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Recently, the consensus model of group decision-making in uncertain circumstances has received extensive attention. Existing
models focus on either minimum cost (maintain the total budget) or maximum utility (improve satisfaction). Based on the
minimum cost consensus model, a newmulticriteria robust minimum cost consensus model with utility preference is proposed in
this paper. Firstly, considering the inherent uncertainty of input data, the unit adjustment cost of experts is described under three
robust scenarios. Subsequently, a cost consensus model that expresses the views of decision-makers in a variety of uncertain
preference forms such as utility function and Gaussian distribution is proposed. Finally, through the application in emergency
decision-making, the cost model and the utility model were compared and analyzed to verify the effectiveness and superiority of
the proposed model.

1. Introduction

Group decision-making (GDM) is a procedure in which
multiple people participate in the negotiation and make a
final decision [1–4]. In GDM, through sufficient commu-
nication and multiple effective discussions, decision-
makers (DMs) of different individuals explore solutions by
gradually changing their views to achieve a consensus for or
against a particular issue. However, due to the differences
in behavioral preferences and background knowledge, DMs
often hold different views on the same problem, resulting in
conflicting opinions among groups [5, 6]. Hence, the
consensus negotiation process requires a moderator with
outstanding leadership and social skills. He/she needs to
take various effective measures and persuade the DMs to
gradually revise his/her views and reach a final agreement.
)e resource consumption or financial compensation in
the process of reaching a consensus is collectively referred
to as “consensus cost.” )erefore, how to obtain consensus
at the minimum cost has become one of the research
hotspots.

)e existing minimum cost consensus model (MCCM)
research is mainly divided into two categories: the first is
Ben-Arieh et al. [7, 8] and the other is Gong et al. [9, 10]. In
2007, Ben-Arieh and Easton [7] proposed a consensus on the
minimum cost based on multicriteria decision-making
under certain budget constraints. Afterward, they [8] further
investigated the above consensus models with quadratic cost
functions and solved the maximum number of experts with
budget constraints. Besides, Gong et al. [9, 10] studied
MCCM with the maximum total utility under the limited
budget and introduced various utility/preference constraints
scenarios. To further study the MCCM, Zhang et al. [11]
constructed a new framework to reach minimum cost
consensus by aggregation operators and proved that their
model is a more general extension of Ben-Arieh et al.
Considering the degree of consensus and cost in GDM,
Zhang et al. [12] proposed a soft cost consensus model and
explained its economic significance. Wu et al. [13] and
Zhang et al. [14] applied the feedback mechanism in MCCM
to social networks and explored scheme recommendation
and DMs’ trust measure. Li et al. [15] and Gong et al. [16]
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obtained more reliable results by studying the consistency of
DM consensus models. Liu et al.[17] focused on the issues
where DMs address hesitant fuzzy preference relations to
voice their evaluation information. In order to evaluate
consensus-reaching processes in group decision-making
more objectively, Álvaro Labella et al. [18] proposed a new
comprehensive minimum consensus model considering the
distance to global opinion and consensus degree. Focusing
on large-scale group decision-making problems, Rodriguez
et al. [19] constructed a comprehensive minimum cost
consensus model (CMCC) with fuzzy preference relation
modeling expert opinions and obtained reliable results.
Considering multiple self-confidence levels, Zhang et al. [20]
proposed an optimization-based consensus model with a
self-confident comparative linguistic expression preference
relation to minimizing the information loss between the
decision-makers’ self-confidence preference and the corre-
sponding individual preference. Zhang et al. [21] combined
group decision-making and game theory to build a bilevel
optimization model with maximum return modifications
and minimum cost feedback consensus mechanism. Zhang
et al. [22] proposed an automatic mechanism to reach
consensus in the form of heterogeneous preference and
studied the minimum adjustment distance of the GDM
process.

)e above models either consider the negotiation cost or
study the utility level of GDM, which well deal with the
consensus decision-making problem. Lowering the unit
adjustment cost of the expert is conducive to maintaining
the total budget, and improving the utility level can enhance
the satisfaction of each decision-maker. However, they all
think about decision-making issues from only one per-
spective. )erefore, we combine the negotiation cost with
DM’s utility to study the consensus problem in GDM.
Moreover, since the moderator has a certain leading role in
the entire decision-making process and has a deeper un-
derstanding of specific issues, it gives him full authority to
convince others to reach consensus [23, 24]. )erefore, we
regard the moderator as an independent decision-making
unit with different utility preferences. Besides, since most of
the existing consensus models focus on the deterministic
cost and describe less uncertainty, another point of our
research is to consider the unit adjustment cost in an un-
certain environment. )rough a variety of preferences to
express the opinions of decision-makers, Tan et al. [25]
established a stochastic optimization cost consensus model
considering the minimum budget and maximum utility.
Gong et al. [26] combined the uncertainty theory to discuss
uncertain chance-constrained minimum cost consensus
models. Other literature studies on these works can be seen
in [27–34], respectively.

)e robust optimization (RO) method, first proposed by
Soyster [35] in the 1970s, is an effective tool for dealing with
optimization problems under uncertainty. Ben-Tal and
Nemirovski [36, 37] and Bertsimas and Sim [38, 39] pro-
posed a series of new robust counterpart models, which
improved the theoretical framework of robust optimization
and gradually formed a mainstream research field. )e
superiorities of robust optimization are as follows: (i) In the

modeling process, RO takes account of uncertainty and
describes variables in the form of a set. (ii) )ey have strong
robustness even in the worst case, and the optimal solution
has low sensitivity to perturbation of parameters. )e key to
the robust optimization method mainly lies in the choice of
uncertainty set and robust counterpart theory. Unknown
parameters are expressed in the form of an uncertainty set so
that the model can still obtain robust results in the worst
case. As an optimization method under uncertainty, RO
makes up for the deficiency of stochastic optimization and
fuzzy programming theories. )us, the innovation of robust
optimization theory is of great significance, and its appli-
cation fields are extremely wide. Zhang et al. [40] studied
vehicle routing problems with time windows using RO and
proposed a new decision criterion. Ji et al. [41] built a mixed-
integer robust programming model to solve the two-echelon
inventory routing problem of perishable products. In
combination with deep learning, Ning and You [42] pro-
posed a data-driven robust optimization framework and
applied it to the supply chain. Dai andWang [43] introduced
two sparse and robust portfolio mean-variance models using
objective regularization. Considering the worst case, Han
et al. [44] studied the robust minimum cost consensus model
under four different forms of uncertain sets. Kaustuv et al.
[45] addressed perturbation in the decision variable space
and proposed a new robust consensus measure, which
provides a reformulation mechanism for multiobjective
optimization problems. Jeff Hong and Huang [46] studied a
robust statistical model that uses simple data segmentation
verification steps to learn the prediction set to achieve
limited sample nonparametric statistical guarantees.

In addition, there are few literature studies on the
minimum cost consensus problem in an uncertain envi-
ronment. Existing studies have explored group consensus
decision-making models based on optimized consensus
rules either from the perspective of stochastic optimization
or from fuzzy programming. As an improvement, based on
the classical MCCM, three robust minimum cost consensus
models with utility preferences are studied and a new op-
timization method for solving the uncertainty of unit ad-
justment cost is proposed. In this paper, RO is applied to cost
consensus with utility preference problems according to the
actual condition. By putting the unit adjustment cost of DMs
into an uncertainty set and describing the utility preference
of GDM with different functions, the optimal solution
satisfying most constraints can be obtained in the worst case.

)e main contributions of this paper include the
following:

(i) Considering the consensus problem of multicriteria
decision-making with minimum cost and maxi-
mum utility under an uncertain environment, we
put forward the study to describe DMs’ preferences
in multiple uncertain preference forms.

(ii) Robust optimization is applied to MCCM. Aiming
at the minimum cost consensus problem with utility
preferences in the GDM, a novel method to solve
the uncertainty of DM’s unit adjustment cost is
presented. )is method is more general than the
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stochastic optimization approach and can illustrate
the real scene more accurately.

(iii) Also, three uncertain scenarios are discussed. )e
unit adjustment cost fluctuated in the box uncer-
tainty set, ellipsoidal uncertainty set, and budget
uncertainty set, respectively, and the robust MCCM
with utility preferences is studied.

)e rest of this paper is organized as follows: Section 2 is
the model description. Section 3 is a numerical experiment
of emergency decision-making. Section 4 is the conclusion
and the next step. )e proofs of uncertain sets and robust
counterparts are shown in the Appendix.

2. Model Description

Based on the group decision theory, this section considers
the minimum cost consensus problem with utility prefer-
ence and constructs a robust optimization model under
three different uncertainty sets.

2.1. Basic MCCM. In the initial stage of the consensus
process, the opinion deviation between decision-makers
may be very large. By introducing the moderator feedback
mechanism to modify the opinions, it helps the decision-
makers adjust their preferences to reach a consensus. To
improve consensus efficiency and minimize the preference
adjustment or consensus cost, Dong et al. [47] first initiated
the minimum adjustment consensus model (MACM) by
introducing linguistic preferences and achieving the mini-
mum adjustment of the original and adjusted preferences.
)eir model is as follows:

min 
m

i�1
d oi − o′( 

s.t. o′ − o
c


≤ α,∀i � 1, . . . , m,

(1)

where d(oi − o′)(i � 1, . . . , m) is the distance between oi and
o′. Different aggregation functions can be used in model (1)
to get different MACMs. OWA is a general one by Dong
et al. [47].

On the other hand, Ben-Arieh et al. [7, 8] addressed a
minimum cost consensus model, which is based on the
following assumption: a moderator represents the interests
of the group and individual DMs represent different interest
groups. Based on the differences between the opinions, the
moderator will incur specific costs to promote consensus.
)erefore, their model becomes

minB � 
m

i�1
ci oi − o′




s.t. o′ ∈ O,

(2)

where m is the number of individual DMs, ci is the unit
adjustment cost paid by the moderator d′ to the individual
di, oi is the opinion of individual di, and |oi − o′| denotes the
opinion deviation between o′ and oi.

Based on the abovemodel, Gong et al. [9, 10] constructed
a minimum cost consensus model considering the prefer-
ence utility of individual DMs. Instead of trying to minimize
cost, moderators would encourage individuals to change
their original opinions with a more relaxed budget. Zhang
et al. [11] combined the advantages of model (1) and model
(2) and proposed an optimization model to solve the basic
MCCM problem. Zhang et al. [48] reviewed the origin and
basic research paradigm of MCCM and classified MCCM
into two decision scenarios: MCCM in classic group deci-
sion-making and complex group decision-making problems
(such as social networks and large-scale). To solve the
consensus decision problem in the Grains to Greens Pro-
gram, Tan et al. [25] fully consideredminimizing negotiation
cost and maximizing utility value and then proposed an
MCCM with utility preference. So, model (2) can be
improved:

min B − Θλ

s.t. 
m

i�1
ci oi − o′


 � B

λ≤U1 oi( , λ≤U2 o′( 

o′ ∈ ai, bi , i ∈M, o′ ∈ O, λ ∈ [0, 1],

(3)

where λ is the utility value of the GDM process, Θ is the
utility adjustment coefficient, B can be viewed as an advance
budget, U1(oi) and U2(o′) are the utility functions of di and
d′, respectively, and ai and bi are the limits of the individual
DMs’ opinion preference interval.

Theorem 1. If oi and o′ represent individual opinion and
consensus opinion, respectively, model (3) is equivalent to the
following optimization model:

min B − Θλ

s.t. c
T
d≤B

oi − o′ � εi, i � 1, . . . , m

εi ≤di

−εi ≤ di

λ≤U1 oi( , λ≤U2 o′( 

o′ ∈ ai, bi , i ∈M, o′ ∈ O, λ ∈ [0, 1].

(4)

Proof. Let c � (c1, . . . , cm) and d � (d1, . . . , dm), according
to |x| � min x, −x{ }; let |oi − o′| � |εi| � di; then, εi ≤ di and
−εi ≤ di can be obtained. )us, model (3) and model (4) are
equivalent.

In most consensus negotiation processes, the unit ad-
justment cost paid by themoderator to the individual DMs is
usually fixed. However, in a practical situation, the unit
adjustment cost is affected by many uncertainties. As far as
we know, the existing consensus models often use fuzzy
numbers or intervals to express uncertainty. In this case,
some of the constraints are not satisfied and the optimal
solution would not be feasible. )erefore, it is necessary to
consider how to reduce the impact of uncertainty on the
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model. As is known to all, robust optimization is a common
method to cope with uncertain problems. Better results can
be obtained by selecting an appropriate uncertainty set to
accurately describe the uncertain parameters. )is drives us
to explore a robust optimization method to deal with group
decision-making problems. □

2.2. Robust MCCM. In this section, from the inspiration of
Tan [27], we comprehensively consider individuals and
moderators’ utility preferences and use the probability
distribution of random variables to represent the opinions of
DMs. )is paper introduces the left and right membership
functions to express the utility of DMs. Since Ji Lai and
Hwang [49] proposed in 1994, it has been widely used in
many fields. When reaching a consensus, the moderator
must not only consider budget constraints but also try to
satisfy the utility preferences of all DMs. Based on the
previous research, we propose a robust minimum cost
consensus model with utility preferences under the fol-
lowing two cases:

(i) Case 1: individuals’ opinions belong to the utility
preferences function decision-making type, and the
moderator’s opinions obey random distribution.
Assuming that o′ obeys the Gaussian distribution, oi

are expressed as the linear right membership
function.

(ii) Case 2: individuals’ opinions obey random dis-
tribution, and the moderator’s opinions obey the
utility preferences function decision-making type.
Assuming that o′ is expressed as the linear left
membership function, oi obey the Gaussian
distribution.

In order to construct a robust optimization model of the
MCCM with utility preferences, the unit adjustment cost of
uncertain parameters is placed in an uncertainty set. And,
the corresponding robust counterpart of the cost constraint
can be represented as

c
T
d≤B,∀ c � c

0
  + 

L

j�1
ζj c

j
  � C

0
+ C

jζ: ζ ∈ Z⎛⎝ ⎞⎠. (5)

Expression (5) is also called the factor model, which is
widely used in the robust optimization community.

2.2.1. Box Uncertainty Set. If the utility preferences are case
1 and the uncertainty set is box, then

Z
Box

� ζ ∈ RL
: ‖ζ‖∞ ≤ 1 . (6)

)en, the robust optimization model is given as

min B − Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

−uj ≤ c
j

 
T
d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤di

−εi ≤di

λ≤
oi − min oi 

max oi  − min oi 

oi ∈ ai, bi , i ∈M

o′ ∼ N μ, σ2 

λ ∈ [0, 1].

(7)

If the utility preferences are case 2 and the uncertainty set
is box (6), then the robust optimization model is given as
follows:

minB − Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

− uj ≤ c
j

 
T

d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤ di

− εi ≤di

λ≤
ou
′ − o′

ou
′ − ol
′

o′ ∈ ol
′, ou
′ 

oi ∼ N μi, σ
2
i 

λ ∈ [0, 1].

(8)
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In the above models, the objective function is a linear
combination of consensus negotiation cost B and utility
value λ. In order to find the optimal solution, it is necessary
to minimize the moderator’s budget and maximize the
utility value of DMs. Θ is the adjustment coefficient to
ensure maximum utility.

2.2.2. Ellipsoidal Uncertainty Set. Consider case 1, if the
uncertainty set is ellipsoid as follows:

Z
Epd

� ζ ∈ RL
: ‖ζ‖2 ≤Ω . (9)

)e corresponding robust optimization model can be
constructed as

min B − Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

−uj ≤ c
j

 
T
d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤di

−εi ≤ di

λ≤
oi − min oi 

max oi  − min oi 

oi ∈ ai, bi , i ∈M

o′ ∼ N μ, σ2 

λ ∈ [0, 1].

(10)

Consider case 2, if the uncertainty set is ellipsoid (9). )e
corresponding robust optimization model is established as
follows:

minB − Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

− uj ≤ c
j

 
T

d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤ di

− εi ≤di

λ≤
ou
′ − o′

ou
′ − ol
′

o′ ∈ ol
′, ou
′ 

oi ∼ N μi, σ
2
i 

λ ∈ [0, 1].

(11)

2.2.3. Budgeted Uncertainty Set. While the cost consensus
with utility preferences is case 1, the uncertainty set is of the
following budgeted type [38]:

Z
Bud

� ζ ∈ RL
: ‖ζ‖1 ≤ 1, ‖ζ‖∞ ≤Γ, 1≤ Γ≤ L . (12)

Correspondingly, we get the following optimizationmodel:

min B − Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

−uj ≤ c
j

 
T
d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤di

−εi ≤di

λ≤
oi − min oi 

max oi  − min oi 

oi ∈ ai, bi , i ∈M

o′ ∼ N μ, σ2 

λ ∈ [0, 1].

(13)
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While the cost consensus with utility preferences is case
2, the uncertainty set is budgeted. We obtain the following
optimization model:

minB −Θλ

s.t. c
0

 
T
d + 

L

j�1
uj ≤B

− uj ≤ c
j

 
T
d≤ uj, j � 1, . . . , , L

oi − o′


1 � εi, i � 1, . . . , m

εi ≤di

− εi ≤di

λ≤
ou
′ − o′

ou
′ − ol
′

o′ ∈ ol
′, ou
′ 

oi ∼ N μi, σ
2
i 

λ ∈ [0, 1].

(14)

3. Numerical Experiments

In this section, we demonstrate the robust MCCM with
utility preferences in solving an emergency decision-making
problem. All the optimization models are solved using
Anaconda 1.9.12 (Python 3.7). All experiments are con-
ducted on Mac, which has 8GB of RAM and a 2.3GHz Intel
Core i5.

)e flood disaster of the Huaihe River Basin in China is a
hot topic with a long history and high participation of the
masses. )ere are many dams with different locations and
functions in the Huaihe River Basin. When extreme weather
occurs, such as plum rains, some dams need to be selected
and opened to release water to protect other areas. For
example, on July 20, 2020, due to continuous heavy rainfall,
Wangjiaba in the Huaihe River Basin of Anhui Province
opened a sluice to release water to protect the lives and
property of residents in Henan, Jiangsu, and Anhui. More
than 30,000 acres of arable land were flooded and 170,000
people in 131 villages were evacuated. Generally speaking,
the occurrence of extreme weather is sudden and accidental,
which requires local authorities to make decisions in a short
time. )is is a kind of emergency decision-making problem.
However, the choice of disaster area not only depends on
geographical location and utility preferences, but the local
government should also consider giving reasonable com-
pensation (planting subsidies, housing allowances, etc.) to
the victims.

To narrow the differences of opinion and achieve con-
sensus, local governments need to pay some negotiation
“cost” (manpower, expenses, and so on). )e local

government hopes to control the “cost” within its fiscal
budget based on reaching a consensus as much as possible.
Furthermore, victims’ financial condition, land cultivation,
and behavioral habits can also lead to different preferences.
In the process of consensus negotiation, the preferences of
local governments are affected by macroarrangements and
appropriation budgets. )erefore, based on flood subsidy,
the local government and victims have formed an uncertain
group consensus system. Here, we regard the local gov-
ernment as the moderator and victims as individual DMs,
thus forming the DMs in GDM. On this basis, the prefer-
ences of local governments and victims are represented by
utility function and probability distribution, and the group
consensus model in different situations is constructed. )e
goal is to ensure satisfaction with the majority of DMs and to
control the budget.

3.1. Numerical Examples. Assume that the consensus ne-
gotiation of flood disaster problems involves local govern-
ment d′ and 4 victims d1, d2, d3, and d4.)e unit cost of each
victim is c1 � 7, c2 � 8, c3 � 2, and c4 � 11. Since
c � [c0] + 

L
j�1 ζj[cj], suppose initial adjustment cost

c � c0 � (7, 8, 2, 11). )e negotiated cost budget of the local
government is B. Based on case 1, we assume o′ obeys the
Gaussian distribution with parameter (10, 2). )e victims’
opinions are illustrated by the linear right partial mem-
bership functions in the intervals o1 � [9, 14], o2 �

[11, 17], o3 � [8, 13], and o4 � [7, 15]. We use Monte Carlo
simulation, optimization package cvxpy1.1 (https://www.
cvxpy.org), and Genetic Algorithm (Geatpy 2.6.0) to ob-
tain the optimal solution of models (7), (10), and (13). In the
process of test, we take the utility adjustment coefficient Θ
changing from 20 to 210, respectively.

From the results of Tables 1–3, we get some conclusions
of models (7), (10), and (13). When the utility adjustment
coefficient Θ is not adjusted (Θ � 1), the objective function
of the model satisfies both maximum utility and minimum
cost. Naturally, every individual’s opinions are approxi-
mated to the lower threshold of their range.)e utility values
λ and consensus costs are relatively low under the individual
DMs’ right membership functions. AsΘ gradually increases,
the minimum cost is sacrificed to satisfy the victims’ sat-
isfaction. )e opinion of individual DMs is close to the
upper limit, the utility value is high, and the cost is also high.
When Θ approaches about 24, the utility value λ reaches a
relatively superior level and it is a perfect utility at Θ � 210.

Similarly, based on case 2, we assume that o′ is expressed
as a linear left membership function on the interval [10, 16],
and the victims’ opinions obey the Gaussian distribution:
o1 ∼ N(11, 3), o2 ∼ N (12, 1), o3 ∼ N(8, 2), and o4 ∼ N

(13, 3). By the same experimental method, we get the op-
timal solution of models (8), (11), and (14).

Tables 4–6 show the results of models (8), (11), and (14).
When Θ � 1, the moderator’s opinion o′ is tending to the
right limits of its range. Since the moderator is the left partial
decision-making type, the value of λ is low. As Θ gradually
increases, the moderator’s opinion approaches the lower
boundary and the utility value is relatively high. For local
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Table 2: Result of model (10).

Θ o1 o2 o3 o4 o′ λ B

1 9.675 8 11.2781 8.034 7 7.167 3 0.064 5 19.099 2
2 10.419 5 12.792 5 9.7851 7.229 7 0.3831 22.240 3
4 10.051 8 12.711 4 10.665 2 8.858 8 0.585 8 25.385 5
8 11.675 8 14.590 4 9.8451 8.172 3 0.621 5 31.597 2
16 11.767 6 14.201 3 9.548 8 10.856 2 0.621 9 36.659
32 11.274 6 15.401 2 10.815 7 11.931 7 0.657 7 42.530 3
64 12.407 3 14.705 6 11.910 4 11.667 0.697 9 44.202 2
128 13.045 5 15.946 4 12.034 9 12.477 8 0.915 8 50.121 4
256 13.403 4 16.4381 12.0661 13.813 8 0.938 5 51.930 3
512 13.703 9 16.512 5 12.466 7 13.967 2 0.951 2 52.355 3
1024 13.869 4 16.964 3 12.724 6 14.201 9 0.985 3 55.060 6

Table 1: Result of model (7).

Θ o1 o2 o3 o4 o′ λ B

1 9.669 11.363 2 8.414 5 7.714 2 0.074 5 21.830 7
2 9.682 2 12.047 2 8.381 5 7.608 5 0.341 4 23.203 4
4 10.914 3 13.331 7 9.0001 8.353 2 0.586 9 26.119 5
8 10.672 7 13.858 4 10.878 11.935 0.646 2 34.237 4
16 11.781 9 13.049 5 11.326 5 12.577 0.733 8 33.851 7
32 12.2821 14.402 6 10.672 5 11.420 3 0.854 6 41.548 4
64 11.237 6 14.897 7 12.422 3 12.614 2 0.878 45.243 3
128 11.896 5 15.303 4 12.077 8 13.0001 0.911 6 48.262 5
256 12.651 15.997 12.4381 14.491 2 0.924 51.705 6
512 13.946 16.026 3 12.596 14.434 7 0.930 5 52.662 8
1024 13.105 6 16.350 7 12.077 8 14.871 0.948 4 58.329 9

Table 4: Result of model (8).

Θ o1 o2 o3 o4 o′ λ B

1 15.812 2 0.074 2 24.828 4
2 14.892 3 0.11 26.995 6
4 14.129 4 0.240 9 28.242 2
8 14.297 8 0.377 9 30.545 8
16 12.203 0.712 8 39.212 7
32 11.867 4 0.825 6 41.294 8
64 11.273 4 0.852 7 44.909 6
128 11.4571 0.928 2 50.343
256 11.008 3 0.927 9 51.543 9
512 10.709 3 0.958 4 56.904 6
1024 10.029 3 0.992 5 58.995 5

Table 3: Result of model (13).

Θ o1 o2 o3 o4 o′ λ B

1 9.313 5 11.687 3 8.586 5 7.691 2 0.0301 20.913 6
2 11.956 7 11.784 5 10.635 4 10.001 2 0.150 9 38.663 5
8 11.368 9 13.350 6 9.530 2 8.621 6 0.270 9 36.191 2
16 12.914 7 14.966 4 10.243 9 9.138 8 0.644 33.349 5
32 12.747 8 13.266 5 10.474 4 11.940 2 0.7281 38.8081
64 12.319 7 13.565 3 12.8091 13.323 9 0.666 8 47.502 2
128 13.005 15.2671 12.380 2 14.454 6 0.892 3 51.702
256 13.350 3 15.088 2 12.246 4 14.136 2 0.929 7 53.839 9
512 13.452 7 16.443 3 12.2871 14.304 5 0.9481 57.048 2
1024 13.375 7 16.871 5 12.599 7 14.719 3 0.965 57.642
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governments, although the minimum consensus cost when
Θ> 1 is higher than the minimum cost whenΘ � 1, in actual
situations, the moderator tries to find a balance between cost
and utility.

Generally, as the utility adjustment coefficient Θ in-
creases, the consensus cost, and utility are significantly
enhanced. While the priority Θ reaches about 27, the var-
iation of the minimum consensus cost B and utility value λ is
tiny. Since the negotiated budget has reached a high level,
even if the coefficientΘ increases, the consensus cost will not
increase significantly.

3.2. Influence of Uncertainty Parameters. In Section 4.1, we
analyzed the variation of minimum cost and maximum
utility under different priority Θ values. )e key to deter-
mining the robustness of the consensus model lies in the
parameter ζ. It is important to note whether the bias of ζ will
affect the total cost and utility of consensus negotiation. In
models (7) and (8), since the parameter of the box set is 1, it
forms an interval set. However, parameters such as the
radius of an ellipsoid in models (10) and (11) are unknown.
)erefore, it is necessary to study the relationship between
the change of some uncertain parameters and the minimum
cost and maximum utility.

Figures 1 and 2 show the change of consensus cost B and
utility λ under different unknown parameters in case 1 and
case 2, respectively. )e upper left illustrates the variation of
the consensus cost with Ω in the ellipsoidal uncertainty set.

)e largerΩ is, the larger B is. However, unlike the situation
in Section 4.1, the change in utility is not always increasing.
At first, λ grows with an increase in Ω and then becomes
stable after reaching a certain threshold. )e utility curve in
case 1 is balanced around Ω � 5, while λ in case 2 tends to
stabilize at Ω � 7. In the lower left, consider the variation of
B, when the uncertainty set is budgeted. Both B and λ are
increasing at first with the growth of π and show a gradually
increasing trend. Finally, when π � 5, both curves reach the
maximum to varying degrees and remain smooth. Generally
speaking, as the radius of the ellipsoid becomes larger, the
consensus cost increases significantly. )e increase in el-
lipsoid set radius means that the perturbation of unit ad-
justment cost increases, making it more difficult to reach a
consensus. In models (10) and (11), the utility curve shows a
stable situation after climbing first. Not only because the
utility value λ has an upper limit but also because no amount
of consensus cost in flood disasters is enough to compensate
for the mental damage of the victims. Also, the local gov-
ernment’s budget is limited and it is impossible to increase
the cost of consensus negotiation endlessly. It can be found
that the consensus cost of models (10) and (11) is lower than
that of other models and the utility value is higher than of
other models. So, they are considered the most robust.

3.3. Comparison with the Other Models. In this section, we
compare the robust MCCM with utility preferences with a
series of consensus models that only consider the minimum

Table 6: Result of model (14).

Θ o1 o2 o3 o4 o′ λ B

1 15.824 2 0.043 20.036 2
2 14.400 3 0.271 5 20.748 9
4 14.685 8 0.407 5 26.172 3
8 13.982 0.426 9 34.246 3
16 11.697 3 0.674 44.267 2
32 15.242 0.756 9 49.256 6
64 11.324 0.787 2 46.305 8
128 11.213 0.895 6 49.954 5
256 11.498 4 0.937 4 52.256 6
512 11.0581 0.950 6 54.472 3
1024 10.270 7 0.956 9 55.374 6

Table 5: Result of model (11).

Θ o1 o2 o3 o4 o′ λ B

1 15.997 7 0.121 8 19.614 5
2 15.056 2 0.261 5 24.868 4
4 14.083 2 0.476 4 27.876 3
8 14.291 3 0.5721 29.9051
16 13.634 9 0.802 8 31.313 5
32 13.412 8 0.8371 40.883 6
64 12.846 9 0.8621 41.787 5
128 12.867 5 0.861 8 51.668 2
256 11.440 4 0.920 8 52.971 6
512 10.561 5 0.945 7 53.615 8
1024 10.535 6 0.997 2 54.681 1
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cost or maximize the DMs’ utility and comprehensively
reflect the advantages of our models. Only considering the
maximum utility of MCCM, we need to fix the unit ad-
justment cost, so suppose that the moderator needs to pay
the unit cost as the average of 7 in Section 3.1. Inspired by
Gong et al. [9], the utility value of GDM is calculated.

Undoubtedly, the basic goal of the GDM model is to
achieve a high consensus level as much as possible. Every
decision-maker wants to get enough attention, and their
views are highly valued. It can be seen from Table 7 that
although the traditional MCCM has the lowest total cost of
consensus negotiation, it ignores the value of decision-
makers. When the objective function only considers the
consensus model of maximum utility, although the utility
value reaches a relatively good level in both cases, it is
difficult to reflect the cost consumption in the negotiation
process and it is not convenient for the local government to
make a financial budget in time. )erefore, the minimum
cost consensus model that comprehensively considers
multicriteria decision-making is of practical significance.

To further test whether it makes sense to use robust
optimization methods to solve the MCCM with utility
preference, we use the same data in Section 3.1 to consider
the utility preferences of the two cases to compare and
analyze with the MCCM with utility preferences.

Table 8 shows the results from different models in two
different cases. We found that the consensus cost and utility
of robust models are significantly higher than of the original

MCCM. It means that the moderator is too optimistic about
the final consensus result in the original MCCM. Perhaps,
these are unaccounted for uncertainties in the consensus
decision-making process.)is will increase the total cost and
utility of the consensus to some extent. Under the box
uncertainty set, the total cost increased the most (11.98%)
and the utility improved the least (0.085 3). Under the el-
lipsoidal uncertainty set, the total cost increased the least
(5.7%), while the utility improved the most (0.122 2). )e
solution of the budget uncertainty model is at the middle
level. Here, we introduce a conservative coefficient ϕ to
compare models more intuitively. When ϕ � 1, it shows that
the DMs are quite conservative. While ϕ � 0, it indicates that
the DMs have quite a few risk preferences and their decisions
are often too optimistic. In Table 8, the conservative coef-
ficients of the three robust models are 0.119 8, 0.057, and
0.106 6. )e larger conservative coefficient illustrates that
reaching consensus under the robust model is more difficult
and the moderator will have to compensate for the uncer-
tainty. )erefore, when selecting the uncertainty set, not
only the influence of parameter fluctuations must be con-
sidered, but also the overall cost should be small and the
utility must be as large as possible. So, the performance of the
ellipsoidal uncertainty model is better than of other models.

)e minimum consensus cost of model (13) is greater
than of model (11) but less than of model (8) in case 2. )e
utility value of model (14) is smaller than of model (8) but
greater than of model (11). )e major difference with case 1
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Figure 1: Fluctuation of cost B and utility λ under different uncertain parameters in case 1.
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is that the ellipsoidal uncertainty model has a smaller cost
and greater utility, but its conservative coefficient is larger
than case 1.

In the following, we provide a summary of MCCM
studies with different key elements (consensus measure, unit

adjustment cost, DM’s utility, and robustness) to more
clearly show the superiority of our proposal (see Table 9).
Our proposal considers both the DM’s utility and the ro-
bustness of unit adjustment cost, which is more specific and
thoughtful than other models.
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Figure 2: Fluctuation of cost B and utility λ under different uncertain parameters in case 2.

Table 7: Comparison with consensus models considering only one objective function.

Case Object MCCM Box Epd Bud MU

Case 1 B 50.316 8 58.329 9 55.060 6 57.642 —
λ — 0.948 4 0.985 3 0.965 0.934 2

Case 2 B 52.412 4 58.995 5 54.681 1 55.374 6 —
λ — 0.879 0.992 5 0.997 2 0.912 4

Table 8: Minimum cost consensus models with utility preferences and their conservative coefficient.

Case Object MU-MCCM Box-MCCM Epd-MCCM Bud-MCCM

Case 1
B 52.091 2 58.329 9 55.060 6 57.642
λ 0.8631 0.948 4 0.985 3 0.965
ϕ 0.000 0.119 8 0.057 0.106 6

Case 2
B 50.312 6 58.995 5 54.681 1 55.374 6
λ 0.809 0.992 5 0.997 2 0.956 9
ϕ 0.000 0.172 6 0.086 86 0.100 66
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4. Conclusion

In the process of GDM, uncertainty in the decision-making
environment, unit adjustment cost of themoderator, and the
preferences of DMs often lead to a total cost exceeding
budget and poor utility. )is paper uses robust optimization
theory to solve group decision-making problems with un-
certain consensus cost and utility preferences. )e imple-
mentation is to transform the unit adjustment cost
perturbation into an uncertainty set. Meanwhile, we con-
sider utility functions and Gaussian distributions to simulate
the utility preferences of decision-makers. )rough nu-
merical experiments, we obtain the robust model results in
two cases. Our numerical experiments illustrate that the
consensus cost gradually increases as the utility priority
coefficient becomes greater. With the growth of uncertain
parameters, the minimum consensus cost and maximum
utility enhance to varying degrees. Among the three robust
models, the ellipsoidal model shows the highest perfor-
mance. Compared with the original MCCM, although the
optimal solution of the robust MCCM is relatively con-
servative, it is crucial to find a balance between utility and
cost in a short time and reach a consensus. We summarize
our main contributions and findings as follows:

(1) We introduce a consensus model that considers both
cost minimization and utility maximization. It is an
extension of the existing consensus model.

(2) )e robust MCCM with utility preference under two
cases and three uncertain sets is considered. )e
three types of uncertainty sets are box set, ellipsoidal
set, and budgeted uncertainty set.)eseMCCMs can
transform into corresponding robust counterparts
for solving.

(3) )e Monte Carlo simulation method is used to
obtain the optimal solution of robust MCCMS,
which is more consistent with the actual decision.

Future research can consider two-stage decision-making
[50–52], expert preferences with sentiment analysis [53, 54],
and the multiobjective problem of opinion bias between
individuals and moderators.

Appendix

Uncertainty Set and Robust Counterpart

In group decision-making problems, the uncertainty of
input data can lead to inaccurate decision-making by DMs.
Robust optimization is a method developed from the robust

control theory for the shortcomings of traditional optimi-
zation methods, which effectively enhances the robustness of
the model [36]. )e general structure of uncertain LP
problem is a collection:

min
x

A
T
x + d: c

T
x≤B  

(A,d,c,B)∈Z
, (A.1)

where Z is an uncertain set with data varying. Assuming that
c � [c0] + 

L
j�1 ζj[cj], c is the true value, [c0] is the nominal

value of the parameter, [cj] is the disturbance variable, and ζ l

is the uncertainty factor, which can take any value in the set
Z. )en, we will study several uncertainty sets and their
corresponding robust counterparts.

c
T

x � c
0

 
T
x + max

ζ∈Z


L

j�1
ζj c

j
 

T
x≤B. (A.2)

Box Uncertainty Set

Proposition A.1. Consider the case of interval uncertainty,
where Z in (5) is a box, ZBox � ζ ∈ RL: ‖ζ‖∞ ≤ 1 . Inequality
(A.3) is equivalent to constraint (A.2):

c
0

 
T

x + 
L

j�1
c

j
 

T
x



≤B. (A.3)

Proof. From the form of the box uncertainty set, constraint
(A.2) can be transformed into

c
0

 
T
x + max

‖ζ‖∞ ≤1


L

j�1
ζj c

j
 

T
x≤B. (A.4)

)en, we get

max
|ζ l|≤1



L

j�1
ζj c

j
 

T
x≤B − c

0
 

T
x. (A.5)

Maximizing the left side of the inequality above, let
‖ζ l‖ � 1, and we get explicit convex constraint (A.3), which
can also represented as a series of linear inequalities:

−uj ≤ c
j

 
T
x≤ uj, j � 1, . . . , , L,

c
0

 
T
x + 

L

j�1
uj ≤B.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.6)

In summary, Proposition A.1 can be proved. □

Table 9: MCCM studies with different designs of key elements.

MCCM categories Literature Consensus measure Unit adjustment cost Utility Robustness
MCCM with limited cost [7, 8] Hard Heterogeneous Not used Not used
MCCM with limited cost [9, 10] Hard Heterogeneous Used Not used
MCCM with limited cost [25] Soft Heterogeneous Used Not used
MCCM with asymmetric cost [27] Hard Heterogeneous Used Not used
Robust MCCM [44] Hard Heterogeneous Not used Used
Our MCCM Hard Heterogeneous Used Used
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Ellipsoidal Uncertainty Set

Proposition A.2. Consider the case of ellipsoidal uncertainty
where Z in (5) is a ellipsoid, ZE � ζ ∈ RL: ‖ζ‖∞ ≤ 1 . In-
equality (A.7) is equivalent to constraint (A.2):

c
0

 
T
x +Ω

�����������



L

j�1
c

j
 

T
x 

2




≤B. (A.7)

Proof. According to the ellipsoidal uncertainty set, con-
straint (A.2) can be reformed as

c
0

 
T
x + max

‖ζ‖∞≤1


L

j�1
ζj c

j
 

T
x≤B. (A.8)

)en, we get

max
‖ζ‖2≤Ω



L

j�1
ζj c

j
 

T
x≤B − c

0
 

T
x. (A.9)

Maximizing the left side of the inequality above, let
‖ζ‖2 � Ω, where Ω is the radius of ball, and we can get
explicit constraint form (A.7), which can also be represented
as a set of linear inequalities:

−uj ≤ c
j

 
T
x≤ uj, j � 1, . . . , , L,

c
0

 
T
x + max

‖ζ‖∞≤1


L

j�1
ζj c

j
 

T
x≤B.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.10)

In summary, Proposition A.2 can be obtained. □

Budgeted Uncertainty Set

Proposition A.3. When Z is the intersection of concentric
coaxial box and ellipsoid, specifically called “uncertainty
budgeted,”

Z
Bud

� ζ ∈ RL
: 0≤ ζ i ≤ 1 , 

i

ζ i ≤Γ, 1≤ Γ≤ L
⎧⎨

⎩

⎫⎬

⎭, (A.11)

inequality (A.12) is equivalent to constraint (A.2):

c
0

 
T
x + 

L

j�1
zj



 + π ωj

�����

�����∞
+ ≤B,

zj + ωj � − c
j

 
T
x.

(A.12)

Proof. Inspired by Ben-Tal [55], the representation of
budgeted uncertainty set (12) becomes

Z � ζ ∈ RL
: P1ζ + p1 ∈ K

1
, P2ζ + p2 ∈ K

2
 , (A.13)

where we have the following:

(1) P1ζ � [ζ; 0], p1 � [0L × 1; 1], K1 � [z; t] ∈ RL ×

R: ‖z‖∞ ≤ t}, and K1
∗ � [z; t] ∈ RL × R: ‖z‖1 ≤ t 

(2) P2ζ � [ζ; 0], p1 � [0L × 1; π], K2 � K1
∗ � [z; t] ∈{

RL × R: ‖z‖1 ≤ t}, and K2
∗ � K1

Letting y1 � [z; τ1] andy2 � [ω; τ2], whence 1-dimensional
τ and L-dimensional z andω, then the following set of
constraints can be obtained:

τ1 + πτ2 + c
0

 
T
x≤B,

z + ωj  � − c
j

 
T
x, j � 1, . . . , L,

‖z‖1 ≤ τ1,

‖ω‖∞ � τ2.

(A.14)

)en, we get
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zj

�����

����� + πmax
j

ωj



 + c
0

 
T
x≤B,

zj + ωj � − c
j

 
T
x.

(A.15)

Maximizing the left side of the inequality above, we can
also get a system of constraint linear inequalities (A.12). □
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