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e main purpose of the current paper is to study the phase portraits and bounded and singular traveling wave solution of the
stochastic nonlinear Biswas–Arshed equation by using the “three-step method” of Professor Li’s method together with the phase
orbit of planar dynamical system. Firstly, by employing the traveling wave transformation, the stochastic nonlinear Bis-
was–Arshed equation is simpli�ed into deterministic nonlinear ordinary di�erential equation. Secondly, phase portraits of the
stochastic nonlinear Biswas–Arshed equation are plotted by analyzing the planar dynamic system of the nonlinear ordinary
di�erential equation. Finally, the bounded and singular traveling wave solutions of the stochastic nonlinear Biswas–Arshed
equation are constructed.

1. Introduction

e stochastic di�erential equation (SDE) with multiplicative
noise driven by Brownian motion was �rst proposed by
Japanese mathematician Itô in 1951 [1]. Due to the wide
application of stochastic di�erential equation in the �elds of
nonlinear optics, �nance, communication, and control, the
development of SDE has been very fast in recent years, and
many experts and scholars have determined their research
direction in this �eld [2–4]. e research directions of SDE
mainly include the existence of solution, stability of solution,
numerical solution, analytical solutions, martingale repre-
sentation theory, variational inequality, stochastic control,
and so on [5]. Compared with deterministic di�erential
equations, in these research directions, physicists, �nanciers,
and engineers are also trying to analyze the dynamic behavior
of SDE and solve the analytical solutions of these equations.

In the past two years, many experts and scholars have
adjusted their research in the analysis of traveling wave so-
lutions of SDE, especially for the well-known stochastic partial

di�erential equation (SPDE). Due to the complexity of
randomness, the construction of analytical solutions of de-
terministic partial di�erential equations cannot be directly
applied to the construction of analytical solutions of stochastic
partial di�erential equations. By using some special trans-
formations and traveling wave transformations, SPDE can be
simpli�ed into a deterministic ordinary di�erential equation.
erefore, the construction of analytical solution of SPDE has
become a reality. Recently, many experts and scholars have
applied some well-known methods to construct analytical
solutions of SPDE. ese methods mainly include the sine-
cosine method [6], the extended (G′/G)-expansion method
[7, 8], the generalized (G′/G)-expansion method [9, 10], the
Jacobi-elliptic equation scheme [11], and so on [12].

e stochastic nonlinear Biswas–Arshed equation in the
Itô calculus sense is a very important class of SPDE. e
main purpose of this paper is to analyze the dynamic be-
havior and exact traveling wave solutions of the stochastic
nonlinear Biswas–Arshed equation in the Itô calculus sense
as follows (see [11]):
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where q � q(t, x) is the wave profile. W(t) denotes the
standardWiener process. dW(t)/dt stands for the white noise.
-e constant coefficients a1, a2, σ, b1, b2, λ, μ, and θ represent
different meanings in the nonlinear optics. (1) was first pro-
posed by Elsayed et al. In [11], the optical soliton solution of (1)
is discussed by using the unified Riccati equation method, the
extended auxiliary equation method, and the Jacobi-elliptic
equation method, respectively. Especially, when σ � 0, (1)
becomes the well-known Biswas–Arshed equation.

-e article is organized as follows. In Section 2, the phase
portraits of the stochastic nonlinear Biswas–Arshed

equation are plotted. In Section 3, the bounded wave so-
lutions and single wave solutions of the stochastic nonlinear
Biswas–Arshed equation are obtained, respectively. In
Section 4, a conclusion is presented.

2. Phase Portraits of (1)

In order to simplify (1) into nonlinear ordinary differential
equation, the following traveling wave transformation is
considered:

q(t, x) � Q(ξ)e
i ψ(t,x)+σW(t)− σ2t[ ],ψ(t, x)

� − kx + wt, ξ � x − vt,
(2)

where k, w, ξ, and v represent the frequency, the wave
number, the wave variable, and the velocity, respectively.

Plugging (2) into (1), the real part and the imaginary part
of (1) are given, respectively, as

Real part: a1 + 3b1k − b2 2kv + w − σ2  − a2v Q′′ − k(λ + θ)Q
3

− a1k
2

+ b1k
3

+ 1 − a2k − b2k
2

  w − σ2  Q � 0, (3)

and

Imaginary part: b1 − b2v( Q′″ − (3λ + 2μ + θ)Q
2
Q, − 2a1k + 3b1k

2
− a2 − 2kb2(  w − σ2  + 1 − a2k − b2k

2
 v Q′ � 0. (4)

By integrating both sides of (4) at the same time, the
following can be obtained:
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1
3
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3
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2
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2

 v Q � 0. (5)

Since (3) and (5) are satisfied at the same time, we can get

a1 + 3kb1 − b2 2kv + w − σ2  − a2v
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�
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�
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 v
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Next, combined with equation (6), equation (3) can be
rewritten as

A
d2Q(ξ)

dξ2
− BQ

3
(ξ) + CQ(ξ) � 0, (7)

where A � a1 + 3b1k − b2(2kv + w − σ2) − a2v, B � a1k
2+

b1k
3 + (1 − a2k − b2k

2)(w − σ2), C � − k(λ + θ), w � (a2−

2b22k
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2)/a2 − 2b22k

3 − 2a2b2k
2, and θ � μ.

Supposing A≠ 0 (otherwise, (7) becomes a linear sys-
tem), system (7) is converted to two-dimensional plane
system:

dQ(ξ)

dξ
� y,

dy
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�

B
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A
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and its first integral is as follows:

H(Q, y) �
1
2
y
2

−
B

4A
Q

4
+

C

2A
Q

2
� h, h ∈ R. (9)

Suppose that F(Q) � B/AQ3 − C/AQ. When BC> 0,
system (9) has three equilibriumpointsP1(0, 0),P2(

����
C/B

√
, 0),

andP3(−
����
C/B

√
, 0). Similarly, whenBC< 0, system (9) has one

equilibrium point P4(0, 0). Assume that λ1,2 � ±
������
F′(Q)


,

h0 � H(0, 0) � 0, and h1 � H( ±
����
C/B

√
, 0) � C2/4AB.

When F′(Qi)> 0, F′(Qi) � 0, and F′(Qi)< 0, we conclude
that the equilibrium point Pi(Qi, 0) is saddle point, degraded
saddle point, and center point, respectively. -us, we can draw
the phase diagram of the system (8) as shown in Figure 1.

3. Traveling Wave Solutions of (1)

By using the “three-step method” of Professor Li’s method
together with the phase orbit of system (8) [13–17], the
traveling wave solution of (1) can be constructed.

3.1. 0e Bounded Traveling Wave Solutions of (1)

(1) AC> 0, AB> 0
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(i) When 0< h< h1, equation (9) can be rewritten as

y2 �
B

2A
Q4 −

C

A
Q2 + 2h �

B

2A
Q2 − ϕ21( ) Q2 − ϕ22( ),

(10)
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√
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√
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√
.

Substituting (10) into dQ(ξ)/dξ � y and inte-
grating it, we can get its integral expression as

∫
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From (2) and (11), we obtain
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Figure 1: e phase portraits of system (8). (a) A� 2, B� 1, C� 2. (b) A� − 2, B� 1, C� 2. (c) A� 2, B� − 1, C� 2. (d) A� 2, B� 1, C� − 2.
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(ii) When h � h1, equation (9) can be rewritten as

y
2
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Substituting (13) into dQ(ξ)/dξ � y and inte-
grating it, we get
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From (2) and (14), we obtain
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√
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(2) AC≥ 0, AB< 0
When 0< h< +∞, (9) can be rewritten as
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where φ2
1 � |C −

���������
C2 − 4ABh

√
/B| and φ2

2 � | − C+���������
C2 − 4ABh

√
/B|.

Substituting (16) into dQ(ξ)/dξ � y and integrating
it, we have
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From (2) and (17), we have
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(3) AC< 0, AB< 0

(i) When h � 0, we can obtain
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(ii) When h1 < h< 0, a family of periodic solutions
of (1) can be obtained:

q5(ξ) � ±
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where φ1 �
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and φ2 �����������������
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(iii) When 0< h< +∞, we obtain
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3.2. 0e Singular Traveling Wave Solution of (1) When
AC> 0, AB> 0

(i) When h � 0, (9) can be recollected as
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Substituting (24) into (dQ(ξ)/dξ) � y and inte-
grating it, we obtain


+∞

Q

dϕ

ϕ
����������������������

(ϕ +
�����
2C/B

√
)(ϕ −

�����
2C/B

√
)

 �

���
B

2A



|ξ|. (25)

From (2) and (25), we can obtain
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(ii) If h � h1, we have
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From (27), the exponential function solutions of (8) can
be obtained:

Q8(ξ) � ±
����
C/B

√ e
����
2C/A

√
ξ

+ 1

e
����
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√
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− 1
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-at is,
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e
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− 1
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4. Conclusion

In the paper, we have obtained the bounded and singular
traveling wave solution of the stochastic nonlinear Bis-
was–Arshed equation by using theory of planar dynamical
system. Using Maple software, we draw the phase portraits
of equation (8). -rough the orbital analysis of the phase
portrait, we obtain a series of traveling wave solutions, which
include not only hyperbolic function solutions, exponential
function solutions, rational function solutions, and trigo-
nometric function solutions but also more general Jacobian
elliptic function solutions. As far as we know, the solutions
we obtained are new and intentional. In future research, our
research work will focus on the bounded and singular
traveling wave solution of higher-order partial differential
equation, and the order of the planar system of system (8)
considered will be higher.
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