and xi(t) � (xi1(t), xi2(t))T ∈ R2 is the state
vectors of i − th nodes for the CDN. let ei(t) � xi(t) − s(t),
one can see that error system (78) and error system (79)
turns into, respectively,

_e(t) � F(e(t)) + cAe(t) + We(t), e t0( 􏼁 � e0 ∈ R
n
, (80)

_e(t) � F(e(t)) + cAe(t) + cBe(δ(t)) + We(t),

e t0( 􏼁 � e0 ∈ R
n
.

(81)

Let coupling matrices A �
− 5 5
2 − 2􏼠 􏼡,

B �
− 0.001 0.001
0.002 − 0.002􏼠 􏼡, and K �

− 5.5 0
0 − 5.3􏼠 􏼡. 2e cou-

pling strength is designed as c � 0.1. 2e activation function
is f(·) � tanh(·). Two nodes and isolated nodes of the initial
value can be designed as x1 � (− 1.1, 1.2)T, x2 � (1.7, − 1.4)T,
and s(t) � (0.2, 0.1)T.

As shown in Figure 2, error system (80) is exponentially
stable when α � 1.1 and β � 0.8.

Fix two consequences: ρq􏽮 􏽯 � q/20􏼈 􏼉, ηq􏽮 􏽯 � 2q + 1/40􏼈 􏼉,
and q ∈ N. Let T � 0.2≥ (ln1.1)/0.8 � 0.1191, T � 0.2≥
(ln1.1)/0.8 � 0.1191; then by calculation, we can obtain h1 �

7.2616 and h2 � 3.1623 × 10− 4.
Based on inequality (D4), it is expedient to calculate

ρ � 0.0781. According to (30), we can obtain λ � 6.8815 and
ρ � 0.0705.

Selecting δ(t) � ρ � 1/20< ρ � 0.0705, by conducting
simple calculations, we can find
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1
20

× 7.2616 + 2 × 3.1623 × 10− 4
􏼐 􏼑

× exp 7.2616 ×
1
20

􏼒 􏼓 � 0.5221< 1,

(82)

and (D3) is satisfied.
It is obvious that all the requirements appearing are each

fulfilled in 2eorem 1. In view of 2eorem 1 and Definition
1, we are able to deduce that error system (81) is exponential
stability, that is, system (79) is exponential synchronization.
As shown in Figure 3, the simulated findings closely match
the theory.

Example 2. We discuss a CDN, consisting of two nodes,
with nonlinear control law whose dynamics are described as

_xi(t) � f xi(t)( 􏼁 + c 􏽘
2

j�1
aijxj(t) + wi(t),

x t0( 􏼁 � x0 ∈ R
n
,

_s(t) � f(s(t)),

ui(t) � − f xi(t)( 􏼁 + f(s(t))+e􏽥Ri(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(83)

Subsequently, in the presence of deviating argument,
system (83) becomes

_xi(t) � f xi(t)( 􏼁 + c 􏽘
2

j�1
aijxj(t) + c 􏽘

2

j�1
bijxj(δ(t)) + wi(t),

x t0( 􏼁 � x0 ∈ R
n
,

_s(t) � f(s(t)),

wi(t) � − f xi(t)( 􏼁 + f(s(t)) + 􏽥Rei(t),

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

where i ∈ 1, 2, and xi(t) � (xi1(t), xi2(t))T ∈ R2, is the state
vectors.

Let ei(t) � xi(t) − s(t), one can see that error system
(83) and error system (84) are simplified as, respectively,

_e(t) � cAe(t) + Re(t), e t0( 􏼁 � e0 ∈ R
n
, (85)

_e(t) � cAe(t) + cBe(δ(t)) + Re(t), e t0( 􏼁 � e0 ∈ R
n
.

(86)

Let coupling matrices A �
− 2 2
4 − 4􏼠 􏼡,

B �
− 0.003 0.003
0.002 − 0.002􏼠 􏼡, and K �

− 4.1 0
0 − 4.7􏼠 􏼡. 2e cou-

pling strength is designated as c � 0.05 for i � 1, 2. 2e
activation function is f(·) � tanh(·). Two nodes and isolated
nodes of the initial value can be designed as x1 � (− 2, 2)T,
x2 � (3, − 1)T, and s(t) � (1, 0)T.

As shown in Figure 4, the error system (85) is expo-
nential stability when α � 1.1 and β � 0.5.

Fix two consequences: ρq􏽮 􏽯 � q/20􏼈 􏼉, ηq􏽮 􏽯 � 2q + 1/40􏼈 􏼉,
q ∈ N. Let T � 0.4≥ (ln1.1)/0.5 � 0.1906, then by calcula-
tion, we can obtain h1 � 5.0162, h2 � 2.5495 × 10− 4.

Based on inequality (D7), it is expedient to calculate
ρ � 0.1131. According to (56), we can obtain λ � 2.2011,
ρ � 0.0748.

Selecting δ(t) � ρ � 1/20< ρ � 0.0748, by conducting
simple calculations, we can find

1
20

× 5.0162 + 2 × 2.5495 × 10− 4
􏼐 􏼑

× exp 5.0162 ×
1
20

􏼒 􏼓 � 0.3223< 1,

(87)

and (D6) is satisfied.
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Figure 2: 2e convergent behavior of the error system under a nonlinear control law.

Discrete Dynamics in Nature and Society 11



Clearly, all the requirements outlined in 2eorem 2 are
each fulfilled. In the light of 2eorem 2 and Definition 1, we
are able to deduce that error system (86) is exponentially
stable, that is to say, system (84) can achieve exponential

synchronization when ρ � 1/20. As indicated in Figure 5, the
simulated findings closely correlate with the theory.

Figure 6 depicts that error system (86) is instable when
ρ � 1/2. Moreover, in this situation, the parameters are not
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Figure 3: 2e convergent behavior of error system (80) under a linear control law.
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Figure 4: 2e evolvement behavior of error system (81) under a linear control law.
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Figure 5: 2e evolvement behavior of error system (86) under a nonlinear control law.
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Figure 6: 2e instable behavior of error system (86) with ρ � 1/2 under a nonlinear control law.
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appropriate for 2eorem 2. 2erefore, system (84) is not
exponential synchronization.

5. Concluding Remarks

2e robustness of the complex system to control laws evoked
by deviating arguments is investigated. In this paper, two
categories of control laws are provided and some corre-
sponding sufficient criteria are put forward to prove the
synchronization of CDNs with deviation argument. 2e
findings show that a complex system containing a deviation
function will keep exponential synchronization continu-
ously as long as the interval length of the deviation function
is lower than the derived upper limit. In view of the analysis
and methodology discussed in this paper, more complex
models will be considered for further topics.
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