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Arti�cial neural networks have achieved a great success in simulating the information processing mechanism and process of
neuron supervised learning, such as classi�cation. However, traditional arti�cial neurons still have many problems such as slow
and di�cult training.  is paper proposes a new dendrite neuron model (DNM), which combines metaheuristic algorithm and
dendrite neuron model e�ectively. Eight learning algorithms including traditional backpropagation, classic evolutionary al-
gorithms such as biogeography-based optimization, particle swarm optimization, genetic algorithm, population-based incre-
mental learning, competitive swarm optimization, di�erential evolution, and state-of-the-art jSO algorithm are used for training
of dendritic neuron model.  e optimal combination of user-de�ned parameters of model has been systemically investigated, and
four di�erent datasets involving classi�cation problem are investigated using proposed DNM. Compared with common machine
learning methods such as decision tree, support vector machine, k-nearest neighbor, and arti�cial neural networks, dendritic
neuron model trained by biogeography-based optimization has signi�cant advantages. It has the characteristics of simple
structure and low cost and can be used as a neuron model to solve practical problems with a high precision.

1. Introduction

In the human brain, about tens of billions of inter-
connected neurons transmit signals through synapses to
form a complex neural network to guide human behavior
in the network. Neurons are composed of cell bodies with
branched dendritic structures, cell membranes, and axons
responsible for transmitting nerve signals.  e �rst truly
dominant concept of neural network established by
scholars has only one neuron unit, known as binary
McCulloch-Pitts neuron, which was proposed by
McCulloch and Pitts in 1943 [1]. However, it does not
consider the nonlinear transmission of cellular signals in
dendritic neuron networks. Moreover, as the single-layer
McCulloch Pitts neuron model cannot solve the basic
nonlinear operation problem [2], it is also criticized as too
simple.

Traditional neural networks generally believe that the
connection between neurons is very complex, and the brain
has strong computing and thinking ability. A single neuron
does not need strong computing ability and only needs
simple linear summation or nonlinear threshold operation
in the process of signal transmission. As a result, the
computational potential of individual neurons and their
dendrites has been neglected for a long time.

Some researchers have proposed that dendrites perform
more complex nonlinear operations in the process of signal
transmission, which can improve the computing power of a
single neuron [3, 4]. Koch et al. [5] hypothesized that the
synaptic interaction at the branch turning point can be
realized by Boolean logic operation, which means that the
dendritic branch point is responsible for summarizing the
current signals from the dendritic branch, its output is the
input logic or, and each branch performs logic AND
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operation on their synaptic input. However, as small dif-
ferences in individual neuron morphology can lead to great
changes in function, Koch model is difficult to distinguish
different synaptic and dendritic morphology to solve specific
complex problems. -erefore, the structure of synapses and
dendrites requires a plasticity mechanism. Subsequent
studies have found the phenomenon of neuronal plasticity,
and an important progress in neuronal cell structure has
been achieved by proposing neuronal pruningmethod [6, 7].

Compared with the widely used neural network model
under the current mainstream view, the single dendritic
neuron network model can deal with more complex non-
linear operations. -e dendritic neural network model can
carry out more complex nonlinear operation and obtain
more accurate results with the same number of neurons. At
present, the dendritic neural network model has been ap-
plied to many fields and achieved good results, such as live
disorders [8], financial time series prediction [9, 10], and
breast cancer classification [11–24].

In recent years, the research method of combining
metaheuristic algorithm and neural network is more and
more widely used. Its basic idea is to use metaheuristic
algorithm to continuously adjust the corresponding pa-
rameters in neural network, guide the output after obtaining
the optimal value, and then replace the obtained parameters
into neural network for classification and prediction [25, 26].
-e traditional dendritic neural network is optimized by
backpropagation algorithm. -e backpropagation algorithm
is based on the chain derivation rule, which has the problems
of falling into local traps, gradient disappearance, and so on
[27–29]. -is paper proposes a new dendrite neuron model
(DNM), which combines metaheuristic algorithm and
dendrite neuron model effectively.

Seven different metaheuristic algorithms are compared
in the experiment, each of which has its own characteristics.
Genetic algorithm (GA) [30–32] is an algorithm of finding
the optimal solution based on the simulation of natural
selection and genetic mechanism of biological evolution,
whose main characteristic is to directly operate on the
structure object and free from the restriction of derivation
and function continuity. Biogeography-based optimization
(BBO) [33–35] has been widely applied to simulate eco-
logical concepts, well-known as its high prevision and strong
stability using the representative metaheuristics. Particle
swarm optimization (PSO) [36, 37] has been applied to train
neural network instead of BP, whose whole searching and
updating process follows the current optimal solution.
Unlike genetic algorithm, all particles may converge to the
optimal solution faster in most cases, and its advantage of
evolutionary computation can deal with some problems of
nondifferentiable node transfer function or no gradient
information. Competitive swarm optimizer (CSO) [38, 39] is
a simplified metaheuristic method and, which as a variant of
PSO, is not only suitable for multi-point search, but also for
local search. On this basis, the competition mechanism is
applied, and it is not necessary to update the individual and
global optimal value of position. -us, CSO can balance the
local-minimum trapping and convergence rate. Population-
based incremental learning (PBIL) [40–42] selects the

individuals with the highest fitness in each generation of the
group to modify the learning probability and guides the
generation of new individuals. Differential evolution (DE)
[43, 44] is a stochastic model simulating biological evolution.
As with other evolutionary algorithms, DE remains a global
search strategy based on population, and for a further step,
the process of genetic operation is simplified using real
encoding, simple mutation operator, and competitive op-
timization mechanism. jSO algorithm is a new variant of DE
algorithm, which is a state-of-the-art algorithm for single
objective real-parameter optimization [45], and we, for the
first time, introduce it to learn DNM.

-e learning algorithm using BP is called DNM+BP, and
DNM+BBO, DNM+PSO, DNM+GA, DNM+PBIL,
DNM+CSO, DNM+DE, and DNM+ jSO are similarly
named. -e effectiveness, accuracy, and convergence of each
algorithm in classification problems are explored and dem-
onstrated using four datasets. -e experimental results show
that DNM+BBO has fast convergence and high accuracy. At
the same time, the classification accuracy of decision tree,
KNN, support vector machine (SVM), MLP, and DNM+BBO
is compared, and the results show that DNM+BBO has the
highest classification accuracy. -is paper effectively combines
metaheuristic algorithm with dendritic neuron model to es-
tablish DNM+BBO, which provides an effective method to
solve the classification problem.

2. Model and Learning Algorithms

2.1. Dendritic NeuronModel. -e DNM is composed of four
layers based on dendrite structure. In the synaptic layer,
inputs x1, x2, . . ., xn of each dendrite are firstly transformed
using a sigmoid function. Secondly, in the dendrite layer, the
outputs of the first layer are transmitted to a function of
multiplication. -irdly, membrane layer processes the re-
ceived inputs from the dendrite layer. Finally, the signal
from the membrane layer is transformed using another
sigmoid function to accomplish the whole process [46].
Figure 1 shows the complete structure of DNM, and below
are the details of this model.

2.1.1. Synaptic Layer. A synapse is the connection between
neurons. Statistics flow from a synaptic neuron to another,
which exhibits a feedforward pattern. -e synapse has four
connection states, namely, the excitatory connection, the in-
hibitory connection, constant 0 connection, and constant 1
connection. It depends on changes in the potential of the
accepting neuron arising from ionotropic phenomena. -e
connecting function from the ith (i� 1, 2, . . ., n) synaptic input
to the jth (j� 1, 2, . . .,m) synaptic layer is described as follows:

Yij �
1

1 + e
− k wijxi− θij( 

. (1)

Equation (1) expresses the transfer function Yij of the ith
input of a synapse xi varying from 0 to 1. k is constant. wij

and θij respectively denote the weight and threshold in
synapse.

As for the values of wij and θij, there are four different
connections discussed in Figure 2. -e X-axis indicates the
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input of the DNM, and the Y-axis indicates the output of the
synaptic layer. Since the value of input x is from 0 to 1, only
the blank part of each illustration is required to be focused on.
-e four connections include the following: Figure 2(a)
presents excitatory connection, and when 0< θij<wij, the
output is proportional to the input. On the contrary,
Figure 2(b) depicts the inhibitory connection. As for
wij < θij< 0, the output is inversely proportional to the input.
Figures 2(c) and 2(d) present constant 1 connection, and

when θij< 0<wij or θij<wij < 0, regardless of the value of the
input, x varies between 0 and 1, and the output is always 1;
Figures 2(e) and 2(f) present constant 0 connection, and
when wij < 0< θij or 0<wij < θij, regardless of the value of the
input, x varies between 0 and 1, and the output is always 0.

2.1.2. Dendrite Layer. In this layer, outputs from the syn-
apses are multiplicated altogether. As a method of describing
nonlinearity features, multiplication is the first selection due
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Figure 1: Structure of the dendritic neuron model.
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Figure 2: Four different connections in the synaptic layer: (a) excitatory connection, (b) inhibitory connection, (c) constant 1 connection,
(d) constant 1 connection, (e) constant 0 connection, and (f) constant 0 connection.
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to its simplicity. In addition, if we take constant 0 or 1
connection as an example, this function is equivalent to the
logical AND operator for their similar output values. -e
output formula for the jth dendrite is as follows:

Zj � 
n

i�1
Yij. (2)

2.1.3. Membrane Layer. -is layer represents the summary
of signals coming from each dendritic branch. -e input of
the next layer is obtained by a sum function, which re-
sembles a logical OR operator. -en, the processed signal
will be transmitted to the soma body.-us, the output of the
membrane layer is as follows:

V � 
m

j�1
Zj. (3)

2.1.4. Soma Layer. Finally, the received signal in the soma
layer is taken as the input of another sigmoid function. -e
detailed formula for this layer is as follows:

O �
1

1 + e
− ks V− θs( )

, (4)

where ks is a positive constant, and the range of threshold θs
is [0, 1].

2.2. Backpropagation. Backpropagation (BP) is the gradient
descent method [47, 48]. -is algorithm contributes to re-
ducing the error between the target output and its real value
through neural network training. -e error can be expressed
as follows:

E �
1
2
(T − O)

2 , (5)

where T is the target output vector, andO is the actual output
vector. By modifying the parameters wij and θij of the DNM
model in the process of learning, the error can be decreased.
-e updated expressions are set as follows:

Δwij(t) � 
P

p�1

zEp

zwij

,

Δθij(t) � 
P

p�1

zEp

zθij

,

(6)

where Ep is the mean square error. After computing these
two increments, we can get values of wij and θij at the next
moment through the following:

wij(t + 1) � wij(t) − ηΔwij(t)

θij(t + 1) � θij(t) − ηΔθij(t),
(7)

where η denotes the learning rate defined by users. t is a
characterization of learning times. Furthermore, the partial

differentials of Ep regarding wij and θij are calculated as
follows:

zEp

zwij

�
zEp

zOp

zOp

zV

zV

zZj

zZj

zYij

zYij

zwij

,

zEp

zθij

�
zEp

zOp

zOp

zV

zV

zZj

zZj

zYij

zYij

zθij

.

(8)

-e detailed results of the above partial differentials in
DNM are given as follows:

zEp

zOp

� Tp − Op

zOp

zV
�

ksxie
− ks wijxi− θs( 

1 + e
−ks wijxi−θs( 

 
2
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� 1
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� 
n

l�1an dl i

Ylj
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zwij

�
kxie

− k wijxi− θij( 

1 + e
−k wijxi−θij( 

 
2

zYij

zθij

�
ke

− k wijxi− θij( 

1 + e
−k wijxi−θij( 

 
2.

(9)

When computing ∆ wij (t) and ∆θij(t), the chain rule is
applied, and layer-by-layer calculation is performed
throughout the DNM.

2.3. Biogeography-Based Optimization.
Biogeography-based optimization derives from biogeogra-
phy, which investigates the speciation, extinction, and
geographical distribution in nature. Each habitat is regarded
as a solution and the principal task is to obtain the best one.
For convenience, the model introduces mathematics, using
high habitat suitability index (HSI) as the degree of fitness
among species. And the suitability index variables (SIV) are
utilized for describing various aspects of HSI [49]. Proce-
dures using BBO are implemented as follows:

(1) Initializing the integer sequence SIV based on the
current habitat Hi (i� 1, 2, . . ., n).

(2) Calculating the HSI of each habitat according to the
following formula.

HSI Hi(  �
1
2P



P

p�1
Tp − Op 

2
, (10)
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where P represents the total number of training
samples. Tp is the target vector of the pth sample, and
Op is the actual output vector determined by Hi.

(3) Implementing random selection on the SIV and
migration among habitats occurs in the case that the
emigration rate and immigration rate are μi and λi
respectively.

μi �
Ei

m

λi � I 1 −
i

m
 ,

(11)

where E is the emigration rate, I is the maximum
immigration rate, andm is the rank of habitat. -ese
two parameters are set as E� I� 1 in this research,
and λ and μ are constrained as follows:

λi + μi � E . (12)

(4) For each habitat Hi, the immigrated his, and the
probability Psi, it contains the Sth species of habitat
that are updated:

Psi(t + Δt) � Psi(t) 1 − λiΔt − μiΔt(  + Psi−1μi−1Δt + Psi+1μi+1Δt .

(13)

If t is small enough to be considered as 0, the fol-
lowing equation can be approximated:

Psi �

− λi + μi( Psi + μi+1Psi+1 i � 0

− λi + μi( Psi + λi−1Psi−1 + μi+1Psi+1 1≤ i≤ n − 1

− λi + μi( Psi + λi−1Psi−1 i � n

⎧⎪⎪⎨

⎪⎪⎩
.

(14)

(5) Mutating nonelite habitats according to the muta-
tion rate Pmi:

Pmi � Pmmax
1 − Psi

Psmax
, (15)

where Psmax is the maximum value of Psi, and Pmmax
is the parameter.

(6) Go to Step 2 again and perform the next iteration if
needed. Not until the termination criterion is met
does this procedure end.

2.4. Particle Swarm Optimization. Particle swarm optimi-
zation mimics the search behavior of a flock of birds and
consists of particles, each of which represents a possible
solution [50].-e solution includes two attributes: speed and
position. -e former indicates moving rate of each particle,
and the latter indicates its moving direction. Each particle
moves to the optimal value separately and spontaneously
and memorizes the current value for the particle itself
(pbest). -en, it shares the individual optimal solution with
other particles and obtains the global extreme value (gbest).
All particles update their two attributes according to these

two extreme values. PSO is widely adopted as its simple
operating process, for instance, MLP [51].-e whole process
of PSO being used to search for the optimal values of weights
and thresholds in the synaptic layer of DNM can be de-
scribed as follows:

Xi � x
1
i , x

2
i , . . . , x

m
i 

� ω11,ω12, . . .ωMN, θ11, θ12, . . . θMN  ,
(16)

where Xi (i� 1, 2, . . ., Q) indicates the ith individual in the
swarm, and Q denotes the number of particles. Besides, we
use the mean square error (MSE) (Xi) to calculate the error
of the last layer with output Xi as follows:

MSE Xi(  �
1
2P



P

p�1
Tp − Op 

2
. (17)

2.5. Genetic Algorithm. Genetic Algorithm is inspired by
natural selection. According to the previous study [30], a set
of probable solutions is meant as individuals in optimization
study. Good individuals tend to reproduce at a relatively
high rate, while poor individuals have a relatively low re-
productive rate. With the evolution of population, indi-
viduals develop in a healthier direction. However, as GA is a
random searching algorithm, chances are that worse indi-
viduals are generated from fitter ones in the existing
framework. -us, we adopt the elite strategy to maintain
optimized individuals in this scheme. Training DNM can
also use GA. Similar to PSO, a chromosome in GA for
training DNM can be exhibited using equation (16), where
Xi (i� 1, 2, . . ., Q) indicates the ith chromosome in the
population, and Q represents the population size. We use
single point crossover to update individuals. Moreover, the
fitness function is the same as equation (17).

2.6. Population-Based Incremental Learning. Estimation of
distribution algorithm (EDA) is a population-based strategy
that tracks the statistical information of the candidate so-
lution population for optimization [30, 41, 52]. It uses a
solution of discarding at least a part of the population in each
generation and using a sample according to the statistic
quantity of high-fitness individuals in the current population
to generate new populations, and the process is repeated
from generation to generation.

Similar to EDA, PBIL is an extension of a univariate
marginal distribution algorithm. When it functions as the
optimizer of an m-dimensional binary problem, PBIL uses a
probability vector pwithm dimensions, whose kth value of p
describes how likely this element is equal to one. In each
generation, a random population is generated using the
probability vector p probabilistically. -en, the fitness of
each candidate solution is calculated. By adjusting the
probability vector, the next generation is more likely to
resemble the most suitable individual. After getting this new
probability vector, using p to create another candidate so-
lution to the random population, continue this process until
the termination requirement is met.
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2.7. Competitive Swarm Optimization. Competitive swarm
optimization is a population algorithm used to solve large-
scale classification problems, and the velocity of individual
movement is not eliminated, same as PSO. It introduces a
competitive strategy to make a comparison between two
selected particles according to their evaluated results. As
only the lost particles can learn to participate in iterating,
except for reducing the number of updated particles to 2/N
[53], it is not necessary to save the excellent solution in
search, which can be applied to the effective solution of
large-scale classification problems. Below are the operation
steps:

(1) N represents the solution at the beginning, and the
particle position xi (i� 1, 2, . . ., N) and velocity vi

(i� 1, 2, . . ., N) of generated particles are initialized.
(2) All solutions are evaluated.
(3) -e kth (k� 1, 2, . . ., 2/N) competition for generation

t occurs as follows:

(a) Nonrepeating particles Nk1 and Nk2 are selected
from the undecided particles randomly.

(b) Positions of selected particles of Nk1 and Nk2 are
compared and evaluated to determine the won
particle and the failed particle.

(c) -e xl,k of failed particle is updated by the ap-
plication of its velocity vi,k .

vl,k(t + 1) � R1(k, t)vl,k(t)

+ R2(k, t) xw,k(t) − xl,k(t) 

+ φR3(k, t) xk(t) − xl,k(t) 

xl,k(t + 1) � xl,k(t) + vl,k(t + 1),

(18)

where R1(k, t), R2(k, t), and R3(k, t) are vectors
with their elements varying from 0 to 1. xk(t)

represents the mean position of all particles, and
φ represents at which degree the influence of the
mean quantity takes effect, which has been ad-
vised as the following equation in reference to
the existing researches:

φ � 0N≤ 100

φ ∈ [0.14log(N) − 0.3, 0.27 log(N) − 0.51] otherwise
 .

(19)

(d) Repeat the three steps above until all particles are
identified.

(4) -e next iteration starting with step 2 is operated
until the parameter t reaches the maximum.

2.8. Differential Evolution. Differential evolution is a ran-
dom search method inspired by biological evolution, and
highly fit individuals are preserved through iterations. As a
variant of genetic algorithm, it is a global search strategy
based on population and adopts real coding, basic mutation
from one-to-one difference to simplify the genetic operation.
Furthermore, its memory ability enables DE to track the
real-time situation and modify the search strategy dynam-
ically. Owing to the prominent global convergence ability
and stability, DE is well applied to the solution of compli-
cated optimization problems, which are difficult to resolve
using traditional mathematical programming methods. At
present, DE has been used in artificial neural network, signal
processing, biological information, and other fields.

2.9. jSO. jSO is the latest improved algorithm of differential
evolution, which is based on iL-SHADE algorithm [54]. It
keeps parameter strategy based on historical memory and
linear population size reduction strategy of iL-SHADE. jSO
adopts adaptive strategy to improve the mutation coefficient
MF and crossover probability MCR, which are the key pa-
rameters of differential evolution algorithm, and the effect is
obvious. -e mutation strategy of jSO is as follows:

v
→

i,g � x
→

i,g + Fw x
→

pBest,g − x
→

i,g  + F x
→

r1 ,g − x
→

r2 ,g  ,

(20)

Fw �

0.7∗F, nfes< 0.2max nfes

0.8∗F, nfes< 0.4max nfes

1.2∗F, otherwise

⎧⎪⎪⎨

⎪⎪⎩
, (21)

where nfes is the current population iteration, andmax_nfes
is the max population iteration.

3. Experiment

In this experiment, four classification problems are used to
verify the performance of DNM with the eight learning
algorithms mentioned above. Table 1 shows their attributes,
number of training samples, number of test samples, and

Table 1: Details of the classification datasets.

Classification datasets # of attributes # of training samples # of test samples # of classes
Banknote authentication 5 960 412 2
Breast cancer 10 489 210 2
Car evaluation 7 1210 518 2
Diabetic retinopathy 17 364 156 2

Table 2: Experimental environment of the DNM.

Item Computing environment
CPU 3.00GHz intel (R) core (TM) i5-8500
OS Windows 10 education
RAM 16.0GB
Software MATLAB R2018b

6 Discrete Dynamics in Nature and Society



Table 3: Initial parameters used in learning algorithms.

Algorithm Parameter Value

BP Learning rate 0.01
Maximum number of generations 1000

BBO

Habitat modification probability 1
Immigration probability bounds per gene [0, 1]

Step size for numerical integration of probabilities 1
Max immigration and max emigration 1

Mutation probability 0.005
Population size 50

Maximum number of generations 1000

PSO

Acceleration constants [2]
Inertia weights [0.9, 0.5]
Population size 50

Maximum number of generations 1000

GA

Selection mechanism Roulette wheel
Crossover probability 0.9
Mutation probability 0.1

Population size 50
Maximum number of generations 1000

PBIL

Learning rate 0.05
Good population member 1
Bad population member 0

Elitism parameter 1
Mutational probability 0.1

Population size 50
Maximum number of generations 1000

CSO

-e swarm size m m

1500(d≥ 5000)

1000(d≥ 2000)

500(d≥ 1000)

250(d≥ 500)

100otherwise

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

-e social factor φ φ �

0.2(d≥ 2000)
0.15(d≥ 1000)

0.1(d≥ 500)

0otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Population size 50
Maximum number of generations 1000

DE

Crossover probability 0.9
Differential weight 0.5
Population size 50

Maximum number of generations 1000

jSO

Mutation coefficient MF 0.3
Crossover probability MCR 0.5
Historical memory size H 5

Population size 50
Maximum number of generations 1000

Table 4: Reasonable combination of four DNM parameters for four tested problems.

Datasets M k ks θs
Banknote authentication 20 15 15 0.5
Breast cancer 20 10 5 0.3
Car evaluation 20 15 15 0.5
Diabetic retinopathy 15 5 1 0.1

Discrete Dynamics in Nature and Society 7



Table 5: Average accuracy and standard deviation of each learning algorithm.

Datasets Learning algorithm Learning’s average accuracy (%)±
standard deviation Test’s average accuracy (%)± standard deviation

Banknote authentication

DNM+BP 63.06± 21.63 62.62± 21.43
DNM+BBO 100± 0.00 99.43± 0.39
DNM+PSO 99.84± 0.21 98.45± 0.79
DNM+GA 94.11± 1.95 92.95± 2.42
DNM+PBIL 93.11± 1.06 92.43± 2.01
DNM+CSO 99.94± 0.08 99.03± 0.42
DNM+DE 92.05± 1.27 91.25± 1.86
DNM+ jSO 99.94± 0.29 99.39± 0.36

Breast cancer

DNM+BP 90.67± 3.00 89.84± 3.12
DNM+BBO 98.92± 0.35 95.97± 1.42
DNM+PSO 97.61± 0.58 95.25± 1.81
DNM+GA 97.25± 0.64 95.71± 1.38
DNM+PBIL 96.19± 0.64 95.10± 1.42
DNM+CSO 98.48± 0.34 96.14± 1.23
DNM+DE 95.75± 0.61 95.25± 1.67
DNM+ jSO 97.73± 0.68 95.83± 1.21

Car evaluation

DNM+BP 63.06± 21.63 62.62± 21.43
DNM+BBO 100± 0.00 99.43± 0.39
DNM+PSO 99.84± 0.20 98.45± 0.79
DNM+GA 94.11± 1.95 92.95± 2.42
DNM+PBIL 93.11± 1.06 92.43± 2.01
DNM+CSO 99.94± 0.08 99.03± 0.42
DNM+DE 92.05± 1.27 91.25± 1.86
DNM+ jSO 96.93± 1.07 96.49± 1.21

Diabetic retinopathy

DNM+BP 38.66± 1.05 37.99± 2.44
DNM+BBO 97.49± 0.81 94.85± 1.75
DNM+PSO 90.63± 2.30 88.72± 3.84
DNM+GA 87.72± 2.84 85.64± 3.08
DNM+PBIL 85.42± 2.33 84.21± 3.22
DNM+CSO 94.29± 1.41 92.22± 2.21
DNM+DE 82.96± 2.48 83.10± 2.79
DNM+ jSO 87.49± 3.89 86.28± 4.90

Table 6: Accuracy of DNM+BBO and other machine learning methods for the datasets of banknote authentication, breast cancer, car
evaluation, and diabetic retinopathy.

Datasets DNM+BBO (%) Decision tree (%) SVM (%) KNN (%) MLP (%)
Banknote authentication 99.4 91.6 97.9 97.2 87.1
Breast cancer 96.0 93.4 96.6 94.7 93.8
Car evaluation 99.4 92.5 89.8 93.1 82.6
Diabetic retinopathy 94.9 89.4 88.3 81.7 87.8

Table 7: Average running time (sec) of each algorithm in different datasets.

Learning algorithm Banknote authentication Breast cancer Car evaluation Diabetic retinopathy
BP 10 20 3 15
BBO 30 70 8 60
PSO 54 128 9 92
GA 58 133 12 93
PBIL 60 142 12 104
CSO 28 63 6 45
DE 112 251 22 181
jSO 109 113 181 115
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number of classes. -e classification datasets are acquired
from the open datasets of the UCI Machine Learning Re-
pository in various aspects [55].

For each learning algorithm, the maximum generation
number is set as 1000. Each data set includes two parts, with
learning data accounting for 70% and testing data ac-
counting for 30%. In addition, the characteristics of any
classification problem are expressed by numbers with no
data error that contain negative numbers and decimal
numbers. As the input x of DNM varies from 0 to 1, each
characteristic data set is normalized in the corresponding
range for the experiment.

All the experimental results are averaged from 30 in-
dependent experiments, and the accuracy of the expected

output is calculated according to the classification results.
Equation (22) is used to calculate the accuracy with true
positivity (TP), false positive (FP), true negative (TN), and
false negative (FN). Besides, MSE is utilized as the evaluation
function using equation (17) for each learning algorithm.

Accuracy �
TP + TN

TP + FP + TN + FN
× 100% . (22)

As for the experimental equipment and operating rate,
the experimental environment is shown in Table 2. -e
design of experiment adopts a statistical strategy for the
effective analysis of large combinations using orthogonal
arrays based on Latin square. -e mentioned eight learning
algorithms are tested under above situations, and owing to
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Figure 3: Convergence graphs of the learning algorithms for the datasets of banknote authentication, breast cancer, car evaluation, and
diabetic retinopathy, respectively.
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the adoption of orthogonal arrays, the number of experi-
ments can be greatly reduced by the relationship between the
factors and levels.

From the previous research, the performance of the
learning algorithm can be significantly enhanced by carefully
selecting parameter values in some preliminary experiments
[56–58]. According to experience and algorithm charac-
teristics, Table 3 shows parameters setting for each algo-
rithm. -e population size is set to 50, and the maximum
number of generations of each algorithm is 1000 uniformly,
while other parameters are set empirically according to
characteristics of each algorithm.

For obtaining the optimal performance of DNM, user-
defined parameters are well worth investigating. -ere are
four key parameters in DNM, that is, the number of den-
drites in the model (M), the synaptic parameter in the
connecting sigmoid function (k), and two soma parameters
(ks and θs) in the output sigmoid function.

-e reasonable combination of four DNM parameters is
obtained by Taguchi method [59–61]. It scans a portion of
possible combinations among factors rather than the whole
combination, resulting in minimal experimental runs and
optimal estimation of factors during execution [62, 63].

Referring to relevant previous study and research experi-
ence, the hierarchy number of four factors is set as follows:
five levels forM ∈ {3, 5, 10, 15, 20}; five levels for k ∈ {1, 5, 10,
15, 20}; five levels for ks ∈ { 1, 5, 10, 15, 25}; and five levels for
θs ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Different from full factor analysis,
which requires 54 � 625 trials, the orthogonal array can
obviously reduce the number of experiments and time cost.
Hence, the orthogonal array L25(54), which involves only 25
experiments, is utilized in this time.

-e supplementary material (available here) summarizes
the experimental results, where MSE represents the mean
square error values of the eight learning algorithms (i.e., BP,
BBO, PSO, GA, PBIL, CSO, DE, and jSO) for four datasets.
According to the experimental results of each dataset, we
obtained acceptable user-defined parameter settings re-
spectively, as shown in Table 4.

4. Result

-e average accuracy and standard deviation of learning
algorithms in each dataset are summarized in Table 5. It is
obvious that regardless of which dataset, DNM+BBO
achieves the highest accuracy among all the comparison
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Figure 4: Solution distribution of DNM for the datasets of banknote authentication, breast cancer, car evaluation, and diabetic retinopathy,
respectively.
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object, and some even reach 100%, while DNM+BP is the
lowest. Otherwise, the accuracy of DNM+CSO is also
higher, but inferior to that of DNM+BBO and higher than
that of DNM+PSO. Moreover, the accuracy of DNM+GA,
DNM+ jSO, DNM+PBIL, and DNM+DE with little dif-
ference is relatively common.

Furthermore, the upper limit of m is set as 20 in this
experiment, but both optimum parametersm of DNM+BBO
and DNM+CSO are 15, three quarters of the upper limit,
with a high accuracy of classification as shown in Table 5. As a
result, for classification problems, DNM learning by meta-
heuristics may not require an extremely large number ofm for
problems with a small number of features.

Table 6 shows the accuracy comparison results of
DNM+BBO and other common machine learning classifi-
cationmethods on four datasets, and DNM+BBO has obvious
advantages. Using theMachine Learning Toolbox ofMATLAB
to realize decision tree, SVM, and KNN. Table 7 shows the
average running time (sec) of each algorithm in four datasets.
BP runs the fastest with the worst classification performance.
Among metaheuristic algorithms, CSO is the best, and BBO is
the second, while DE and jSO have bad performance.

Figure 3 presents the average convergence graph of each
learning algorithm for the datasets of banknote authenti-
cation, breast cancer, car evaluation, and diabetic retinop-
athy, respectively. It is evident that the value of each learning
algorithm converges to the final iteration time, but BBO
converges the fastest in all cases. -e multipoint search BBO
maintains an elite habitat, changing the solution in each
iteration, which produces a higher number of new candidate
optimal solutions than any other learning algorithms.

By deriving a new solution from a candidate optimal
solution at a certain time, the convergence rate of the high-
quality solution can be accelerated. As a result, BBO has
basically converged to the minimum value of MSE even in
the 200 iterations in case of banknote authentication and car
evaluation.

On the contrary, the MSE of BP is not significantly
affected by the local solution in all datasets, indicating that
BP is easily trapped in the local minima. Compared with the
multipoint search method, BP has the disadvantages of
insufficient problem orientation and easy deviation from the
local solution.-erefore, different from other algorithms, we
believe that BBO has the characteristics of obtaining smaller

Table 8: Average accuracy, standard deviation, average MSE, and corresponding optimal parameters of each learning algorithm in different
datasets.

Learning algorithm Datasets M k ks θs Average accuracy (%)± standard deviation Average MSE

BP

Banknote authentication 5 5 1 0.1 96.93± 2.05 3.33E− 02
Breast cancer 20 10 5 0.3 89.84± 3.13 4.46E− 02
Car evaluation 15 5 1 0.1 98.31± 1.03 2.80E− 02

Diabetic retinopathy 20 10 5 0.3 66.32± 23.63 1.13E− 01

BBO

Banknote authentication 20 15 15 0.5 99.43± 0.39 3.44E− 07
Breast cancer 20 10 5 0.3 95.97± 1.42 1.94E− 02
Car evaluation 20 15 15 0.5 99.43± 0.39 3.44E− 07

Diabetic retinopathy 15 5 1 0.1 94.85± 1.75 5.18E− 02

PSO

Banknote authentication 20 1 25 0.9 98.79± 0.75 2.76E− 03
Breast cancer 20 1 25 0.9 95.24± 1.64 4.13E− 02
Car evaluation 20 1 25 0.9 98.79± 0.75 2.76E− 03

Diabetic retinopathy 15 5 1 0.1 88.72± 3.84 1.57E− 01

GA

Banknote authentication 10 20 15 0.7 94.89± 2.03 7.82E− 02
Breast cancer 20 15 15 0.5 95.22± 1.52 5.54E− 02
Car evaluation 10 20 15 0.7 94.90± 2.03 7.82E− 02

Diabetic retinopathy 15 5 1 0.1 85.64± 3.08 1.86E− 01

PBIL

Banknote authentication 5 1 25 0.9 94.09± 1.74 9.72E− 02
Breast cancer 20 1 25 0.9 94.30± 1.27 7.41E− 02
Car evaluation 5 15 15 0.5 94.09± 1.74 9.72E− 02

Diabetic retinopathy 15 5 1 0.1 84.21± 3.22 2.07E− 01

CSO

Banknote authentication 20 1 25 0.9 98.91± 0.66 8.98E− 04
Breast cancer 20 1 25 0.9 95.49± 1.19 3.14E− 02
Car evaluation 20 1 25 0.9 98.91± 0.66 8.98E− 04

Diabetic retinopathy 15 5 1 0.1 92.22± 2.21 1.14E− 01

DE

Banknote authentication 3 15 10 0.5 93.50± 1.70 1.10E− 01
Breast cancer 3 10 5 0.3 94.75± 0.81 6.86E− 02
Car evaluation 3 15 10 0.5 93.50± 1.69 1.10E− 01

Diabetic retinopathy 15 10 5 0.3 90.89± 3.72 9.31E− 02

jSO

Banknote authentication 15 1 25 0.9 99.39± 0.36 6.95E− 04
Breast cancer 3 1 25 0.9 95.83± 1.21 4.36E− 02
Car evaluation 5 1 25 0.9 96.49± 1.21 5.21E− 02

Diabetic retinopathy 20 15 15 0.5 86.28± 4.90 2.00E− 01
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MSE under fewer iterations, which emphasizes the unique
advantages of DNM over the state-of-the-art methods.

Moreover, Figure 4 depicts the average solution distri-
bution of 30 independent runs of each learning algorithm for
four datasets, respectively. BBO has the best stability that
often finds stable solutions, whereas GA, DE, jSO, or BP
usually varies widely across different runs. In addition, it can
be easily found that the minimum MSE for each dataset is
BBO, and the maximum MSE for each dataset is BP.

According to the supplementary material (available
here), the average accuracy, standard deviation, average
MSE, and corresponding optimal parameter of each learning
algorithm in different datasets are summarized in Table 8.

Table 9 shows the overall statistical results of eight
learning algorithms for four problems via the Friedman test at
the level of α� 0.05 with the application of Bonferroni-Dunn
procedures. Friedman test indicates whether there is a dif-
ference in the average rank between various ordinal variables.
Post hoc test is Bonferroni-Dunn procedure, whose adjusted
p value is pBonf. -e result shows that BBO has excellent
robustness in each problem and performs better than other
methods in terms of average accuracy, standard deviation,
and average MSE. -is proves that BBO has higher stability
and is not easily affected by the problem. Furthermore, CSO is
the algorithm with the best results except BBO.

On the contrary, results of BP are the worst, which vary
greatly with different datasets, indicating that its accuracy,
reliability, and stability are not good and are easily affected
by problems. Consequently, the accuracy of any learning
algorithmwill be biased according to the compatibility of the
problem and the combination of parameters, and in terms of
convergence and stability of MSE, especially for convergence
speed, BBO is reliable and has obvious advantages.

5. Discussion

-e experimental results show that DNM+BBO has sig-
nificant advantages over the other seven optimization al-
gorithms (BP, PSO, GA, PBIL, CSO, DE, and jSO) and other
machine learning algorithms (decision tree, SVM, KNN, and
MLP). -is is due to the mechanism of BBO algorithm,
through interspecies migration and intraspecies mutation,
the feature information of different habitats has changed,
and the dominant features of habitats have been shared; it

avoids a large number of local solutions in DNM training.
Although DNM+BBO shows great potential in classifica-
tion problems, there are many challenges in practical ap-
plications, such as redundancy in data and more irrelevant
information, which reduce the performance and increase the
computational complexity of machine learning classification
algorithms. For high-dimensional heterogeneous data, we
will continue to solve the problems of DNM in future
research.

6. Conclusion

With the advent of the era of big data, researches on high-
precision models with simple structure and low cost are
developing rapidly in solving complicated problems. In this
paper, considering the synaptic nonlinearity, a new learning
algorithm based on the DNM model is put forward to solve
complex classification optimization problems. Adopting
factor allocation and orthogonal array, eight learning al-
gorithms (i.e., BP, BBO, PSO, GA, PBIL, CSO, DE, and jSO)
are used to train the DNM systematically for four datasets.
And the effectiveness, stability, classification accuracy, and
convergence speed of these algorithms are compared and
demonstrated for such problems.

-e experimental results show that BP cannot find the
global optimal weight and threshold since its inherent local
minimum trap problem, and its effect and accuracy are
extremely limited. And the performance of BBO is the most
competitive. No matter what kind of dataset is used, the
stability, accuracy, and convergence speed of BBO are the
most excellent and obviously superior to those of other
algorithms. Moreover, the comprehensive performance of
CSO is the best except for BBO. -e performance of PSO is
second only to that of CSO. For GA, PBIL, DE, and state-of-
the-art jSO, although they are slightly better than BP, the
results vary greatly, while the datasets are different. In ad-
dition, compared with common machine learning methods
such as decision tree, support vector machine, k-nearest
neighbor, and artificial neural networks, dendritic neuron
model trained by biogeography-based optimization has
significant advantages.

-erefore, this paper combines metaheuristic algorithm
and dendrite neuron model effectively, and DNM+BBO is
established in this study, especially as a powerful algorithm
to solve classification and optimization problems. In the
future, we will further explore and try to expand the output
range of DNM, apply it to a wider range of fields to solve
other different problems, and continue to pursue improving
its performance [64].
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Table 9: Overall statistical comparison obtained by Friedman test
of seven learning algorithms for four datasets.

Algorithm Average ranking pBonf α� 0.05
BBO 1.53 — —
CSO 2.46 0.088 Yes
PSO 4.38 0.002 Yes
GA 4.36 0.032 Yes
jSO 4.41 0.047 Yes
BP 5.1 0.057 Yes
PBIL 5.43 0.001 Yes
DE 5.58 0.006 Yes
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[15] R. D. Cazé, S. Jarvis, A. J. Foust, and S. R. Schultz, “Dendrites
enable a robust mechanism for neuronal stimulus selectivity,”
Neural Computation, vol. 29, no. 9, pp. 2511–2527, 2017.

[16] S. M. Almufti, R. Boya Marqas, and V. Ashqi Saeed, “Tax-
onomy of bio-inspired optimization algorithms,” Journal of
Advanced Computer Science & Technology, vol. 8, no. 2,
23 pages, 2019.

[17] Q. Kang, B. Huang, and M. Zhou, “Dynamic behavior of
artificial Hodgkin–Huxley neuron model subject to additive
noise,” IEEE Transactions on Cybernetics, vol. 46, no. 9,
pp. 2083–2093, 2016.

[18] Z. J. Sha, L. Hu, Y. Todo, J. Ji, S. Gao, and Z. Tang, “A breast
cancer classifier using a neuron model with dendritic non-
linearity,” IEICE - Transactions on Info and Systems,
vol. E98.D, no. 7, pp. 1365–1376, 2015.

[19] R. Legenstein and W. Maass, “Branch-specific plasticity en-
ables selforganization of nonlinear computation in single
neurons,” Journal of Neuroscience, vol. 31, no. 30,
pp. 10787–10802, 2011.

[20] J. Bono, K. A. Wilmes, and C. Clopath, “Modelling plasticity
in dendrites: from single cells to networks,” Current Opinion
in Neurobiology, vol. 46, pp. 136–141, 2017.

[21] D. B. Jia, K. Yanagisawa, Y. Ono et al., “Multiwindow non-
harmonic analysis method for gravitational waves,” IEEE
Access, vol. 6, pp. 48645–48655, 2018.

[22] D. B. Jia, K. Yanagisawa, M. Hasegawa et al., “Time-fre-
quency-based non-harmonic analysis to reduce line noise
impact for LIGO observation system,” Astronomy and com-
puting, vol. 25, pp. 238–246, 2018.

[23] W. X. Xu, C. H. Li, Y. X. Dou et al., “Optimizing the weights
and thresholds in dendritic neuron model using the whale
optimization algorithm,” Journal of Physics: Conference Series,
vol. 2025, no. 1, Article ID 012037, 2021.

[24] D. B. Jia, H. W. Dai, Y. Takashima et al., “EEG Processing in
internet of medical things using non-harmonic analysis:
application and evolution for SSVEP responses,” IEEE Access,
vol. 7, pp. 11318–11327, 2019.

[25] M. M. Ghiasi, S. Zendehboudi, and A. A. Mohsenipour,
“Decision tree-based diagnosis of coronary artery disease:
CART model,” Computer Methods and Programs in Bio-
medicine, vol. 192, Article ID 105400, 2020.

[26] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Let a biogeography
based optimizer train your multi-layer perceptron,” Infor-
mation sciences, vol. 269, pp. 188–209, 2014.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
Internal Representations by Error Propagation, University of
California, San Diego, CA, USA, 1985.

[28] B. Widrow and M. A. Lehr, “30 years of adaptive neural
networks: perceptron, madaline, and backpropagation,”
Proceedings of the IEEE, vol. 78, no. 9, pp. 1415–1442, 1990.

Discrete Dynamics in Nature and Society 13

https://downloads.hindawi.com/journals/ddns/2022/3259222.f1.docx


[29] Y. Yu, S. C. Gao, Y. Wang, and Y. Todo, “Global optimum-
based search differential evolution,” IEEE/CAA Journal of
Automatica Sinica, vol. 6, no. 2, pp. 379–394, 2019.

[30] T. V. Mathew, Genetic Algorithm, IIT Bombay, Adi Shan-
karacharya Marg, Powai, Mumbai, Maharashtra, India, 2012.

[31] D. Whitley, “A genetic algorithm tutorial,” Statistics and
Computing, vol. 4, no. 2, pp. 65–85, 1994.

[32] B. Jafrasteh and N. Fathianpour, “A hybrid simultaneous per-
turbation artificial bee colony and back-propagation algorithm
for training a local linear radial basis neural network on ore grade
estimation,” Neurocomputing, vol. 235, pp. 217–227, 2017.

[33] S. Dan, “Biogeography-based optimization,” IEEE transaction
on evolutionary computation, vol. 12, pp. 702–713, 2008.

[34] R. M. Li, Y. F. Huang, and J. Wang, “Long-term traffic volume
prediction based on K-means Gaussian interval type-2 fuzzy sets,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, pp. 1–8, 2019.

[35] D. B. Jia, Y. Fujishita, C. H. Li, Y. Todo, and H. W. Dai,
“Validation of large-scale classification problem in dendritic
neuron model using particle antagonism mechanism,” Elec-
tronics, vol. 9, no. 5, 792 pages, 2020.

[36] F. Wang, H. Zhang, and A. Zhou, “A particle swarm opti-
mization algorithm for mixed-variable optimization prob-
lems,” Swarm and Evolutionary Computation, vol. 60, Article
ID 100808, 2021.

[37] D. B. Jia, C. H. Li, Q. Liu et al., “Application and evolution for
neural network and signal processing in large-scale systems,”
Complexity, vol. 2021, no. 7, Article ID 6618833, 2021.

[38] R. Cheng and Y. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Transaction on cybernetics, vol. 45,
no. 2, pp. 191–204, 2014.

[39] A. H. Khan, X.W. Cao, S. Li, V. N. Katsikis, and L. Liao, “BAS-
ADAM: an ADAM based approach to improve the perfor-
mance of beetle antennae search optimizer,” IEEE/CAA
Journal of Automatica Sinica, vol. 7, no. 2, pp. 461–471, 2020.

[40] B. A. Norman and A. E Smith, “Random keys genetic algo-
rithm with adaptive penalty function for optimization of
constrained facility layout problems,” in Proceedings of 1997
IEEE International Conference on Evolutionary Computation,
pp. 407–411, Indianapolis, IN, USA, 1997.

[41] Y. Li, X. Feng, and G.Wang, “Application of population based
incremental learning algorithm in satellite mission planning,”
in International Conference on Wireless and Satellite Sys-
temsSpringer, Cham, 2020.

[42] L. Grippo, A. Manno, and M. Sciandrone, “Decomposition
techniques for multilayer perceptron training,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 27,
no. 11, pp. 2146–2159, 2016.

[43] A. Kaveh and N. Farhoudi, “A new optimization method:
dolphin echolocation,” Advances in Engineering Software,
vol. 59, pp. 53–70, 2013.

[44] R. Soto, B. Crawford, R. Olivares et al., “A reactive population
approach on the dolphin echolocation algorithm for solving
cell manufacturing systems,” Mathematics, vol. 8, no. 9,
1389 pages, 2020.
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