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Dynamic bus scheduling refers to adjusting the departure time according to the latest time-varying information or adjusting bus
speed in the process of operation. These control strategies can prevent bus bunching and alleviate traffic pressure. The paper
studies the multiline bus dynamic scheduling with consideration of departure time and speed meanwhile. The hyperheuristic
algorithm is proposed, and low-level heuristics (LLH) operators are designed. The simulation experiment is performed for the
passenger flow distribution of different strengths and types of different scenarios. By comparing the experimental results of genetic
algorithm (GA) and hyperheuristic algorithm in solving different scenarios, the results show that in smooth, increasing, de-
creasing, and multiconvex passenger flow mode, the performance of the hyperheuristic algorithm is higher than that of GA. The
promotion rate reaches 18~28%, and especially the average value of the hyperheuristic algorithm designed under multiconvex
passenger flow is up to 28.62%, significantly reducing passengers’ waiting time. By comparing the stability of the three passenger
flow modes, the results illustrate that the stability of the hyperheuristic algorithm is lower than that of GA. For the smooth
passenger flow mode, the stability of medium and lower density of GA is higher than that of the hyperheuristic algorithm. In

comparison, the high-density stability of the hyperheuristic algorithm is better than that of GA.

1. Introduction

The number of urban private vehicles is rising year by year in
China. It is reported that the number of vehicles reached 372
million in 2020, including 281 million cars [1], an increase of
1.14 million more than 2019, and it continued to show a
rapid growth trend. In 2020, there were more than 1 million
cars in 70 cities, and more than 2 million in 31 cities [1].
Traffic congestion has become a common phenomenon
in cities. To alleviate traffic congestion in big cities has been
an urgent problem to be solved, while developing public
transportation is an excellent solution. Public transport
refers to all modes open to the public and is part of urban
infrastructure. For buses, the advantages of large capacity,
energy-saving and environmental protection, and low per
capita oil consumption make an excellent solution to reduce
the urban traffic conditions. To make traffic smooth and

reduce pollutants emissions, the government takes active
measures to encourage citizens to take public transportation
as far as possible, which is in line with China’s green and
sustainable development strategy.

Attracting more passengers to choose bus travel is an
enduring hot topic in the field of public transportation.
Dynamic bus dispatching is one of the positive and effective
measures to solve the problem. It is the core part of public
transportation, which refers to a reasonable scheduling
scheme under fixed driving routes and bus facilities to make
the bus system operate more rational, efficient, and
intelligent.

This study is based on a multiline dynamic bus dis-
patching model with departure time and speed in [2], which
is to make the passengers’ waiting time achieve minimum by
determining the bus departure time at the first station and
average speed between stations. The study designed a
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hyperheuristic algorithm, through simulation experiments
conducted for passenger flow distribution of different
strengths and types in different scenarios, comparing the
experimental results with a genetic algorithm (GA).

The remainder of this study is organized as follows.
Section 2 is literature review. The multiline model for
achieving passengers’ waiting time minimum in [2] is
quoted in Section 3. Section 4 presents the hyperheuristic
algorithm. The experiments and results analysis are de-
scribed in Section 5. Section 6 is the conclusions.

2. Literature Review

Multiline bus dynamic scheduling is also known as regional
scheduling. There are generally two methods to solve the
transfer coordination problem of regional scheduling in the
research, respectively, based on the best adjustment value of
the scheduling scheme and achieving the bus number of
simultaneous arrivals maximum.

Furth and Wilson [3] built a mathematical optimization
model, which includes the passenger rate, bus rating, and
total operating cost; the departure frequency as the decision
variate; and the minimum passenger waiting time and
maximum social benefit as a target. Ceder [4] studied the
departure intervals for buses and proposed four methods to
solve the departure intervals. Two of them are solved based
on the passenger arrival volume and the rated passenger-
carrying rate of a station during the peak time. The other two
apply the relationship between the turnover rate and the bus
capacity at a certain period of the bus line. Ceder and Stern
[5] developed an integer programming model for interval
vehicles timetable generation problem and developed a
heuristic algorithm. Ceder et al. conducted a detailed study
of departure intervals based on different types and different
ways and considered considering traffic accidents. They
established a mixed-integer planning model for targeting the
maximum number of buses simultaneously at a transfer
station and developed suitable GA as a solution [6-8].

Dessouky et al. [9] considered transfer waiting time of
passengers while studying holding scheduling, making the
shortest by holding, and developing eight reasonable holding
strategies. A simulation model was established for verifi-
cation. They proposed the calculation method of vehicle
optimal holding time based on the original research, added
the prediction method of bus arrival time, and compared
seven holding methods through simulation [10, 11].
Chowdhury and Chien [12] established the shortest total
time model, including the passenger transfer delay time, the
delay time of transfer vehicle, and waiting time of vehicle
departure. They optimized the scheduling by calculating the
remaining time and the vehicle departure time. Synchronous
transfer was studied by Liebchen and Mohring [13], in which
the number of buses required in the bus system, the number
of buses between stations, and passengers’ transfer waiting
times were explored. A mixed-integer planning model was
constructed and solved using CPLEX.

Fleurent et al. [14] constructed a network flow model
when studying the timetable scheduling problem of regional
vehicles, introduced three transfer time types of maximum,
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minimal, and optimal, and developed a Lagrangian relax-
ation and heuristic algorithm for solution optimization. Li
and Li [15] studied the real-time dispatching optimization
method in the bus hub, established the real-time dispatching
optimization model in the bus hub according to transfer
efficiency, presented the optimization model for minimizing
the total cost, and developed the random perturbation ap-
proximation algorithm to optimize the solution.

Ulusoy et al. [16] studied the passenger flow model and
considered the uneven distribution of passenger arrival rate
in space and time. They constructed an extensive station
express combination scheduling and interval vehicle, the
minimum total vehicle as the target, and departure interval
as the decision variable. Sun [17] conducted a detailed and
comprehensive study on the dynamic optimization of urban
multiline bus transmission under the Internet of Things
environment, considered the impact of various factors such
as vehicle capacity limit, multimodel, bus company oper-
ating expenses on the model, and constructed mathematical
models and heuristic algorithm to solve the optimization
respectively. Song and Zhang [18] analyzed the topological
characteristics of the public transport networks, based on the
graph theory method, clarified the significance of the
shortest path in the bus network, studied the minimum
number of transfers as the optimization goal, and designed
and implemented a bus query system with the minimum
transfer algorithm.

Chen et al. [19] designed the bus network with a con-
tinuous approximate modeling framework and proposed an
optimization model for two different planning scenarios. The
model optimized the bus network by minimizing the total cost
of bus companies and passengers under the premise of
considering the interval bus operation strategy. Song et al. [20]
have proposed a two-layer planning model to artificially solve
the scheduling problem of bus lines for multiple operators in
overlapping intervals. The upper model is the government
agency. By dispatching the bus route allocation scheme to
minimize the total running time, as well as by dispatching
departure intervals for buses to maximize the benefits of the
operators, an NSGA-II algorithm is developed for the solution.

Bourbonnais et al. [21] performed the genetic algorithm
to solve the problems of traffic network design and fre-
quencies setting by the data of three medium-sized cities in
Quebec; the efficiency increased between 10 and 20%
compared to the existing model, and the parameters and
fleet sizes of which are the same. Liu et al. [2] established the
multiline model considering the bus departure interval and
the bus speed adjustment, and the joint optimization al-
gorithm was used.

The proposed bus dynamic scheduling model in the
previous study mainly considered the departure time and
was mainly solved with the genetic algorithm. The paper
considers the departure time and speed adjustment mean-
while, puts forward hyperheuristic algorithm, and designs
low heuristic operator. Under different scenarios, different
simulation experiments are designed, and the results are
compared with GA and hyperheuristic algorithm, which
provides a reference for bus dynamic scheduling model
establishment.
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3. Multiline Model for Minimizing Passengers’
Waiting Time

3.1. Problem Description. The CEA Model Treats Multiple
Transport Lines as a Special Single Line. Because of the Fol-
lowing Assumption, the Departure of the Bus Is Considered as
Single-Line Problem. Take any one of the studies on bus lines
as an example, as shown in Figure 1. The travelling direction
of bus is where the arrow indicates. The total numbers of bus
stations are N on the running line; meanwhile, the number
of the travelling buses is N2 The buses waiting to start from
departure station are denoted by from N’ +1 to N} + N{;
the total number is Nf. During the planning cycle of buses,
the running bus collects the road condition and passenger
information to optimize start time and interstation speed of
next bus.

3.2. Assumptions. To establish CAE optimization model, the
following assumptions are made, which were previously
made in many papers [22-25]:

(1) All research buses are of the same type.

(2) There are no road accidents.

(3) The time for passengers on and off are equal.

(4) All buses must stop when they arrive the station, and
the inbound time and outbound time of bus are the
same.

(5) Any travelling bus cannot overtake.

(6) The start time of the last train must remain
unchanged.

(7) Passenger-flow and bus speed could be detected. The
function relation between passenger flow and time of
each bus station can be calculated by historical
passenger flow information.

3.3. Parameters. The parameters in this model were defined
as follows:

i: bus code

Jj: station code

p: line code

H™": minimum headway

H™: maximum headway

NZD: the number of buses travelling on line p

NZE: the number of buses to be planned of line p

N3: the number of bus stations on line p

V™ minimum running speed on line p

V™ maximum running speed on line p

T, leaving time from stop j of bus i on line p

V,,;j: average running speed of bus 7 on line p between
adjacent stations j and j-1

T%®": average waiting time of line p for passengers

failing to catch the last bus [2]

N ?f}: the number of passengers left by bus i on line p as
it gets to station j [2]

Npgi: the number of transfer passengers on bus i on line
p who transfer to line g at transfer station j; the value is
0 when station j online p is not a transfer station [2]
T;;ﬁ;: waiting time of transferring from line p to line q
7%, all passengers’ waiting time

T the total waiting time of waiting for the first bus [2]

T': the total waiting time of delayed passengers waiting
for subsequent buses [2]
T": the waiting time for transfer passengers

Spql " Spq is 1 if there is at least one element in the set |
Spal " 121

3.4. Model Construction. The objective function of the re-
search is to achieve the all passengers’ waiting time mini-
mum. The expression is as follows:

MinT = 7/ + T' + T", (1)
s.t.
H oo T pij = Tpigj-1) < Hnax
p=12,...,N;
, D F . (2)
i=1,2,...,N;+ N, j
_ S
=2, "NP’
VminSVpijSVmax
p=12,...,N;
12 ND 4 NF: (3)
i=1,2,...,N, +N,;j
_ S _
=1, "NP 1,
Tyij = Tp(i-1; 20
p=L2,...,N;
(4)

. D F_ .
i=12,.. N, +Nj
- S _
=1...,N, - L
7% of (1) refers to all passenger waiting time, consisting

of 7, T', and T". T means the time of the passengers waiting
the first bus.

; Tpij
JT (Tpij =) f p; (D). (5)
< ,

pli-1)j

T’ represents the time of stranded passengers waiting the
following bus with vacant capacity, which is expressed as
follows:
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Buses running on the line

Terminal station

FIGURE 1: Bus departure operation diagram of a single line.

N Np+Nj N}
le 2 Z lefzfjt' [Tpij B Tp(i—l)j]
i= j=1

(6)

S
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T" means all passengers waiting bus time in the transfer
station, which is expressed as follows:

p ND+NF)]

N N N§+N; .
T" = Z Z Z |Spq| N PthTrov;:; (7)

The value of the set |S,,|" is 1 when it is not empty; when
there are no passengers to transfer bus line from p to g, the
value of which is 0. In addition, equations (2) and (3) in-
dicate the departure interval and speed of the all buses must
meet the maximum and minimum constraints, respectively,
and equation (5) must meet constraint (4).

4. Hyperheuristic Algorithm

4.1. The Fitness Calculation Rules. The hyperheuristic algo-
rithm includes High-Level Strategy (HLS) and Low-Level
Heuristics (LLH) algorithm libraries, where LLH operator to
be designed is the focus of the algorithm. In this study, HLS
first initializes high-level individuals, and the low-level
problem is described in a chromosome form. A series of LLH
operators are selected through GA, and the selected LLH
operators act on the specific problem domain to optimize the
problem by using information such as the problem de-
scription and evaluation function provided by the low level.

The fitness calculation rules for each high-level indi-
vidual are as follows.

Step 1. 'To apply the heuristic operator, corresponding to the
first locus of this high-level individual, on the initial low-
level population S1, yields the evolved population S2 and the
current optimal individuals.

Step 2. To apply the heuristic operator corresponding to the
second locus on the evolved population S2, the current
optimal individual can be updated if the individual is ex-
cellent. So, the corresponding heuristic operator is on the
corresponding locus of the last heuristic operator; the op-
timal low-level individual is updated constantly. Finally, the
optimal individual corresponding to the high-level

individual fitness is found. Then, the high-level population is
selected.

High-level individuals are chromosomes composed of
several loci, each of which being a number, each representing
a different LLH operator. After crossover, variation opera-
tion, top populations produce several individuals repre-
senting different combinations of heuristic operators, after
which each individual in the chromosome pool is evaluated.
Later, the next generation of individuals is selected to
perform crossover, variation, and selection until the ter-
mination conditions are met.

4.2. Design of High-Level Population Coding Rules and
Population Initialization. High-level individuals are integer-
encoded, and the encoded chromosome schematic is shown
in Figure 2 in [2].

A high-level chromosome is a number of codes with
seven loci. Each locus (mn-i) is an integer between intervals
[1, 7], and each number decoded represents a specific low-
level heuristic operator. For example, one can be decoded as
an LLH1 operator, and two can be decoded as an LLH2
operator, and so on. In particular, the values of each locus
can be repeated or missing.

4.2.1. High-Level Population Crossover, Variation, and Se-
lection Operator. The high-level strategy used GA. The
championship method is used as the selection operator for
the population individual. The population individuals are
some discrete number combinations, so the single-point
exchange method is adopted as a cross operator, and the
variant operator also adopts the single-point variation
method. Because individual loci represent different low-
layer heuristic operator operations, no nonfeasible solutions
exist. The algorithmic stop criterion is that the population
has evolved a specific algebra.

4.2.2. Selection Operator. Selection mechanisms work by
copying individuals with high fitness values to the next
generation to preserve the trait good individuals and im-
prove the overall average fitness values of the population.
The selection operator determines the rate of convergence of
GA. The binary championship selection method is used as
the selection operator.

In championship selection, there are s individuals from
the population, which are first randomly sampled, but they
can be put back after sampling. Then, the optimal individual
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‘ mnl ‘ mn2 ‘ mn3 | mn4 ‘ mn5 ‘ mn6 ‘ mn7 ‘

F1GURE 2: Schematic diagram of high-level chromosomes encoding.

is selected to go to the next generation. If an individual’s
fitness is the better than other s-1 competitors’ value, the
operation will be repeated until a specific number of sur-
viving individuals are obtained. And the worst individual
cannot survive, and the best individual wins in all the
tournaments. The pressure of individual survival can be
changed by changing the length of the tournament. For s
with larger values, the chance of the weak being selected is
smaller, common with binary championships and ternary
tournaments.

4.2.3. Crossover Operator. The study employs a uniform
crossing method as a crossover operator, and the schematic
diagram of crossing is shown in Figure 3.

Two paternal individuals P1 and P2 that required cross
manipulation are selected from the population to randomly
generate a 0-1 mask with the same chromosome length,
corresponding one to one to each of the two parents, where
the two paternal loci with the corresponding mask one were
exchanged. Two new subgenerations of Ol and O2 are
generated by cross-operation and added to the progeny
population, waiting for subsequent operation.

4.2.4. Variation Operator. Single-point random variants
were used, with a schematic representation of the variant
steps shown in Figure 4.

Picking the parent individual P1 requiring the variant
operation from the population also randomly generates a
0-1 mask consistent with the chromosome length. The locus
corresponding to the one mask is the part of the variant
operation to be performed. The variation operator taken in
this study randomly replaces the locus to be varied with
another value that meets the requirements.

4.2.5. Adaptive Improvement. 'The hyperheuristic algorithm
designed in this study enables indirect problem domain
optimization through the control of low-level heuristic
operators. Sometimes, high-level individuals do not need to
go through all the operators to find the optimal combination
representing the current individual fitness. For example, the
high-level individual [1, 1-5, 7] optimizes according to the
fitness calculation rules introduced in Section 4.1. When the
optimal individual found by the heuristic operators is lo-
cated at the low level, that is, the optimal individual after a
combination of 2-3-5-1, the later 1-7-4 heuristic operators
can be considered invalid optimization. In contrast, 2-3-5-1
can be viewed as a better combination of heuristic operators.
The study made an adaptive improvement on this part,
assuming that the high-level individuals illustrated above are
optimal individuals of the current generation. A combina-
tion starting with 2-3-5-1 operators will have a greater

probability of being chosen when the following population
individual is to be saved.

4.3. Low-Level Heuristic Operator Design. The LLH operator
of the hyperheuristic algorithm is directly applied to the
problem domain solution space for the domain optimization
of the problem; that is, the selected characteristic LLH op-
erators are evolutionarily updated for individuals in the
problem domain. In order to improve algorithm’s efficiency,
the study presents low-level heuristic operators set as different
heuristic sequences. Two variables to be decided are departure
moment and vehicle speed, using the problem domain in-
dividuals defined in GA of [2] as a solution representation.
The specific schematic diagram is described in Figure 5.

H,,, indicates the departure interval planned between
the first bus and the previous bus on line 1 and departure
intervals to be planned between each bus and the previous
bus. V;;; to Vs refer to the travel speed of the first bus to
the N¥ bus between all stations on line 1. Other lines were
designed in the same design pattern as the line. For example,
in line 1, the first previous N} locus states the departure
interval between the bus to be decided and the previous bus
at the first stop [2]. Subsequent N7 locus is the average speed
of the decided first bus between stations, and then the N$
level is the second bus speed between stations so until the N¥
bus travels between stations on the line.

Seven different LLH operators are designed according to
the problem characteristics:

(1) LLH1 means random cross. It means randomly
exchanging two different loci in one part for all parts
of the problem. As shown in Figure 4, the departure
interval of one bus line is a part, the average driving
speed of a bus at each station is another part, and the
driving speed of the second bus at each station is
another part. The operator is adopted for each dif-
ferent part. The other parts of the operators below are
divided by the method.

(2) LLH2 means insert-delete. For each part, a position
is randomly selected. A reasonable random gene is
inserted ahead of that position, and another site in
the same section is randomly chosen for deletion.

(3) LLH3 means insert-backward. Two positions are se-
lected in each part to move the latter locus to the
preceding gene, and the preceding original gene and
the gene between the two loci are moved the whole
back one.

(4) LLH4 means adjacent intersections. A locus is
randomly selected and swapped with the previous
one or the latter one.

(5) LLH5 operates in inverse sequence, randomly
selecting consecutive subsequences from 3 to 4 bits
and arranging this sequence in reverse sequence.

(6) LLH6 interchanges. Select two individuals, for each
section, and exchange the same positional genes for
these two individuals.
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P2 2 3 4 7 6 6 5
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LS VI ¥
01 1 5 4 7 6 6 5
02 2 3 5 3 7 6 2

P1 1 5 5 3 7 6 2
Mask 1 0 0 1 0 0 0
01 7 5 5 2 7 6 2

FIGURE 4: Schematic diagram of high-level chromosome mutations.
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FIGURE 5: Schematic diagram of low-level heuristics chromosomes.

(7) LLH7 selects a random position, turns it into a
random number between the maximum-minimum
departure interval or vehicle speed, and finds another
random position in the same part to increase or
decrease the same value.

5. Numerical Experiments

The case selected is the same as that of [2]. The data of six bus
lines and passenger flow rate in four scenarios in [2] are also
used. Experimental design and parameter design are the
same as in [2].

According to the bus company, the departure interval of
buses is from 5 min to 20 min, the average bus speed between
stations is between 10 km/h and 30 km/h, the average time
per passenger on and off is 5, and buffering time of vehicle
deceleration and accelerate is about 30's. Eight vehicles are

planned for each line. The departure interval and the in-
terstation speed of these buses are optimized.

The parameter values are as follows: the high-level control
strategy uses GA for scheduling in [2], the crossover rate
equals 0.8, the variation rate equals 0.1, and the number of low-
layer problem domain populations low-pop-scale and indi-
viduals per generation of the population pop scale are both 15.

The passenger flow situation on the lines during different
periods of the day is different. After counting the passenger flow
data, the passenger flow distribution has a certain rule, and there
are four common changes of passenger flow as follows. Pas-
senger flow in four scenarios is as shown in Figures 6(a)-6(d).

5.1. Smooth Passenger Flow Case. To avoid the contingency
of the experimental data, the GA and hyperheuristic algo-
rithm were optimized ten times, respectively, and the ex-
perimental data results are described in Table 1.
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FIGURE 6: Passenger arrival rate under different scenarios. (a) Smooth passenger flow. (b) Increasing passenger flow. (c) Decreasing

passenger flow. (d) Multisection convex passenger flow.

TaBLE 1: Results of GA and hyperheuristic algorithm under smooth passenger flow.

Goal value Passenger waiting time (min)

Status High intensity Medium intensity Low intensity
Groups GA Hyperheuristic GA Hyperheuristic GA Hyperheuristic
1 329311 236758 130397 95405 42986 31683
2 299713 221585 108388 88564 44676 37413
3 281075 239199 125027 95591 44446 31204
4 281262 240604 124354 94134 45572 31931
5 293368 232556 123672 89288 45917 30235
6 294682 227240 124710 95649 47380 34739
7 287362 210243 134979 106300 43900 33171
8 310073 214497 130351 107433 41574 34502
9 324412 235954 123422 88144 45835 33429
10 315976 234687 124605 95760 41269 35507
Average value 301723.4 229332.3 124990.5 95626.8 44355.5 33381.4
Promotion rate — 23.99% — 23.48% — 24.74%

In Table 1, the optimal performance of the hyper-
heuristic algorithm under smooth passenger flow is better
than that of GA strategy, which can be improved by 24.74%
under low-intensity passenger flow, and about
23.48~23.99% under medium- and high-intensity passenger
flow, respectively. Although the results of the hyperheuristic
algorithm fluctuate, the optimal results of each intensity of

the hyperheuristic algorithm under the smooth passenger
flow model are better than those of GA. We can conclude
that the hyperheuristic algorithm is used as a solution and
can find good combinations of heuristic operators and
problem domain optimal results.

The experimental data obtained above, shown in
Figures 7(a)-7(c), show the solution amplitude curve of GA
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FIGURE 7: Result curve of GA and hyperheuristic algorithm of smooth passenger flow. (a) High-intensity passenger flow. (b) Medium-

intensity passenger flow. (c) Low-intensity passenger flow.

and hyperheuristic algorithm under smooth high-, medium-,
and low-intensity passenger flow models.

According to the result data obtained in Table 1, the data
in Table 2 is calculated using

. \/(1/N) Zf}l (x; - %)’
X

% 100%. (8)

By analyzing the stability, it can be seen that there is
some instability in both the GA and hyperheuristic
algorithm.

The smaller the index, the more stable. In the smooth
passenger flow model, the stability of medium and low
intensity of hyperheuristic algorithm is lower than that of the
GA. In comparison, the stability of the high-intensity
heuristic algorithm is higher than that of GA strategy.

5.2. Increasing Passenger Flow Case. The GA and hyper-
heuristic algorithms were optimized ten times, respectively,
and Table 3 offers the experimental results.

In Table 3, all the average value of the second algorithm is
better than that of the first. The target value of the high-
intensity passenger flow can be reduced by 26.44%. The
target value of the medium-intensity and low-intensity
passenger flow can be reduced by 27.17% and 21.84%. The
hyperheuristic algorithm can find better solutions that GA
cannot find. But the same hyperheuristic algorithm may also
only find poor results, as shown in the 9th group of low-

intensity experiments. For the increasing passenger flow
model, the optimal capability of the hyperheuristic algo-
rithm is far higher than that of the GA, and the target value
can be reduced by 21% to 27%.

According to the experimental data obtained above,
Figures 8(a)-8(c) show the solution amplitude curve of GA
and hyperheuristic algorithm under the increasing high,
medium, and low passenger flow.

Table 4 is stability analysis table under increasing pas-
senger flow.

In Table 4, the stability of the hyperheuristic algorithm
under the increasing passenger flow model is poor compared
with that of the GA. The stability indicators of GA are lower
about 3% than those of hyperheuristic algorithm, and the
stability of the latter is slightly worse than that of the GA.

5.3. Decreasing Passenger Flow Case. The experimental data
obtained after ten groups of experiments are listed in Table 5.

All the average values of the hyperheuristic algorithm are
smaller than those of GA in Table 5. The passenger waiting
time of the high-intensity, medium-intensity, and low-in-
tensity passenger flow can be reduced by 22.59%, 18.83%,
and 20.29%, respectively. The promotion rate of the me-
dium-intensity is the lowest of the three types. The hyper-
heuristic algorithm can find better solutions that GA cannot
find. But the hyperheuristic algorithm may also find poor
results as shown in the 10th group of high-intensity and the
8th group of low-intensity experiments. For the decreasing
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TaBLE 2: Stability analysis table of GA and hyperheuristic algorithm under smooth passenger flow.
Status High intensity Medium intensity Low intensity
Algorithm GA Hyperheuristic GA Hyperheuristic GA Hyperheuristic
Standard deviation 16502.76 10056.55 6619.75 6337.64 1863.11 2086.78
Average value 301723.4 229332.3 124990.5 95626.8 44355.5 33381.4
Stability indicators 5.47% 4.39% 5.30% 6.63% 4.20% 6.25%
TaBLE 3: Results of GA and hyperheuristic algorithm under increasing passenger flow.
Goal value Passenger waiting time (min)
Status High intensity Medium intensity Low intensity
Groups GA Hyperheuristic GA Hyperheuristic GA Hyperheuristic
1 457448 349016 245116 180496 103686 78420
2 434936 301537 243755 178577 98125 74349
3 413338 274837 237078 192921 106780 73530
4 422933 327430 258363 163234 93435 65532
5 402986 359045 245019 192164 95030 67523
6 457998 309307 237237 157055 95030 84561
7 439372 299749 250711 181272 95338 78232
8 428577 348443 238049 174488 100008 69985
9 442198 337899 235589 185132 98200 92451
10 459302 299474 248547 171264 101046 87478
Average value 435908.8 320673.7 243946.4 177660.3 98778.6 77206.1
Promotion rate — 26.44% — 27.17% — 21.84%
500000 - increasing hlgh—lnten51ty ) 300000 ~ Increasing mld—lntep51ty )
450000 T T
400000 7 T 250000 | T
350000 200000 . . . . . . . . . .
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FIGURE 8: Result curve of GA and hyperheuristic algorithm of increasing passenger flow. (a) High-intensity passenger flow. (b) Medium-

intensity passenger flow. (c) Low-intensity passenger flow.
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TABLE 4: Stability analysis table of GA and hyperheuristic algorithm under increasing passenger flow.

Status High intensity Medium intensity Low intensity

Algorithm GA Hyperheuristic GA Hyperheuristic GA Hyperheuristic

Standard deviation 18349.62 26216.07 6885.75 10975.75 4048.36 8357.08

Average value 435908.8 320673.7 243946.4 177660.3 98778.6 77206.1

Stability indicator 4.21% 8.18% 2.82% 6.18% 4.10% 10.82%

TaBLE 5: Results of GA and hyperheuristic algorithm under decreasing passenger flow.

Goal value Passenger waiting time (min)

Status High intensity Medium intensity Low intensity
Groups GA Hyperheuristic GA Hyperheuristic GA Hyperheuristic
1 258389 204103 121557 97828 39418 35527
2 267276 184474 119809 100364 41804 28754
3 253559 210053 116803 102049 39258 30514
4 271737 225726 116636 102628 40272 36450
5 266677 208323 120044 95586 38907 29451
6 283306 190228 120053 88542 38336 30042
7 282428 193575 122068 103520 38165 29310
8 283881 199872 119520 98754 38347 36415
9 264076 223142 124627 96882 38146 27461
10 256232 240859 1285 07 95662 38154 27598
Average value 268756.1 208035.5 120962.4 98181.5 39080.7 31152.2
Promotion rate — 22.59% 18.83% — 20.29%

passenger flow, the optimal capability of the hyperheuristic
algorithm is much better than that of GA, and the target
value can be reduced by 18% to 22%.

According to the experimental data obtained in Table 5,
Figures 9(a)-9(c)show the solution amplitude curve of GA
and hyperheuristic algorithm under the decreasing high,
medium, and low passenger flow.

Table 6 is a stability analysis table under decreasing
passenger flow.

The stability of the hyperheuristic algorithm under de-
creasing passenger flow model is also poor compared with
GA. The stability indicators of low intensity of GA are lower
about 8% than those of the hyperheuristic algorithm, and the
stability of the latter is worse than that of GA in solving
decreasing passenger flow problem.

5.4. Multisegment Convex Passenger Flow Case. To improve
the results accuracy, ten experiments are completed for
comparison. The experimental results data are listed in Table 7.

As shown in Table 7, the GA and the hyperheuristic
column correspond to ten experimental results under the
same parameters. The hyperheuristic algorithm under
multisection convex passenger flow designed can obtain
better results than GA, and the average value can be reduced
by 28.62%. The promotion rate is the highest among smooth,
increasing, decreasing, and multisegment convex passenger-
flow modes.

The right column of Table 7 represents the high-level
individuals corresponding to the optimal fit found by the
current hyperheuristic algorithm. Each individual has seven
digits of 1~7, corresponding to a different low-level heuristic
operator. The optimal value can be found in which the locus
of 0 is without a corresponding heuristic operator operation.
The low-level heuristic operators constituted by [3, 3, 3, 3, 3,
5, 6] are a combination of heuristic operators with optimal
performance in Table 7.

Figure 10 is the statistics of the various low-level heu-
ristic operators in the results.

In Figure 10, the LLH3 operator accounts much more
than the rest of the results, which can be considered as a
high-quality low-level heuristic operator for the problem.
And the LLH1 operator appears 12 times, while the LLH7
operator has the lowest proportion, which can be considered
an operator design that does not meet the optimization
requirements.

Because of the large number of LLH3 operators in the
found optimal results, it is speculated that the LLH3
operator alone can find better results. High-level indi-
viduals shown in [3, 3, 3, 3, 3, 3, 3] are designed to
perform experiments, with several optimization results in
Table 8.

It is concluded from the data in Tables 7 and 8 that LLH3
operators alone do not perform as well as combination oper-
ators of 3, 3, 3, 3, 3, 5, 6]. The guess mentioned above is that the
LLH3 operator alone can find better results, which is invalid.
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decreasing high-intensity decreasing mid-intensity

300000 R T 50000 S E T
250000 — T 40000 . . . ) ) ) ) 7
200000 \\g\\/;//’fz///f\\\’\\\\;.4*;4,~i~’//7///f// © 30000 \\#\\w;,,4/f///f\\\\_4,_,;“;,//</\\\\\¥4;*7

150000

20000

100000 10000

50000 o
0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
— GA

— GA —— Hyper-heuristic

—— Hyper-heuristic
(@) (b)
140000 7 7 7 decreasmg loW intensity 7 7
120000 | -
100000 | - o
80000 : : : : : : : : : :
60000
40000
20000
0

1 2 3 4 5 6 7 8 9 10

— GA
—— Hyper-heuristic

(©)
FI1GURE 9: Result curve of GA and hyperheuristic algorithm of decreasing passenger flow. (a) High-intensity passenger flow. (b) Medium-

intensity passenger flow. (c) Low-intensity passenger flow.

TABLE 6: Stability analysis table of GA and hyperheuristic algorithm under decreasing passenger flow.

Status High intensity Medium intensity Low intensity
Algorithm Hyperheuristic GA Hyperheuristic GA Hyperheuristic GA
Standard deviation 10770.18 16691.79 2351.84 4196.88 1125.82 3388.79
Average value 268756.1 208035.5 120962.4 98181.5 39080.7 31152.2
Stability indicator 4.01% 8.02% 1.94% 4.27% 2.88% 10.88%

TaBLE 7: Results of GA and hyperheuristics algorithm under multisection convex passenger flow.

Goal value Passengers’ waiting time (min)

Algorithm GA Hyperheuristic High-level individuals
1 161743 122724 5323130
2 158880 105535 1233343
3 152598 125635 3133130
4 156932 115500 6651333
5 152687 119261 3113113
6 158178 97820 3333563
7 153301 114023 2433143
8 164859 117552 3323331
9 166144 113172 6337633
10 176650 112208 6315335
Average value 160197.2 114343 —

Promotion rate — 28.62% —
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TaBLE 8: Optimization results of LLH3.
1 2 3 4 5 6 7 8 Average value
145676 121937 147752 151445 159972 149905 154113 145614 149389

The average value of Table 8 is 149389, which not only is far higher than the target value of [3, 3, 3, 3, 3, 5, 6] but is higher than the average value 114343 of

hyperheuristic algorithm in Table 7.

6. Conclusion

A hyperheuristic algorithm based on GA is developed for
solving the joint scheduling model of bus multiline depar-
ture time and vehicle speed. The cross, variation, selection
operator, and various low-level heuristics in the high-level
scheduling tactics of the hyperheuristic algorithm are
designed in the study.

This study is based on the GA and hyperheuristic al-
gorithm, performed ten sets of experiments using the hyper-
heuristic algorithm for the four-passenger flow modes, and
compared the results solved by the GA and the hyper-
heuristic algorithm. The experimental results show that the
optimization performance of the hyperheuristic algorithm is
better than that of GA in the smooth, increasing, decreasing,
and multisegment convex passenger flow modes. For
smooth passenger flow mode, the promotion rate is about
between 23% and 24%. For decreasing passenger flow mode,
the average value of the medium and high passenger flow
obtained by the hyperheuristic algorithm was improved by
about 26 to 27%, by 21.84% for low passenger flow. It
dramatically reduces the waiting time for passengers. For the
decreasing passenger flow mode, the average value of the
hyperheuristic algorithm was improved by 18 to 22%.

The stability of the three modes of GA and hyper-
heuristic algorithm is also compared in the study. For
smooth passenger flow mode, the stability of the medium
and low density of GA outperformed the metrics of the
hyperheuristic algorithm. In contrast, the hyperheuristic
high-density stability outperformed GA. The results also
show that hyperheuristic algorithm shows lower stability
than GA in solving increasing and decreasing passenger flow
problems.

The hyperheuristic algorithm designed under multiple
convex passenger flow works better than GA, and the av-
erage value can be reduced by 28.62%, greatly reducing

passengers’ waiting time. Through analysis of the designed
multiple sets of low-level heuristic operators, it is concluded
that LLH3 is more suitable for the studied multiple convex
passenger flow.
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