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Cross-docking is the main operation of unloading products from incoming trucks, regrouping products in relation to their
destination, and loading directly onto shipping trucks, reducing warehousing, picking, transportation costs, and delivery times.
�is is the intended logistics technology. In this paper, we present a new bi-objective mixed-integer mathematical model for truck
scheduling problems in cross-docking systems. �e goal of the proposed mixed-integer mathematical model is to minimize the
total operation time (makespan) and cost of moving cargo within the terminal. �e performance of the proposed model is
compared with that of the available model to solve small instances. �e results showed that in solving small size of problem, the
proposed model in this study is more e�cient and we found better solutions. An evolutionary algorithm called the nondominated
sorting genetic algorithm (NSGA-II) has been proposed to solve larger instances due to computational complexity. To evaluate the
proposed algorithm, a comparative analysis of benchmark instances was performed and the e�ciency of the above algorithm was
compared to the nondominated ranked algorithm (NRGA) based on the index designed in the literature.�e statistical hypothesis
testing (t-test) is used for determining the best algorithm based on the average runtime and average number of Pareto solutions.
Using the Taguchi method, the proposed algorithms are tuned. Considering a temporary storage space and the multiple receiving
and shipping docks is the main contribution of the paper. Finally, for evaluating algorithms, multicriteria decision-making
(MCDM) technique and statistical method are used. �e results show the suitable performance of presented model.

1. Introduction

Logistics costs have been the focus of all manufacturing and
distribution companies for the past decade [1]. Companies
are facing increasing pressure to reduce inventory and lead
times and improve global e�ciency. Logistics costs can be
divided into three categories: inventory (including ware-
housing), transportation, and management costs, but
transportation costs are the more in�uential part [2].
However, cross-docking is an approach that eliminates the
twomost costly processing operations of storage and picking
[3]. Moreover, since approximately 30% of costs of each
product are related to distribution process, numerous �rms
are attempting to develop their distribution strategies to
achieve an e�ective �ow management [4]. �is paper is
concerned with the introduction and modeling of a novel

method in distribution system management that has
attracted increasing attention in today’s world. Cross-
docking is a relatively new technique in supply chain op-
erations that consists of transferring cargo directly from
inbound trucks to outbound trucks without intermediate
storage [5]. �e main objectives of implementing such a
strategy are to reduce inventory levels and associated pro-
cessing costs and integrate truck loading into the total truck
loading, especially by reducing lead times for service levels
and customer satisfaction. It is to improve the degree.
Finding the best sequence of inbound and outbound of
trucks reduces system operation and costs, and it is blind-
ingly obvious that this primary issue happening continu-
ously in daily operation in cross-docking has a huge impact
on the fast-moving process. Solving the problem of truck
scheduling in cross-docking, which is one of the most
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important extent issues in cross-docking system, is the issue
of this research. In cross-docking, if the goods are to be
stored, this will be possible for a very short time and up to 24
hours. )is will reduce the time required to meet customer
demand, inventory maintenance costs, and required space
for storage. Generally, cross-docking is used when goods
cannot be shipped directly. Operations generally performed
in a cross-docking include [6]the following:

(i) Scheduling shipments to deliver goods from pro-
ducers to cross-dock. It is required that goods de-
liver to cross-dock in accordance with specific time
in scheduling, which is linked to shipping time.

(ii) Incoming goods are immediately sorted by de-
mands of destinations. Outbound trucks can load
and transport a combination of inbound goods and
goods in a temporary storage location. A high de-
gree of cooperation and coordination is needed to
prevent any unwanted delays.

(iii) Orders (goods) move quickly to the shipping dock.

Compared with traditional docking, activities such as
receiving inspection, storing, assembly, and ordering have
been eliminated. Figure 1 shows the general operation of a
cross-docking.

)e following criteria can be considered as the cross-
docking performance criteria [8]:

(i) )e number of receiving and shipping docks
required

(ii) Dock utilization
(iii) Average time of unloading and loading of trucks
(iv) Total time spent moving materials from receiving

docks to shipping docks
(v) Total time required to perform cross-docking

operations
(vi) Cost of moving and maintaining inventory

Depending on what type of strategy is being adopted
concerning the facility and operating conditions, it is pos-
sible to define different models of cross-docking. Deciding
on the quantity and quality of the following factors produces
different combinations of models:

(i) )e number of available docks in site
(ii) Pattern of entry and exit of trucks to docks (dock

holding pattern)
(iii) )e presence or absence of temporary storage

)e cross-docking model scrutinized in this paper is one
of the 32 models presented in [8] with separate receiving and
shipping docks along with a temporary storage. )e dock
holding pattern of the trucks is also static and does not
include the assumed model of cross-docking operation or
distribution center such as scanning, weighing, labeling, and
sorting. In addition, it is assumed that the temporary storage
place is close to the receiving docks (Figure 2).

)e practical applications of truck scheduling are vast
and varied and are applicable in a variety of areas, such as

software development, planning in major transportation
organizations, airlines, post offices, chain stores, and many
other areas. From a theoretical point of view, truck
scheduling is a very attractive research field for researchers,
especially planners. )e well-known problem of truck
scheduling in cross-dock is one of the problems of hybrid
optimization with computational complexity of O(mn2m)

(m number of targets and n population size) [9]. In recent
years, researchers’ interest and attempt in scheduling trucks
in cross-docking have greatly increased, and many new
modeling concepts and algorithms have been designed and
implemented in this area, but according to expert re-
searchers, there are still many shortcomings in this area,
which are being from two aspects [10].

(i) Developing models closer to real issues
(ii) Improving problem-solving methods to enhance the

quality of the solution and the problem-solving time

Although the issue of truck scheduling in cross-docking
is very important from the practical point of view, perhaps
the main reason for these shortcomings is the difficulty of
problem-solving and improving the solution methods in
enhancing the quality of the solution and improving the time
of solving such problems. )ere are only few attempts to
mathematically model the truck scheduling problem with
respect to real constraints, and our model is more effective
due to its size complexity. )erefore, efforts to address these
shortcomings and simultaneously reduce the time and cost
of operations by using new method make it necessary to
conduct this research.

)e goal of this paper was to present a model and study
the problem of truck scheduling. When it comes to
scheduling issues, total operation time is often referred to as
makespan. In this study, makespan is defined as the total
uptime for cross-docking operations. Total uptime is the
time between the first product of the first scheduled inbound
truck being unloaded at the receiving dock and the last
product of the last scheduled outbound truck being loaded at
the shipping dock. )e purpose of this study was to find the
best track docking sequence for both inbound and outbound
tracks to minimize the total cross-docking uptime (equiv-
alent to maximizing the throughput rate) of the cross-
docking process. Product assignments from inbound trucks
to outbound trucks are determined at the same time as the
inbound and outbound truck docking sequences. )e
purpose of the problem is to reduce the total time to
complete the operation and minimize the total costs of
transshipment in the cross-docking. One of the most im-
portant advantages that has attracted a lot of attention to
cross-docking is the characteristic of this method to reduce
costs in the distribution system. In this study, minimizing
the cost of transshipping goods is considered as one of the
objectives of the model.

)e rest of this paper is organized as follows. Section 2
summarizes some proposed papers applied in the case of
truck scheduling in cross-docking systems. Section 3 briefly
describes the mathematical model. )is model serves as a
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foundation for the heuristics and is also used to evaluate
their performance to the best solution. Section 4 presents the
heuristics used for the resolution of the problem. Section 5
addresses parameter setting and a method called the Taguchi
plan in this case. Section 6 deals with the computational
results and implementation of the algorithms, and finally,
Section 7 is the conclusion and trends for future work.

2. Literature Review

)e objective of this section is to analyze the existing
literature in order to understand the problems and try to
find the respective proposed approaches. Reference [10]
reviewed and classified the literature of scheduling trucks
in cross-docking. An important point is the strategic is-
sues and operations that need to be paid attention and
addressed in the cross-docking system life cycle, such as
cross-docking location, design and layout of warehouse,
transshipping routing, and warehouse resource planning,
which, to further study on this area, one can refer to [3].
Since the issue of cross-stocking has attracted increasing
attention in recent years, [11] undertook a wide-ranging
study to identify the research gap between theoretical
issues and real-world application challenges that reveal
these differences. )e most famous model for truck
scheduling in cross-docking system presented by [7]in-
vestigated a cross-docking system in which a temporary
storage buffer is located beside the shipping dock. )e
purpose of this study was finding the best scheduling
sequence for both receiving and shipping trucks in re-
ceiving and shipping docks to minimize total operation
time or increase the efficiency of cross-docking system.
Some studies such as [12–14] try to develop the [7]
mathematical model by considering different objectives
such as earliness and tardiness or with different solving
methods such as metaheuristic. )ere are few studies in
the literature that have introduced the mathematical
model for truck scheduling in multi-door cross-docking

system. For instance, [15] presented a new mixed-integer
programming model that is more efficient than the model
presented by [7] and to demonstrate the efficiency of their
model for large-scale problems used the hybrid heuristic
algorithm for collective optimization of birds with a re-
frigeration simulation algorithm. Reference [16] describes
a Lagrangian heuristic algorithm for a transit problem,
where certain quantities of certain products must be
transferred directly from a certain group of incoming
trucks to a certain group of outgoing trucks. )e goal is to
plan activities and design transit plans, while minimizing
the end time of the entire process. )e main contribution
of the paper is the Lagrangian decay diagram for the
structured integer linear model of the problem. Reference
[17] studied the problem of sequencing multiterminal
trucks in a cross-connected hub with the aim of mini-
mizing production time, and they came up with a parallel
machine scenario. Instead of the traditional stream stores
setup and proposes a polynomial parallel machine-based
heuristic method that outperforms time-indexed math
formulas and modern heuristics for small, medium, and
large cases big (Shahmardan and Sajadieh [18], they
proposed simulated annealing as a solution method.
Reference [19] first proposed a mixed-integer linear
programming model to optimally solve small instances.
Next, two heuristics are proposed to solve the two
problems in an integrated manner. )ese heuristics are as
follows: vehicle routing cross-docking heuristic
(VRCDH) and cross-docking vehicle routing heuristic
(CDVRH) each focuses on one of the issues. On the other
hand, among the recent studies, [20] can be mentioned
that they assumed that freight trucks during their oper-
ations fail and the number of truck failures in a given
period follows the Poisson distribution. )ey also set a
deadline for each truck and used three heuristic algo-
rithms to solve their two-objective model with the goal of
reducing the number of delayed trucks and completing
them and finally comparing the results of the three al-
gorithms. Reference [21] introduced eight mixed-integer
mathematical programming models for modeling the
problem of door (dock) allocation to destinations in cross-
docking environments and compared and introduced the
best and most efficient models based on the standard
examples available in the problem literature. Rashidi
Komijan et al. [22] presented a school bus cross-dock and
routing problem. )e main contribution of their paper
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Figure 2: Studied cross-docking model [8].
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Figure 1: General cross-docking operation [7].
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was considering gender separation. Minimizing the
transportation costs was the main objectives of their re-
search. Khanchehzarrin et al. [23] presented a model for
the time-dependent vehicle routing problem. Considering
traffic condition is the main contribution of their paper.
Reference [24] also presented two complex integer
mathematical models for allocation door (dock) problem
with the purpose of reducing displacement costs they used
the generation columns algorithm to solve the models.
)e manner of waiting trucks to arrive the docks is one of
the important issues studied by [25], and using the M/M/1
queueing theory model, remaining time for trucks was
minimized; also, a two-objective model with the goals of
reducing the cost of goods storage and reducing energy
consumption in-warehouse transporters was presented
and solved by two competing algorithms, Marguerite and
gray wolf optimizer. Reference [26] presented a Tabu
search approach to the truck scheduling problem with
multiple docks. )ey considered minimizing the total
travel time and the total tardiness as an objective [27].
)rough a low-cost scheduling strategy, they addressed
the issue of scheduling inbound and outbound trucks at
the cross-dock facility when the arrival time of the vehicle
was unknown. Two metaheuristics, MODE and NSGA-II,
were used to solve the designed sampling problem and
compare it to the random search-based genetic algorithms
present in the literature. Khalili-Damghani et al. [28]
presented a model for disaster hub location-allocation
problem. )e location problem was solved using GIS
method, and the allocation problem was solved using the
metaheuristic method. Shafipour-Omrani et al. [29]
presented the simulation-optimization model for lique-
fied natural gas transportation. )e main contributions of
the presented model were considering hub location using
the simulation method. )e results of their paper show the
suitable performance of their model. Reference [30]
presented a mathematical model of mixed-integer pro-
gramming for door assignments and track sequences in
multidoor cross-docking systems. )e goal of this model
was to minimize total uptime or turnaround. Next,
modified particle swarm optimization (so-called
GLNPSO) with special encoding and decoding schemes
was proposed to solve the track scheduling problem in
multidoor cross-docking systems. Among the studies that
are closely related to the model studied in this paper is [31]
that introduced a multi-periodic cross-docking model
considering the variable capacity of shipping and varied
delivery time for shipping trucks by a complex integer
programming and solved the model using an evolutionary
computational approach based on a genetic algorithm
whose results were compared to branch and case algo-
rithm to evaluate the efficacy of the method.)e difference
between the above study and the model presented in this
paper is to consider the temporary storage location in the
mathematical model, as well as the multiple receiving and
shipping docks of the trucks. Moreover, a multiobjective
mathematical model presented in this paper includes
reducing total operational time and costs of transporting
inside the terminal. To solve the problem, nondominated

storing genetic algorithm (NSGA-II) and nondominant
ranked genetic algorithms (NRGAs) are applied and the
results of two algorithms were compared and analyzed to
identify a more effective algorithm. According to studies
in the literature, considering a temporary storage space
and the multiple receiving and shipping docks has a great
effect on the efficiency of the model; therefore, it is
necessary to address these shortcomings and bring the
issue closer to the real situation. )e literature review is
shown in Table 1.

3. The Model

3.1. Indices
i Receiving truck indices
j Shipping truck counter
k Merchandise counter
m Receiving dock counter
n Shipping dock counter
R )e number of receiving trucks
S )e number of shipping trucks
M )e number of receiving docks
N )e number of shipping docks
P Types of goods

3.1.1. Parameters
prik )e number of k-type goods loaded into the truck i
by default
ps

jk )enumber of k-type goods must be loaded into the
truck j
hk Time of loading (unloading) for the k-type good
Wmn Time of transshipping of goods from the receiving
dock m to the shipping dock n (for any quantity of
goods of any kind)

w
fs
n Time of transshipping the goods from temporary

storage to shipping dock n

CD
k Cost of shipping the k-type good from receiving

dock to shipping dock directly
CTS

k Cost of shipping k-type good from the receiving
dock to the temporary storage place
CFS

k )e cost of moving k-type good from a temporary
storage place to a shipping dock
D Replacement time of trucks on docks
Q Very large positive number
xD

ijk )e number of k-type goods being transported
directly from the receiving truck i to the shipping truck
J
xTS

ik )e number of k-type goods moved from the re-
ceiving truck i to the temporary storage location
xFS

jk )e number of k-type goods moved from the
temporary storage location to the shipping truck j
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3.1.2. Variables

tij �
1
0 If the good from the receiving truck i is

transported to the sipping truck j
otherwise

pij �
1
0 If the receiving truck i overrides the receiving

truck j in the sequence of receiving trucks

otherwise

qij �
1
0 If the shipping truck i overrides the shipping

truck j in the sequence of the shipping trucks

otherwise

Ar
im �

1
0 If the receiving truck i is assigned to the

receiving dock m

otherwise

As
jn �

1
0 If the shipping truck j is assigned to the

shipping dock ns

otherwise

Zj �
1
0 If the product is transported from the

temporary storage to the shipping truck J

otherwise

drim )e time the receiving truck i enters the receiving
dock m
lrim )e time the receiving truck i leaves the receiving
dock m
dsjn )e time the shipping truck j enters the shipping
dock n

lsjn )e time the shipping truck j leaves the shipping
dock n

3.2. Mathematical Model

MinT, (1)

MinCT � 
R

i�1


S

j�1


P

k�1
C

D
k x

D
ijk + C

TS
k x

TS
ik + C

FS
k x

FS
jk . (2)

Subject to:

T≥ l
s
jn, ∀j � 1, 2, . . . S, n � 1, 2, . . . N, (3)



M

m�1
A

r
im � 1, ∀i � 1, 2, . . . R, (4)



R

i�1
A

r
im ≥ 1, ∀m � 1, 2, . . . M, (5)



N

n�1
A

s
jn � 1 ,∀j � 1, 2, . . . S, (6)



S

j�1
A

s
jn ≥ 1, ∀n � 1, 2, . . . N, (7)



R

i�1
x

D
ijk + x

FS
jk � p

s
jk, ∀j � 1, 2, . . . S, k � 1, 2, . . . P, (8)



S

j�1
x

D
ijk + x

TS
ik � p

r
ik,∀i � 1, 2, . . . R, k � 1, 2, . . . P, (9)



R

i�1
x

TS
ik � 

S

j�1
x

FS
jk , ∀k � 1, 2, . . . P, (10)

x
D
ijk ≤Qtij, ∀i � 1, 2, . . . R, j � 1, 2, | . . . S, k � 1, 2, . . . P,

(11)

Table 1: Literature review.

Author Temporary storage
space

Multiple receiving and
shipping docks Multiproduct Time

windows
Metaheuristic
algorithm

Khalili-Damghani et al. [28] ∗ ∗

Shafipour-Omrani et al. [29] ∗ ∗

Khanchehzarrin et al. [23] ∗ ∗

Rashidi Komijan et al. [22] ∗ ∗

Gaudioso et al. [16] ∗ ∗

Fard and Vahdani [25] ∗ ∗

Shahmardan and Sajadieh [18]
Nassief et al. [24] ∗ ∗ ∗

Khalili-Damghani et al. [31] ∗ ∗

Wisittipanich and
Hengmeechai [30]

∗ ∗

Heidari et al. [27] ∗ ∗ ∗

)is research ∗ ∗ ∗ ∗ ∗
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l
r
im ≥d

r
im + A

r
im. 

p

k�1
p

r
ik.hk, ∀i � 1, 2, . . . R, m � 1, 2, . . . M,

(12)

d
r
jm ≥ l

r
im + D − Q 1 − pij , ∀i, j � 1, 2, . . . R, m � 1, 2, . . . M, i≠ j,

(13)

d
r
im ≥ l

r
jm + D − Qpij, ∀i, j � 1, 2, . . . R, m � 1, 2, . . . M, i≠ j,

(14)

d
r
im ≥ d

r
jn − Qpij − Q 1 − A

r
im(  − Q 1 − A

r
jn ,

∀i, j � 1, 2, . . . R, m, n � 1, 2, . . . M, i≠ j, m≠ n,
(15)

pii � 0, ∀i � 1, 2, . . . R, (16)

l
s
jn ≥d

s
jn + A

s
jn. 

p

k�1
p

s
jk.hk, ∀i � 1, 2, . . . R, m � 1, 2, . . . M,

(17)

d
s
jn ≥ l

s
in + D − Q 1 − qij , ∀i, j � 1, 2, . . . S, n � 1, 2, . . . N, i≠ j,

(18)

d
s
in ≥ l

s
jn + D − Qqij, ∀i, j � 1, 2, . . . S, n � 1, 2, . . . N, i≠ j,

(19)

d
s
im ≥d

s
jn − Qqij − Q 1 − A

s
im(  − Q 1 − A

s
jn ,

∀i, j � 1, 2, . . . S, m, n � 1, 2, . . . N, i≠ j, m≠ n,
(20)

qii � 0, ∀j � 1, 2, . . . S, (21)

l
s
jn + Q 1 − A

s
jn ≥d

r
im + Wmn + 

p

k�1
x

D
ijk.hk + w

fs
n

+ 

p

k�1
x

FS
jk .hk − Q 1 − tij  − Q 1 − zj  − Q 1 − A

r
im( l

s
jn

� Max d
s
jn,Max tij.d

r
im  + Max A

s
jnA

r
imWmn 

+ Zj.w
fs
n + 2 

p

k�1
p

s
jk.hk

∀i � 1, 2, . . . R, j � 1, 2, . . . S, m � 1, 2, . . . M,

n � 1, 2, . . . N, i≠ j, m≠ n,

(22)

l
s
jn + Q 1 − A

s
jn ≥ l

r
im − Q 1 − tij  − Q 1 − A

r
im( l

s
jn

� Max d
s
jn,Max tij.d

r
im  + Max A

s
jnA

r
imWmn 

+ Zj.w
fs
n + 2 

p

k�1

p
s
jk.hk,

(23)

all variable≥ 0. (24)

Constraint equation (1) represents the model’s initial goal
of minimizing manufacturing margins. Second objective
function equation (2). )e second purpose is to minimize the
total cost of transshipment in the warehouse. Makespan
equalizes condition equation (3) with the time the last transport
truck leaves the transport dock. Condition equation (4) ensures
that each receiving track is associated with only one receiving
dock. Condition equation (5) assigns each receive dock to at
least one receives track to utilize all receive docks. )is con-
straint applies if the number of receiving docks does not exceed
the number of receiving tracks.)is is part of the mathematical
model assumptions. Similarly, constraints equations (6) and (7)
control the allocation of transport trucks to the transport dock.
Condition equation (8) specifies the relationship between the
products transferred from all receiving trucks and the tem-
porary storage on each shipping truck. In addition, this con-
straint makes the total of all products shipped from all receiving
trucks and temporary storage to shipping trucks equal to the
number of products initially required for that shipping truck.
Similarly, condition equation (9) specifies the relationship be-
tween the products transferred from each receiving truck and
the temporary storage on all shipping trucks. )is is done by
setting the total number of products transferred from each
receiving truck and temporary storage to all shipping trucks
equal to the total number of products initially loaded on each
receiving truck. Constraint equation (10) ensures that the total
number of products transferred to the intermediate vault is
equal to the total number of products transferred from the
intermediate vault. Constraint equation (11) sets the relation-
ship between the product transfer variable and the decision
variable t_ij. Condition equation (12) sets the time for receiving
truck i to leave receiving dock m to be greater than or equal to
the time for receiving truck i to enter receiving dockm plus the
time it takes to unload all products.)is equation is valid only if
the receiving track i is associated with the receiving dock m.
Constraint equations (13) and (14) adjust the time of entry and
exit of different receiving trucks to the same receiving dock
based on the order of the receiving trucks. Constraint equation
(15) adjusts the arrival times of different receive tracks to
different receive docks based on the order of the receive
tracks. Condition equation (16) guarantees that the re-
ceiving track does not precede in the receiving track order.
Constraint equation (17) sets the time it takes for transport
truck j to leave transport dock n to be greater than or equal
to the time it takes for transport truck j to load all the
required products in time to enter transport dock n. )is
equation is valid only if transport truck j is associated with
transport dock n. Constraint equations (18) and (19) adjust
the time of entry and exit of different transport trucks to the
same transport dock based on the order of the transport
trucks. Constraint equation (20) adjusts the admission time
of different transport trucks to different transport docks
based on the order on the transport truck.

4. Solution Method

Different approaches have been applied to model and solve
this problem. )ese approaches include mixed-integer
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programming, branch and boundary techniques, search
algorithms, full enumeration methods, and heuristic and
metaheuristic algorithms. Full enumeration methods and
mixed-integer programming have been used as the basic
approaches to generate exact solutions, and metaheuristic
algorithms have used these solutions to obtain the optimal
responses. In the following, we will discuss in detail the
different approaches to solve the problem of truck sched-
uling and studies in the field of cross-docking.

In this study, it is attempted to introduce an effective
model that meets the needs of the day, by considering as far
as possible the multiple objectives and considering con-
straints in real circumstance of truck scheduling problem.
Twenty sets of test problems were randomly generated to
test the performances of the mathematical model. Details
on the test problems are presented in [8]. To validate the
presented model, it was considered as the single-objective
model with the aim of minimizing the total operation time,
in a cross-docking warehouse with one receiving, and one
shipping dock is coded and solved through GAMS software
on a computer with 2GB RAM and 2.53 GHz central

processor and optimal solutions obtained by the proposed
model have been compared with the model presented by [7]
in Table 2. Data in Table 2 show that in small and medium
size of problem our model is more efficient. In addition, to
solve the two-objective problem, nondominated storing
genetic algorithm (NSGA-II) and nondominated ranking
genetic algorithm (NRGA) have been used. Optimization
of multiobjective is different from single-objective issues
because it contains several goals that must pay attention
simultaneously to all goals in optimization. In this paper,
we use two nondominated storing genetic algorithm and
nondominated ranking genetic algorithm for large size of
problem.

4.1. Controlled NSGA-II. Nondominated storing genetic
algorithm is one of the most efficient and well-known
multiobjective optimization algorithms presented by [32].
However, controlled NSGA-II presented by [33] is the same
as NSGA-II, but here you use the concept of controlled
elitism to create the next generation. )e method of solving

Table 2: Makespan obtained by mathematical model for the test problems.

Problem
set

Problem size Exact solution (makespan)
Number of receiving

trucks
Number of shipping

trucks
Number of product

types
Total number of

products
Optimal

[7]
Optimal this

study
1 4 5 4 990 1557 1483
2 5 4 6 1030 1577 1412
3 3 3 8 890 1372 1300
4 5 5 8 1000 1749 1503
5 5 3 8 960 1579 1355
6 4 4 5 1020 1546 1370
7 5 4 6 980 1535 1330
8 3 5 7 890 1525 1451
9 4 4 8 900 1473 1334
10 3 4 9 930 1452 1363
11 5 4 6 1620 2232 1791
12 6 4 8 1950 2833 2140
13 5 6 8 1610 2386 1554
14 5 5 8 1680 2385 1831
15 6 5 4 2030 2745 2069
16 5 6 6 1690 2407 2001
17 4 4 7 1180 1867 1397
18 6 6 7 1770 2502 1989
19 5 5 10 1720 2553 2359
20 6 6 9 2020 2732 2392

Non-dominated
sorting

Rejected

Crowding
distance
sorting Pt+1

Pt

Qt

Rt

F1

f2

f1

F2

F3

Cuboid
i–1

i+1

i
1

Figure 3: Nondominated sorting genetic algorithm II (NSGA-II).
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the above model is based on the nondominated storing
genetic algorithm according to Figure 3.

4.2. Nondominated Ranking Genetic Algorithm (NRGA).
A new population-based multiobjective evolutionary algo-
rithm called genetic algorithm based on nondominated
ranking nondominatedhas been successfully developed by
[34] to optimize non-convex, nonlinear, and discrete
functions. )ey studied multiobjective algorithms that
worked on nondominated sorting. )ey noticed three
problems in these algorithms.

(i) )e computational complexity was O(mn2m) (M:
the number of targets and N: the population size)

(ii) Lack of efficient elitism
(iii) )e need to specify parameters in the division

process

Based on the problems in their previous approaches, they
developed a new approach by combining the roulette
wheeling algorithm based on ranking and the Pareto-based
population ranking algorithm, which was named NRGA
(nondominated ranking genetic algorithm). )eir proposed
algorithm solves the three problems in previous approaches.
In this combination, a two-layer ranking based on the se-
lection operator of roulette wheeling is offered, which
randomly selects the new generation from the parent gen-
eration based on the selection of the best solutions (in terms
of fit and extent). )is algorithm is in most cases capable of
achieving better scalability of the solutions at the Pareto
boundary and the earlier convergence at the Pareto optimal
boundary, compared with other multiobjective evolutionary
algorithms. However, the difference between the NRGA and
the controlled NSGA-II is in the strategy selection section
and the population sorting and selection for the next
generation.

4.3.Numerical Example. To illustrate the performance of the
proposed strategy of the model, ten sets of problems were
randomly generated, in medium and large size. Table 3
represents the size of the test problem sets. )e number
of product units unloaded from inbound trucks, or loaded
onto outbound trucks, receiving and shipping trucks, and
receiving and shipping docks are randomly generated from a
uniform distribution over (5, 100). )e data generated for

medium and large size instances follow the restriction of a
cross-docking system in which the inbound flow should be
equal to the outbound flow. Each example is run 10 times by
NSGA-II and NRGA in MATLAB software (R2009a) on a
computer with 2GB RAM and 2.53GHz central processor.
For one of the examples, an experimental design is employed
to quickly converge and more accurately answer for the
parameters of the two proposed algorithms. )e Taguchi
method is used here to set parameters.

5. Taguchi Method

)ere are several statistical methods for designing experi-
ments to adjust the parameters of the algorithms. Taguchi
improved a family of matrices of partial factorial experi-
ments, so that after many experiments, he could design
experiments in a way that the number of experiments for one
problem reduced. In the Taguchi method, orthogonal arrays
are used to study a large number of decision variables with a
small number of experiments. Taguchi divides the factors
into twomain classes: controllable factors and sound factors.
Sound factors are those that cannot be controlled directly.
When removing sound factors is impossible, the Taguchi
method seeks to minimize the impact of the sounds and
determine the optimal level of controllable factors. )e
purpose of this study was to find the parameters of NSGA-II
and NRGA as receiving variables to obtain the optimal
response (Y). To set the problem parameter with 10 receiving
trucks, 13 shipping trucks, 6 receiving docks, 5 shipping
docks, and 5 different product types are reviewed. )e
Taguchi method has been used to adjust parameters of
population size (Npop), probability of crossover (Pc),
probability of mutation (Pm), and reproduction (Max Gen)
in NSGA-II and NRGA.)e Taguchi method here is applied
for four factors at three levels, so that the factors are the same
parameters of the two algorithms and each factor is at three

Table 3: Numerical examples of different sizes.

Problem Receiving truck Shipping truck Receiving dock Shipping dock Products types
1 10 13 6 5 5
2 16 15 11 8 6
3 20 17 15 8 11
4 20 28 16 9 19
5 23 30 18 10 25
6 25 31 19 14 27
7 36 35 19 17 31
8 47 41 23 17 33
9 48 43 23 21 35
10 97 88 25 25 40

Table 4: Parameters for NSGA-II and NRGA.

NSGA-II NRGA
Parameters 1 2 3 Parameters 1 2 3
Pc 0.7 0.8 0.85 Pc 0.7 0.85 0.9
Pm 0.2 0.25 0.3 Pm 0.1 0.2 0.3
NPop 25 50 150 NPop 25 50 150
Max Gen 50 75 100 Max Gen 75 100 150

8 Discrete Dynamics in Nature and Society



levels. Table 4 shows the values of the factors at each level for
NSGA-II and NRGA so that the numbers 1, 2, and 3 are the
levels of each factor.)e numbers in Table 4 are based on the
trial and error method and the researchers’ suggestion.

Given the dual purpose of the model, the Taguchi pa-
rameters must be adjusted in the two-objective space. For
this purpose, for the mentioned problem with 3 receiving
trucks, 2 receiving docks, 4 shipping docks, 4 shipping

trucks, and 6 different product types, at each level, the
normalized weighted sum of the time algorithm perfor-
mance criteria (CPU time), number of Pareto solutions
(NOS), first objective function (completion time), second
objective function (cost), and generational distance (GD)
were calculated, so that the values obtained for each criterion
from 10 times of the algorithm’s execution, based on nature
of the positive or negative criteria, are normalized using a
method according to the SAW principles. According to this
method, the sum of the weighted values of the criteria is
calculated at each level and themaximum value is used as the
main parameter to calculate S/N ratios (here, it is assumed
that the weight of the criteria is equal to 0.2). Now, con-
sidering the calculated values after 10 run times for each case
and the S/N ratios for the different parameters of the
problem for NSGA-II and NRGA, the average graphs of
parameters for S/N rates at different levels are shown in
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Figure 4: Values of different levels of parameters in S/N ratio for NSGA-II.
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Figure 5: Values of different levels of parameters in the S/N ratio for NRGA.

Table 5: Best value of parameters for NSGA-II and NRGA.

NSGA-II NRGA
Parameter Value Parameter Value
Pc 0.85 Pc 0.85
Pm 0.2 Pm 0.2
Gen 100 Gen 100
NPop 50 NPop 50
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Figures 4 and 5. Given equation (1), the lower the S/N ratio,
the better the answers of algorithm. According to Figure 5,
the optimal values of appropriate parameters for NSGA-II
and NRGA are in accordance with Table 5.

S

NS

� −10 log
1
n



n

i�1
y
2
i

⎛⎝ ⎞⎠. (25)

6. Computational Result

In this section, five benchmarks are presented to evaluate
multiobjective optimization algorithms:

6.1. Most Expansion. )e below criterion measures the
length of the spatial cube diameter applied by an ultimate
measure of the objectives, for the set of nondominated
solutions. Equation (26) illustrates the computational pro-
cedures of this index.

D �

�����������������


M

J�1
maxif

j
i − min

i
f

j
i 2




. (26)

6.2. Spacing. )is following criterion calculates the relative
distance of successive solutions using equations (27)–(29).

S �

������������

1
|n|



n

i�1
di− d 

2




, (27)

di � min 
2

m�1
|f

i
m − f

k
m| (28)

d � 
n

i

di

|n|
. (29)

)emeasured distance is equal to the lowest value of the
sum of the absolute values of the difference in the values of

the objective functions between the ith answer and the
solutions in the final nondominated set. It is noteworthy that
this distance criterion is different from the criterion of the
lowest elucidation distance among the solutions.

6.3. Number of Pareto Solutions (NOSs). )e NOS bench-
mark represents the number of optimal Pareto solutions that
can be found in any algorithm. Figure 6 provides an example
for calculating NOS.

6.4. Generational Distance (GD). )is criterion finds the
average distance of Q solutions from p∗, instead of finding
answers from the set of nondominated Q solutions be-
longing or not to the optimal Pareto solutions.

f2 f2

f2 f2

NOS=10 NOS=5

Figure 6: Method to calculate the number of Pareto solutions.

Table 6: Comparative criteria value for NSGA-II algorithm.

Problem D S NOS GD T

1 0.4283 4110.72 3 18.132 37740
2 0.7345 2800.82 7 19.44 173656
3 0.6532 2619.86 24 18.61 5172159
4 0.9821 5445.06 17 24.23 587126
5 0.8763 5701.82 14 24.93 331846
6 0.4553 5367.43 18 26.06 1759341
7 0.9234 4112.76 18 19.01 1378814
8 0.8766 5723.18 23 22.13 3333969
9 0.8661 4598.12 20 27.43 19109557
10 0.9012 3892.74 24 23.19 59399282

Table 7: Comparative criteria value for NRGA.

Problem D S NOS GD T

1 0.7802 4554.22 12 17.66 174211
2 0.9871 3442.12 3 18.92 38861
3 0.8993 3032.11 32 16.23 5503859
4 0.9887 1790.21 20 21.63 481018
5 0.7864 3309.28 14 27.19 328979
6 0.7602 5466.09 22 25.22 1765051
7 0.9103 5990.66 23 24.93 1380413
8 0.8872 3354.88 28 32.11 3344819
9 0.7898 4909.31 35 19.87 19125443
10 0.9821 5891.01 32 17.14 59388502
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Q
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p
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1/p

|Q|
. (30)

For p� 2, the di parameter is equal to the Euclidean
distance (in the target space) between the solutions of i
belonging to q and the closest member of p∗.

di � min
k�1

����������������
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m − f

∗ (k)
m 

2




. (31)

6.5. Algorithm Run Time (CPU Time). Another standard
criterion for comparing multiobjective algorithms is the use
of the algorithm’s runtime criterion, which is the lower this
time, the better the algorithm’s performance.

After defining standard benchmarks for comparing
Pareto-based multiobjective algorithms in Tables 6 and 7,
these criteria are calculated for each of the experimental
production problems, and then, based on the results,
algorithms are studied statistically and using analytical
methods. Since comparing the performance of algorithms
on the basis of the values of one of the criteria does not
provide a clear solution, therefore, the combination and
synthetic methods are used to compare the algorithms and
select the most efficient algorithm. One of these methods
is the percentage of relative deviation. To measure algo-
rithms, residual prediction deviation (RPD) is used whose
computing method is based on

RPD �
Algsol − Bestsol

Bestsol

100. (32)

In this equation, Algsol is the value obtained for each
problem by the algorithm. Bestsol is the best value among the
solved sample issues. )e lowest the average values of RPD,
the better solutions obtained from the algorithm. )e above
criterion is calculated for two factors, the running time of the
program (T) and the number of Pareto solutions (P).
Moreover, it was implemented ten times for ten different
problems that in Tables 8 and 9, the average values for
desired criteria for NSGA-II and NRGA.

As Tables 8 and 9 illustrate, it is not easy to decide
accurately which one of the two algorithms is more efficient
than the other in averages of the number of solutions
RPD(T) and runtime RPD(P).)erefore, twomethods were
used to evaluate the results of the two algorithms. Applying
SAWmethod is one of themultiple-criteria decision-making
methods or using statistical methods, which used one-way
statistical hypothesis testing for runtime and number of
solution averages.

6.6. Investigation of Results Using Multicriteria Decision-
Making (MADM). To decide different problems, there are a
large number of models. In general, these models are divided
into two main categories, multicriteria decision-making
models (MADMs) and multiobjective decision-making
models (MODMs). By adopting MADM method, the de-
cision-maker must select one or more of a limited set of
alternatives so that each alternative was evaluated by at least
2 criteria. )e simple additive weighting method (SAW) is
the most popular method of MADMmethods. SAWmethod
is defined as follows: assume that F is a decisionmatrix. First,
a numerical scaling system, for example, normalization, is
used to obtain the score for each alternative. A score in SAW
method is the sum of the scores of all the criteria for each
alternative in the decision matrix. In decision matrix F
equation (34) Ar is alternative r, Bj is jth criterion, and Xrj is
the value of alternative r for jth criterion. In general, the
value of an alternative in SAW method is calculated as
follows:

V Ar(  � Vr � å
n

j�1
WjVj Xrj r � 1.2 . . . .L. (33)

Table 8: Values of RPD criteria for NSGA-II.

Problem T P BestT BestP RPDT RPDP

1 0.4283 3 0.4185 3 2.35 0
2 0.4982 7 0.4282 9 16.35 17.77
3 0.7226 14 0.4416 30 63.62 52.33
4 0.4946 18 0.4209 31 17.52 42.90
5 0.9645 18 0.9470 27 1.85 32.60
6 0.9080 19 0.4482 30 102.58 37
7 0.5622 24 0.4500 37 24.94 35.67
8 0.9301 24 0.4988 36 86.43 33.05
9 1.1138 20 0.9744 38 14.31 42.84
10 1.4798 24 1.3758 41 7.55 40.48

Table 9: Values of RPD criteria for NRGA.

Problem T P BestT BestP RPDT RPDP

1 0.5235 4 0.4170 6 25.54 38.33
2 0.5211 13 0.4017 19 29.71 32.63
3 0.5279 15 0.4074 28 40.25 45.92
4 0.5355 21 0.4209 33 27.23 36.96
5 1.0174 24 0.9306 38 9.32 37.90
6 0.9381 23 0.9104 39 30.3 41.53
7 0.8109 28 0.4398 40 84.38 29
8 0.7452 32 0.4447 39 65.57 17.94
9 1.0331 36 0.9926 40 4.07 11
10 1.5206 32 1.4012 44 8.51 27.27
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In the above equation, L is the number of alternatives, n
is the number of criteria, Vj(xi,j) is the value of ith criterion
under the jth alternative, and wj is the weight of jth
alterative.

B1 . . . Bn

F �

A1

⋮

Al

x11 · · · x1n
⋮ ⋱ ⋮

xl1 · · · xln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(34)

In this study, NSGA-II and NRGA, alternatives
(choices), makespan, and total cost are also criteria. Here,
the criteria were weighted after normalization (the cri-
teria weight is considered to be 0.5) and the best exe-
cution of each problem is selected by SAW method.
Tables 10 and 11 show the results for NSGA-II and
NRGA.

)e results of Table 12 show that, in general, considering
two criteria makespan and total cost, NSGA-II is more ef-
ficient than NRGA from SAW perspective.

6.7. Result AnalysisUsing StatisticalMethod. To compare the
results of NSGA-II and NRGA retained in this method, a
statistical method was applied. Here, two one-way as-
sumption tests for values of RPD(P) and RPD(T) for NRGA
and NSGA-II were considered. In this example, the confi-
dence coefficient is equal to 0.95. It means (1− α� 0.95).

Equations (35)–(38) show one-way statistical tests for
RPD(P) andRPD(T) and values of t-distribution forRPD(P)

and RPD(T), respectively, so that T is defined as the runtime
average andP is equal to the average of the number of solutions.
)is test is performed assuming that variances are known.

H0: μ
TNRGA
≥ μ

TNSGA
,

H1: μ
TNRGA
< μ

TNSGA
,

(35)

H0: μPNRGA
≥ μPNSGA

,

H1: μPNRGA
< μPNSGA

,
(36)

tDistribution �
TNRGA − TNSGA

S
2
p

����������������
1/nNRGA + 1/nNSGA

 , (37)

tDistribution �
PNRGA − PNSGA

S
2
p

����������������
1/nNRGA + 1/nNSGA

 . (38)

Table 10: Superior performance of each problem based on SAW method for NSGA-II.

Problems
NSGA-II

CPU time (second) Total cost Makespan (second) Pareto solution
1 0.440915 741 36055 3
2 0.431867 26531 175532 6
3 0.497491 41031 324173 29
4 0.431391 48770 573148 21
5 0.946947 87931 1406232 13
6 0.463434 103839 1756427 29
7 0.463434 185443 3287332 29
8 0.498891 140617 2181641 19
9 0.979835 1433406 19106634 13
10 1.50751 6382844 59333435 29
Average 0.6661608 845115.3 8818060.9 19.1

Table 11: Superior performance of each problem based on SAW method for NRGA.

Problems
NRGA

CPU time (second) Total cost Makespan (second) Pareto solution
1 0.417008 741 36015 4
2 0.423161 26530 173208 15
3 0.427635 41032 323804 27
4 0.454585 131655 63312 33
5 0.979052 79483 1370871 10
6 0.914421 172774 1784343 9
7 0.952752 185856 3334967 33
8 0.523281 278420 5508685 35
9 0.992697 1592228 19135640 40
10 1.544602 7600860 59414621 44
Average 0.7629194 10110957.9 9114546.6 25

Table 12: Comparison of results for all issues.

Average makespan (second) Average total cost
NSGA-II 881806.09 84511.3
NRGA 9114546.6 1010957.9
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In the above equation, S2p is defined as follows in which
S2NRGA and S2NSGA are equal to sample variance for NSGA-II
and NRGA. If tdistribution > t1−∝, thus,H0 is rejected and H1 is
accepted; otherwise, H1 is rejected and H0 is accepted.

S
2
p �

nNRGA − 1( S
2
NRGA + nNSGA − 1( S

2
NSGA

nNRGA + nNSGA − 2
. (39)

)e results of RPD(P) values for ten examples made
here, after solving by presented algorithms, are given in
Tables 11 and 12. )e calculation is as follows:

tDistribution �
29.96 − 33.74

1050.47
����������
1/10 + 1/10

√ � −0.008,

t0.95,18 � 1.73.

(40)

According to the above calculations, tdistribution > t0.95,18 is
not established; thus, H1 assumption is rejected and H0 is
accepted. )erefore, given the lower the average number of
solutions, the better, then, NSGA-II is better than NRGA
regarding RPD(P) criterion. )e study of results with sta-
tistical method showed that NSGA-II is better thanNRGA in
terms of two criteria RPD(P) and RPD(T). )e results of
RPD(T) values for ten examples made here, after solving by
presented algorithms, are given in Tables 8 and 9. )e
calculation is as follows:

tDistribution �
31.84 − 33.86

172.78
����������
1/10 + 1/10

√ � −0.026,

t0.95, 18 � 1.73.

(41)

According to the above calculations, tdistribution > t0.95,18 is
not established; thus, H1 assumption is rejected and H0 is
accepted.)erefore, given the lower the average runtime, the
better, then, NSGA-II is better than NRGA regarding
RPD(T) criterion. )e study of results with statistical
method showed that NSGA-II is better than NRGA in terms
of two criteria RPD(P) and RPD(T).

6.8. Managerial Insights and Practical Implications. )e re-
sults of this study can be useful for organizations such as
municipalities, transportation organizations, and organiza-
tions that are somehow related to traffic. One of the ad-
vantages of the presented methods is that NSGA-II and
NRGA use only the values of the objective function to
perform the optimization process and do not require ad-
ditional information such as the function derivative. Also,
the disadvantages of the proposed methods are that the final
solution in NSGA-II and NRGA depends on the coder’s skill
in defining chromosomes and the initial value of its
parameters.

7. Conclusion and Future Research

In this study, the problem of scheduling trucks in a cross-
docking system, to minimize time of the whole process
and cost of handling inside the terminal, has been in-
vestigated. To be more realistic, the cross-docking

problem was considered with multiple receiving and
shipping docks. Also, we assumed that there is a tem-
porary storage facility near the shipping docks with
limited capacity. )e developed model was solved by
GAMS software, and the obtained solutions were com-
pared with the model presented in [7]. )e results showed
that in solving small size of problem, the proposed model
in this study is more efficient and we found better so-
lutions for objective function (makespan).

Due to the complexity of multiobjective mathematical
model, two different metaheuristic algorithms (NSGA-II
and NRGA) were applied to solve the medium and large
size of problem. Due to getting better result, the proposed
algorithms were tuned by applying the Taguchi method.
To decide which algorithms are more effective, two
methods were used to compare the results of the two
algorithms: the two metaheuristic algorithms (NSGA-II
and NRGA) were compared based on 4 criteria (CPU
time, total cost, makespan, and number of Pareto solu-
tion) by means of SAW method, which is one of the
multicriteria decision-making methods. )e statistical
hypothesis testing (t-test) is used for determining the best
algorithm based on the average runtime and average
number of Pareto solutions. Finally, both methods
showed that NSGA-II metaheuristic algorithm was more
effective than NRGA metaheuristic algorithm and pro-
vided better solutions. As there was no official database
for some parts of cost elements, the driver’s estimations
were asked to help. )e questions about the shipping
costs for each route have been categorized, and the es-
timated costs have been entered into the mathematical
model.

)e future research suggestions of this paper can be
divided into two parts:

(i) Development of methods such as Tabu search al-
gorithm, ant colony optimization, and particle
swarm optimization for the problem and compar-
ison with the proposed methods

(ii) Exploring the feasibility of utilizing intelligent
combination systems and hybrid heuristic methods
for model development

(iii) Using other methods, for tuning problem
parameters

(iv) Changes in the structure of the problem

In the model presented in this paper, the dock holding
pattern was considered static, so one of the topics for
future research could be different dock holding patterns.
In this research, it is assumed that trucks are available at
the start time of scheduling, so considering uncertainty in
the arrival time of receiving trucks is suggested. Clearly,
considering this assumption adds complexity to the
problem.
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