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�e European Union is facing the highest natural gas prices in 15 years, owing largely to an upward trend in electricity prices,
which is also on an uphill curve. However, the rise in electricity and natural gas prices is a widespread phenomenon that is being
felt not only in Europe but also globally, as economic activity resumes and energy consumption returns to prepandemic levels.
Consequently, this paper investigates how COVID-19 in�uenced the Romanian energy market. To accomplish our goal, we used
daily data for variables and market indices that characterize COVID-19 and the energy market from July 1 to December 21, 2021.
�e results of the GARCH (1, 1) model estimation show that the major performer in Romania’s energy allocation and supply
market had the highest conditional variance. In addition, the ARDL model was chosen because of the variable integration mix
(order 0 and 1), as well as the VAR and the Granger causality framework. �e empirical results of ARDL models provide the �rst
conclusion of the analysis, indicating that the number of short-term connections was greater than long-term connections, which is
also explained by the presence of short episodes of high volatility recorded in the investigated time interval. Another conclusion
drawn from this study is that COVID-19 cases registered in Europe and around the world have made a signi�cant contribution to
explaining the evolution of the energy market, owing to the large number of cases registered in these regions and the level of
contagion transmitted from these markets to the energy market. Furthermore, based on the Granger causality test results, only
one-way causal relationships were identi�ed from the variables that capture the evolution of the COVID-9 pandemic to the yields
of Romanian energy companies. �e novelty of this article is the examination of the impact of COVID-19 on the energy market
throughout the fourth wave of coronavirus using the GARCH framework, the ARDL model, which allows for the capture of both
short- and long-term reactions, the variance decomposition, and the Granger causality test. Because of the ongoing changes in the
pandemic’s evolution, additional research on this topic is undoubtedly on the horizon in the near future.

1. Introduction

Because of the lack of con�dence, the pandemic might have
an impact on international markets, causing asset prices to
collapse across markets [1]. Since COVID-19 spreads
quickly and has driven intensi�ed economic insecurity [2],
�nancial markets have plummeted and become extremely
unpredictable, with signi�cant drops in oil and metal prices
[3, 4]. Szczygielski et al. [5] asserted that COVID-19 un-
certainty has wreaked havoc on every national energy
market. Naeem [6] supported that during times of crisis,
market ine£ciencies in the energy markets are more no-
ticeable. As well, Zhang et al. [7] reinforced that the

coronavirus calamity triggered considerable supply and
demand shocks throughout the crude oil market. Although
the oil supply and demand shocks related to COVID-19 are
expected to be transitory, [8] their consequences on various
sectors and nations are ongoing. In this regard, Wu and Ma
[9] exhibited that COVID-19’s energy price oscillations have
a harmful e©ect on economic growth and in�ation, with a
larger impact on the latter variations. Following the outbreak
of coronavirus, there have been several disruptions to
economic activity leading to declining production and
consumption. As well, individuals were inclined to remain at
home when restriction measures were adopted, causing a
substantial decline in trade and manufacturing activities,
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which has an instant adverse effect on electricity usage [10].
Consequently, certain economic sectors were more affected,
such as tourism, industry, and transport. According to
Phillips [11], it is expected that the COVID-19 virus will
grow endemic, but it may become less harmful over time.
/e return of global activity, as the restrictions imposed by
the pandemic were lifted and the economies were completely
reopened, led to a quick increase in demand for natural gas,
both for electricity generation and for industrial purposes. In
this regard, Yu et al. [12] claimed that throughout critical
situations, natural resource commodities have shown to be
extremely volatile. Also, the dramatic drop in crude oil prices
has a substantial adverse effect on the low-carbon economy
[13]. Hence, the carbon futures market was as well distorted.
For instance, Dou et al. [14] emphasized that the carbon
trading market has been substantially affected by the high-
frequency price oscillations of carbon assets. Duan et al. [15]
argued that when the economy is powerful and carbon prices
are soaring, the effects of energy costs on carbon prices are
less severe than when the market is fragile and carbon prices
are the low point.

During the summer of 2021, this condition was amplified
by the strong demand for electricity production, against the
background of heat waves, while reducing production from
competing sources (hydro and wind) and the appearance of
supply constraints, caused by extreme weather events or
prolonged maintenance work (given the postponement of
some of the latter in the acute phases of the pandemic).
According to Li et al. [10], an unexpected variation in energy
demand can have a detrimental effect on both energy ser-
vices and economic decisions because it provokes issues in
energy infrastructure consistency and oscillations in energy
distribution systems. Specifically, in Romania, the final
energy consumption was 46125.7 million kWh from January
to October 2021, up 5.3 percent over the same period in
2020, while public lighting climbed by 2.6 percent and
private consumption increased by 7.4 percent [16]. Bah-
manyar et al. [17] reported that weekday consumption was
significantly reduced in states with severe constraints (Spain,
Italy, Belgium, and the United Kingdom), and energy
consumption patterns were comparable to prepandemic
weekend profiles for the same period in 2019. Nevertheless,
the decrease in electricity usage was lower in countries with
less restrictive policies. By focusing on Canadian data, Khalil
and Fatmi [18] reported that the regular average in-home
duration of each occupation increased by about 80%
throughout the disease outbreak, causing a 29% boost in
energy utilization. Similarly, Surahman et al. [19] confirmed
that throughout the coronavirus period, the average annual
energy utilization in Indonesia’s major cities is higher than
prior to the pandemic. On the contrary, Kang et al. [20]
proved in the case of South Korea that through the pandemic
period, most amenities energy utilization has gradually di-
minished. In the same vein, Wang et al. [21] confirmed that
COVID-19 has reduced China’s electricity consumption by
29%.

/is research explores how the COVID-19 pandemic
influenced the Romanian energy market throughout the
fourth wave of coronavirus. /e motivation for exploring

Romania is depicted by the fact that it ranked first among all
European member nations and sixth internationally during
the fourth COVID-19 wave. As well, according to European
Centre for Disease Prevention and Control [22], in the
penultimate week of December 2021, Romania has the
second-lowest vaccination rate in the European Union (EU),
with only 41.2 percent of its 19.3 million people fully vac-
cinated against COVID-19. Since 2019, Romania has
switched from being an electricity exporter to a net importer,
despite having historically had the third lowest rate of energy
import dependency in the EU due to its natural gas and oil
reserves and a large power generation sector. Also, coal,
hydropower, fossil gas, nuclear energy, and wind power all
contribute roughly equal amounts of capacity and power
generation to Romania’s electricity mix, which is one of the
most balanced in the EU [23].

Our paper’s specific goals are to investigate the reaction
of the energy market during the pandemic period from July
to December 2021. /e first goal is to examine the volatility
of selected variables that characterize the energy market,
namely stock market indices corresponding to the energy
sector (e.g., EEX-B, EEX-P, APX, and LNGI), the Romanian
energy market specific index (e.g., BET-NG), as well as
companies traded on the Bucharest Stock Exchange (BSE)
(e.g., SNG, EL, TGN, and TEL). /e GARCH model will be
considered in this regard. /e second goal is to investigate
long-term and short-term relationships between energy
market variables and the number of new COVID-19 cases in
Europe and globally. /e ARDL (autoregressive distributed
lag) econometric model will enable us to examine such
associations [24]. /ird, we will approach variance de-
composition using VAR (vector autoregressive models)
models to further investigate the level of explanation of
COVID-19 variables on the variation of selected energy
market measures. Fourth, we will investigate the type of
causality that has been established between the new number
of COVID-19 cases and the energy market. In this vein, after
all, data series have been converted to stationary series, the
Granger causality test will be applied.

Crude oil prices shape macroeconomic dynamics by
affecting monetary policy instruments, inflation, as well as
other business activity, in addition to their impact on
corporate earnings [25]. For the reason that oil price shifts
have such a large impact on macroeconomic performance,
exploring this effect and predicting how vulnerable eco-
nomic development will be during crises is critical [12]. /is
research adds to the existing body of knowledge in a number
of ways. First, to the best of our knowledge, the study
provides the first empirical evidence for the case of Romania.
Prior studies were focused on a diverse worldwide sample
[4, 26], several European countries [17], China
[9, 13, 21, 27–32], G7 nations [33], Indonesia [19], South
Korea [20], United States [32, 34–36], Germany and United
States [10], Canada [18], United Kingdom [37], United
States and China [38], United States and Japan [39], China
and Nigeria [40], Turkey [41], various countries with the
leading energy sectors bymarket capitalization [5], emerging
economies [2], or advanced and developing nations [42].
Hence, the evidence for emerging market economies is
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limited. Secondly, the most recent COVID-19 wave is
covered, namely the period from July 1 to December 21,
2021. /irdly, different from prior papers that employed
merely the worldwide pandemic cases [3, 24, 43, 44], our
econometric investigation covers both new cases of COVID-
19 pandemic globally and in Europe. As well, contrary to
prior papers that used the price of WTI crude oil
[1–4, 7, 8, 24–26, 29, 33, 35, 39, 43, 45–56], Brent crude oil
[4, 7, 8, 15, 24, 26, 36, 37, 43, 44, 46, 47, 49, 51, 52, 54–56],
Dubai crude oil [4, 8], NYMEX’s oil [26, 55, 57], or carbon
futures [14], the current study covers the daily returns of the
Physical Electricity Index, Amsterdam Power Exchange
Electricity Netherlands Average All Hours and, London
Natural Gas Index United Kingdom Pence Per 100000
British /ermal Units. Not least, different from prior papers
focused on time-frequency connectedness
[32, 42, 55, 56, 58], our quantitative framework covers
several techniques such as GARCH estimation, autore-
gressive distributed lag (ARDL) models, as well as vector
autoregressive (VAR) models. Aside from empirical con-
tributions, our findings have practical implications for
policymakers throughout the unprecedented phase of in-
security triggered by the COVID-19 pandemic.

/is paper is organized as follows. /e second section
examines the previous literature. /e third section presents
the research sample and the selected variables, along with the
applied quantitative methods. /e fourth section discusses
the empirical results, and the final section concludes the
article.

2. Background Literature

Many other regions of the world have experienced a dra-
matic increase in energy prices during the period under
review. /is may be due to the increase in global energy
demand (especially natural gas), as the process of economic
recovery has intensified since the peak of the COVID-19
pandemic. An elementary explanation, demonstrable in
numbers, is that the demand for energy in 2021 has grown
too fast compared to the increase in supply. However, the
explanations for this deficit are numerous: in 2020, in-
vestment andmaintenance works in electricity or natural gas
capacities were stopped, especially LNG in the USA; in-
dustrial demand increased significantly in early 2021 after
the 2020 lockdown periods; demand in Asia has recovered
from other regions and attracted a large share of global
liquefied gas supplies; the spring of 2021 was colder and
more gas and electricity was consumed for heating; there
have been gas production problems in the US due to
Hurricane Ida, and so on.

It was expected that the economic activities of all
households would be completely stopped throughout the
world during the COVID-19 period. Most people were
locked up in their homes and confined without work, which
led to a loss of income. Additionally, living in homes during
the pandemic has increased the electricity bill. /erefore, the
situation of loss of income and increased electricity bills was
a huge economic and financial burden for households [59].
Furthermore, concern for a worldwide recession has

generated unavoidable systemic risks in the energy markets,
exposing investors who own oil-derived securities to det-
rimental changes in crude prices [46]. /e study by Zhang
and Wang [57] demonstrated that the disease has increased
long-term volatility for all future returns. Also, Shaikh [52]
proved that through disease eruptions, the WTI crude oil
market exhibited exceptional overreaction and dealt at an
extremely volatile level. Dutta et al. [53] noticed that after the
events related with COVID-19, there was a sizeable decline
in worldwide crude oil prices, with the effect being highest
when this novel coronavirus infection was announced a
pandemic.

Crude oil is sometimes considered an economy’s
blood, and as a reason, oil price variations have a sig-
nificant impact on many countries throughout the world
[24]. For instance, Tong et al. [27] claimed that jumps in
the oil market were the most strongly connected to the
disease, notably through the peak and refall stages. /e
COVID-19 pandemic has put the energy markets under
stress, but its most direct impact was on energy con-
sumers through isolation measures that have deepened
preexisting energy poverty problems, increased resi-
dential demand due to increased occupancy, and reduced
the earnings of many families that have been econom-
ically affected by the crisis [60]. Narayan [61] noticed
that the COVID-19 period is defined by one of the most
severe drops in oil prices, with the price reaching a new
low and the volatility rising by up to 900 percent.

/e impact on the energy sector has led to an increased
demand for residential energy as a result of reduced mobility
and a change in the nature of work. Blockades around the
world at the beginning of the pandemic have restricted
movement and placed people at home, which in turn has
reduced the demand for industrial and commercial energy,
as well as waste generation [62].

/e first strand of literature explored the impact of
coronavirus diseases on energy stock returns. For example,
Huang and Liu [30] found that after the pandemic period,
the risk of Chinese energy companies’ stock price fall down
has considerably lessened. Further, the relationship between
the COVID-19 pandemic, the oil yield, and the profitability
of stocks in a unified framework was achieved using a TVP-
VAR model by Liu et al. [35]. /ere was noticed a negative
association between crude oil and stock yields during the
sampling period. Contrary to many people’s beliefs, the
outbreak of the COVID-19 pandemic could have a signif-
icant positive impact on the crude oil market and the stock
market. In this regard, Aloui et al. [63] argued that the S&P
GS indexes of energy markets respond to the COVID-19
crisis in various ways throughout time due to fundamental
and behavioral characteristics.

Pavlyshenko [64] studied different regression ap-
proaches to model the spread of COVID-19 and its impact
on the stock market. /e logistic curve model was used with
Bayesian regression for predictive analysis of coronavirus
spread. /e impact of COVID-19 was examined using re-
gressions compared to other effects of the crisis. Empirical
results showed that different crises with various causes have
a distinct impact on the same stocks.
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In the same way, a statistical analysis of the effect of the
COVID-19 pandemic on stock market risk was also con-
ducted by Zhang et al. [65]./e virus has killed thousands of
people and brought significant challenges to countries
around the world. /e results showed that the risks to the
global financial market have increased substantially in re-
sponse to the pandemic. For instance, Wang et al. [36]
supported the transmission of risk among the coal and WTI
crude oil markets. Individual reactions in the stock market
are clearly related to the severity of the outbreak in each
country. /e high uncertainty of the pandemic and the
associated economic losses have made markets extremely
volatile and unpredictable. Political reactions are required to
fight the virus and the level of stock markets. However,
unconventional policy interventions, such as US quantita-
tive easing (QE), create additional uncertainty and could
cause long-term complications. Furthermore, countries do
not work jointly to meet these challenges, as markets react
differently to national policies and the overall development
of the pandemic. Hence, this trend of fragmentation in the
global community is more of a threat than a virus.

/e new coronavirus has generated significant volatility
in financial markets, including the commodity market.
Argued by the fact that oil prices have fallen the most since
1991, the second strand of literature was oriented toward the
volatility investigation of oil markets throughout the pan-
demic period. /e time-varying total volatility spillovers
across markets were noticed to have strengthened with the
occurrence of COVID-19 and global crude oil price tur-
bulence throughout the pandemic [31]. Ashok et al. [26]
exhibited increased co-movements in energy markets
appearing months prior to co-movements in equity markets.
For instance, Akyildirim et al. [42] explored 29 developed
and developing states and found that oil-exporting nations
predominantly spread shocks, while oil-importing states
mostly receive shocks. Si et al. [28] claimed that the COVID-
19 shock is one of the main factors for the Chinese energy
markets to become even more volatile. Likewise, Yousaf [47]
supported that the volatility of the WTI oil market increases
as the volatility of COVID-19 volatility rises. Also, Wang
et al. [34] found that the price of oil in the United States has
fallen along with the number of new instances that have been
confirmed. Albulescu [66] studied how COVID-19 figures,
in terms of daily announcements of new infections, have
influenced international oil prices. /e ARDL estimate
showed a negative and significant impact on the coronavirus
crisis but was relatively small compared to the effect of fi-
nancial volatility and uncertainty in economic policy on oil
prices. However, the influence of the pandemic on oil prices
was indirect, and the volatility of mainly affected financial
market. In addition, Albulescu [67] emphasized that the
downward fluctuations of crude prices are driven by in-
creased insecurity. /e outcomes were also supported by
Jeris and Nath [37], and Geyikçi [41]. Narayan [61] rein-
forced that the oil market has become unprofitable over the
COVID-19 time frame using technical moving average
trading techniques. Lin and Su [50] found that subsequent to
the eruption of COVID-19, there is a dramatic rise in total
connectedness in energy markets, but this shift merely

persists about two months prior to returning to preinfection
levels./erefore, Iglesias and Rivera-Alonso [51] argued that
volatility peaks occur throughout periods of supply/demand
downturns or oil instabilities, whereas cycles with financial
turmoil as the main trigger are associated with higher
volatility persistence.

Other studies explored the impact of pandemic news on
the energy sector. For instance, Albulescu [68] examined the
impact of official COVID-19 announcements and related
statistics on financial volatility, comparing the effect of data
reported in China with those of COVID-19 records reported
outside China. Empirical results exposed that only new cases
reported outside China have a positive effect on the VIX
index. Also, the death rate has a positive influence on the
VIX index for all estimated models, but the effect was greater
for the death rate outside China. In addition, the spread of
the pandemic increased financial volatility. As such, the
persistence of COVID-19 could generate a new episode of
global financial stress. Amamou and Bargaoui [49] found
that the release of a new disease outbreak wave lessens
dependence on the oil market, which losses its attributes as a
safe-haven market in favor of other markets such as gold or
cryptocurrencies. Shaikh [54] exhibited that global crude oil
is negatively associated with the news connected to the
COVID-19 pandemic.

Further, Akhtaruzzaman et al. [69] investigated how
financial contagion occurs through financial and nonfi-
nancial firms between China and the G7 countries. Em-
pirical results revealed that the dynamic conditional
correlation (DCC) between the profitability of Chinese fi-
nancial stocks and the financial and nonfinancial G7 in-
creased significantly during the COVID-19 period.
However, the magnitude of DCC growth has been greater for
financial firms, implying that they exert a more critical role
in transmitting the financial contagion than nonfinancial
firms. /e results showed that China and Japan appear to be
net emitters of COVID-19 contagion. In addition, optimal
hedging ratios increased substantially in most cases during
the COVID-19 phase, leading to higher hedging costs during
the crisis. /e findings of Jiang and Chen [55] also indicate
that overall connectedness has increased significantly since
the COVID-19 outbreak, as compared to the preCOVID era.
Jiang and Chen [58] confirmed that following the COVID-
19 outbreak, overall connectivity has increased. Equally,
Mensi et al. [38] exhibited that during the low-volatility
period (high volatility regime), oil was a prominent recipient
(contributor) of spillovers. Chen et al. [32] remarked that
prior to the COVID-19 pandemic, the role of energy
commodities as net receivers can be noticed in both the short
and long terms, but following it, the net transmitter position
can be seen in the long term.

Further, a review of earlier research exploring the in-
fluence of the COVID-19 pandemic on energy markets is
provided in Table 1.

3. Research Methodology

3.1. Sample and Variables. /e European Union, similar to
various other regions of the world, is currently facing a sharp
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Table 1: Summary of prior literature on the COVID-19–energy market nexus.

Author (s) Period Variables Methodology Outcomes

Ma et al. [29] January 1,
2019–April 1, 2021 Oil prices and the GDP

Wavelet power spectrum,
wavelet coherence, frequency

domain causality test

/e price of natural resource
commodities has been

observed to be more volatile
throughout the COVID-19

timeframe

Yu et al. [12]
2007–2009,
2010–2018,
2019–2020

GDP and oil prices Wavelet analysis
In the long-term, a jump in
crude prices has effects on

economic growth

Ali et al. [25] March 2020–May
2020

Closing spot prices of WTI
crude oil futures and stock
indices of the United States,
Canada, China, Russia, and

Venezuela

Wavelet-based granger
causality

/roughout times of stability,
oil is vital for hedging, and
during times of crisis, it serves

as a safe-haven asset

Mensi et al. [70] April 23, 2018–April
24, 2020

S&P500 index, brent oil, and
gold futures Bivariate FIAPARCH model

For all sub-periods, oil offers
greater hedging efficiency

than gold

Atri et al. [3] January 23,
2020–June 23, 2020

WTI oil price, the worldwide
confirmed new cases, and

deaths
ARDL analysis

During the COVID-19
contagion, economic and
financial instability has a

detrimental effect on oil and
gold values

Gharib et al. [71]
November 1,

2019–December 31,
2020

Daily west Texas light crude
oil and north sea brent crude,
diesel, and gasoline prices

Supremum augmented Dickey-
Fuller, generalized supremum
augmented Dickey-Fuller, the

explosive test strategy

/roughout the COVID-19
outbreak, west Texas Light

crude oil and north sea brent
crude oil had a negative

financial bubble

Adedeji et al. [40] March 20,
2020–May 28, 2020

West Texas intermediate,
brent, bonny, Daqing

Vector autoregressive (VAR)
method

/e influence of the COVID-
19 pandemic on bonny and
Daqing oil prices accounted
for the smallest shares of

fluctuation, while the effect on
BRENT and WTI is even

smaller

Bourghelle et al.
[48]

January 2,
2014–April 1, 2020

West Texas index, economic
policy uncertainty index,
equity market-related EPU

index

Vector autoregressive (VAR)
framework

/e disease outbreak oil
shocks had a significant effect

on oil price fluctuations

Khan et al. [72] January 2020–May
2021

West intermediate Texas,
brent oil, natural gas, heating

oil
Quantile-on-quantile method

COVID-19 has a generally
negative impact on energy
prices across all quantiles

Maneejuk et al.
[44]

December 29,
2019–December 30,
2020

Natural gas, gasoline, heating
oil, coal, and brent crude oil

Generalized autoregressive
conditional heteroskedasticity
(GARCH), Markov switching

dynamic copula

Energy markets react the same
way to both positive and
negative occurrences of

COVID-19

Nyga-
Łukaszewska and
Aruga [39]

January 1,
2020–June 2, 2020,

WTI, Platts Dubai crude oil
prices, Henry hub, Platts
Japan Korea marker prices

Auto-regressive distributive lag
(ARDL)

/e COVID-19 pandemic in
the United States had a

statistically detrimental effect
on crude oil prices while

having a positive impact on
gas prices

Le et al. [24]
January 17,

2020–September 14,
2020

WTI oil price, brent, trade-
weighted US dollar index,
MSCI world index, FTSE all-
world index, S&P Global 100

index

ARDL bounds testing
procedure

/e fall in WTI prices is
attributed to increases in
COVID-19 instances, US

economic policy uncertainty
index, and the Chicago board
options exchange (CBOE)
volatility index (VIX)
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rise in energy prices. /e world economy is significantly
impacted by the pandemic caused by COVID-19 disease,
and the effects will be long-term and will depend on the
intensity of the pandemic. In our quantitative study, we use
daily data from July 1, 2021, to December 21, 2021, namely
the period that incorporates the fourth wave of the COVID-
19 pandemic.

To achieve the proposed goals, we picked the number of
new COVID-19 cases registered in Europe and globally as
COVID-19 variables. We assume that the evolution of the
number of new COVID-19 cases will better capture the
pandemic’s impact on the energy market, where we used
various indices that seize the price of electricity and gas. In
addition, we intended to include a Romanian stock market
index that tracks the evolution of companies in the energy
sector, as well as a survey of the composite index’s largest
companies. /e selected measures are presented in Table 2.

/erefore, a wide array of variables has been selected
from the Refinitiv Eikon database alike Ashok et al. [26],
which allows the achievement of our research objective,
namely, indices on the stock market that describe the energy
sector (e.g., EEX-B, EEX-P, APX, and LNGI), along with the
specific Romanian energy market index BET-NG. In ad-
dition, we have included the daily returns of several leading
Romanian companies listed on the Bucharest Stock Ex-
change (BSE) that operate in the energy field (e.g., SNG, EL,
TGN, and TEL). COVID-19 pandemic is measured through
daily recent reported cases worldwide (CNW) alike Vil-
larreal-Samaniego [2], Atri et al. [3], Le et al. [24], Jeris and
Nath [37], Ahundjanov et al. [43], Maneejuk et al. [44] and
in Europe (CNE).

3.2. Quantitative Analysis Strategy. To explore how the
COVID-19 pandemic affects the Romanian energy market,
more specifically the price of energy and the price of gas, we

will employ a variety of econometric tools such as: (1)
stationarity analysis, (2) generalized autoregressive condi-
tional heteroskedasticity (GARCH) estimation, (3) autore-
gressive distributed lag (ARDL) models, (4) vector
autoregressive (VAR) models, (5) the Granger causality test.

First, the Augmented Dickey–Fuller Unit Root (ADF)
test will be used to verify the nonstationarity of our variables
similar to Villarreal-Samaniego [2], Atri et al. [3], Bildirici
et al. [8], Wu and Ma [9], Li et al. [10], Wang et al. [21],
Wang et al. [34], Geyikçi [41], Ahundjanov et al. [43],
Amamou and Bargaoui [49], Lin and Su [50], Zhang and
Wang [57], Albulescu [66], Albulescu [67]. Specifically,
nonstationary variables lead to inadequate results, which
means insignificant results. /e confirmation of the sta-
tionarity of the selected data is performed through the ADF
stationarity test, being the regular test employed to confirm
the stationarity of a data series. /e null hypothesis of the
ADF test assumes that the variable has a unit root, and thus
the measure is not stationary. /e ADF test involves esti-
mating the equation as follows:

Δmt � α + βt + qωt + 
k

j�1
cjΔmt−j + εt, t � 1, . . . , T, (1)

where t represents the time trend, T is sample length and k is
the length of the lag in the dependent variable. Nevertheless,
the ADF test is based on a linear assumption, which can lead
to inaccurate results [8]./us, to check the robustness of our
results, further unit root tests alike Kwiatkowski-Phillips-
Schmidt-Shin and Zivot–Andrews with one break will be
applied in line with Zhang, Farnoosh [7].

Secondly, volatility clustering is a method of identifying
market volatility. Due to the pandemic news outburst, the
market typically encounters an unstable phase prior to
returning to regularity [52]. In order to explore the volatility
of the selected series, the GARCH (p, q) model will be

Table 1: Continued.

Author (s) Period Variables Methodology Outcomes

Ahundjanov et al.
[43]

January 22,
2020–July 2, 2020

Brent, west Texas
intermediate, New York
harbor, Dow Jones US oil

and gas

Structural vector autoregressive
(SVAR) model

A unit rise in COVID-19
global search interest leads to
a cumulative reduction of
0.083 percent and 0.104

percent in the Dow Jones US
oil, and gas total index and

New York harbor
conventional gasoline,

respectively

Li et al. [33]
December 1,

2019–March 25,
2022.

WTI crude oil futures prices Multivariate wavelet

/e COVID-19 pandemic is
less of a concern to the people
in the US and Canada than the
fall in the WTI and worldwide

stock markets

Chatziantoniou
et al. [56]

January 17,
1997–December 11,

2020

WTI, brent, heating oil,
kerosene, propane, and

gasoline

Conditional autoregressive
value-at-risk (CAViaR), TVP-

VAR

With substantial crisis events,
connectivity increases

Source: author’s own work.
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considered alike [4], Szczygielski et al. [5], Wu and Ma [9],
Maneejuk et al. [44], Iglesias and Rivera-Alonso [51], Zhang
and Wang [57], which shows the following general form:

σ2t � α0 + 

q

i�1
αiu

2
t−i + 

p

j�1
βjσ

2
t−j, (2)

where p is the order of the GARCH terms and q is the order
of the ARCH terms.

/irdly, in case we find out both stationary and non-
stationary variables, consistent with Villarreal-Samaniego
[2], Atri et al. [3], Li et al. [10], Le et al. [24], Jeris and Nath
[37], Nyga-Łukaszewska and Aruga [39], Geyikçi [41],
Albulescu [66], Albulescu [67], the ARDL approach will
allow the study of both short-term and long-term rela-
tionships between COVID-19 variables and the energy
market. /e ARDL approach exhibits several advantages
over different cointegration models in quantitative literature
[37]. First, the autoregressive distributed lag model (ARDL)
and the limit testing methodology will be used due to its
permission to apply a mixture of variables I (0) and I (1)
[2, 37, 41]. Choosing the appropriate ARDLmodel will allow
us exploring the relationships that are established between
variables, so it is imperative to select the proper number of
offsets. /erefore, the Akaike information criteria (AIC) will
be examined to decide on the optimal gaps for the variables
included in the ARDL model alike [2]. Second, this method
abridges the study of the link among the response and input
variables through OLS regressions. /ird, when contrasted
to other methodologies, the ARDL technique is more ef-
fective for small samples, which is particularly critical for
this research [2, 37, 41]. Not least, the ARDL specification
permits simultaneous estimation of both long-run and
short-run parameters [37, 41].

Specifically, an ARDL (p, q1, . . ., qk) is a least squares
regression containing lags of the dependent (p) and

explanatory variables (q1, . . ., qk). /e general specification
of an ARDL (p, q) model is depicted below:

Ht � μ + β0Kt + β1Kt−1 + · · · + βqKt−q + δ1Ht−1

+ · · · + δpHt−p + ut.
(3)

Fourthly, the vector autoregression (VAR) framework is
considered due to its common practice for interdependent
time series prediction systems and for analyzing the dynamic
impact of random perturbations on the system of variables.
/e equation for the VAR model is depicted below, con-
sistent with Wu and Ma [9], Bourghelle et al. [48]:

xt � a1xt−1 + · · · + apxt−p + bnt + ϵt, (4)

where xt is a k vector of endogenous variables, nt is a d vector
of exogenous variables, a1, . . ., ap and b are matrices of
coefficients to be estimated, and ϵt is a vector of innovations.

Not least, causality between variables will be examined
through the Granger causality test, like Wu and Ma [9],
Bourghelle et al. [48]. /e null hypothesis of the test consists
of the following statements: h does not cause Granger k and
that k does not cause Granger h. /ere are estimated the
following bivariate regressions:

kt � α0 + α1kt−1 + · · · + αpkt−p + β1ht−1 + · · · + βph−p + ϵt,

ht � α0 + α1ht−1 + · · · + αpht−p + β1kt−1 + · · · + βpk−p + ut.

(5)

4. Empirical Findings

4.1. Summary Statistics. /e descriptive statistics of the
variables are provided in Table 3. /e skewness and kurtosis
indicators indicate the deviation in relation to a symmetric
distribution around the average, thus suggesting the degree

Table 2: Variables’ description.

Variables Description
CNW New cases of COVID-19 pandemic worldwide
CNE New cases of COVID-19 pandemic in Europe

BET-NG /e daily return of BET-NG–is a sectoral index that reflects the evolution of companies listed on the regulated market of the
Bucharest stock exchange that have the main field of activity energy and related utilities

SNG /e daily return of S.N.G.N. ROMGAZ S.A.–company that has a vast experience in the field of exploration and production of
natural gas, being one of the largest producers and main suppliers of natural gas in Romania

EL /e daily return of electrica–is the only company in Romania listed in the field of electricity distribution and supply

TGN
/e daily return of SNTGN Transgaz SA–is the technical operator of the national transport system (NTS) natural gas that
ensures conditions of safety, efficiency, competitiveness, and in compliance with European standards of performance and

environment, the transport of over 90% of natural gas consumed in Romania

TEL /e daily return of CNTEE trans electrica SA–is already recognized on a national scale and globally as a strong company, with a
strategic role in the Romanian electricity market and an essential participant in the regional electricity market

EEX-B /e daily return of the physical electricity index (Phelix)–refers to the base load (Phelix base) price index published daily on the
power spot market for the German/Austrian market area

EEX-P /e daily return of the physical electricity index (Phelix)–refers to the peak load (Phelix peak) price index published daily on the
power spot market for the German/Austrian market area

APX /e daily return of the Amsterdam power exchange (APX) electricity Netherlands average all hours
LNGI /e daily return of the London natural gas index United Kingdom pence per 100000 British thermal units
Source: author’s own work.
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of flattening or sharpening. A kurtosis greater than the value
of three implies that the returns of the indices show heavy
tails than the normal distribution. Specifically, the proba-
bility of extreme returns is higher than the probability that
they are below normal distribution. /is feature is called
leptokurtic or basically heavy tails. A positive skewness
signifies an asymmetric distribution on the right and a
negative skewness on the left. For a series with a normal
distribution, kurtosis takes the value of three. However, for a
value less than three the distribution is flatter than the
normal one (e.g., platykurtic), whereas for kurtosis greater
than three, the distribution is leptokurtic. According to
Table 3, most of the variables exhibit a value of the kurtosis
greater than three, thus presenting a leptokurtic distribution,
consistent with Bildirici et al. [8], Wu and Ma [9], Wang
et al. [36], Geyikçi [41], Bourghelle et al. [48], Dutta et al.
[53]. Consequently, extreme negative returns are much
more likely to occur than normal distribution forecasts.

/e normality of the variable distribution is provided by
the Jarque-Bera test. Table 3 also shows the results of the
Jarque-Bera test, which indicate that the distribution of the
variables is not distributed normally, in line with Villarreal-
Samaniego [2], Bildirici et al. [8], Ali et al. [25], Si et al. [28],
Wang et al. [36], Mensi et al. [38], Akhtaruzzaman et al. [69],
Gharib et al. [71], Khan et al. [72]. Because the Jarque-Bera
statistic is significant (except for the number of new cases of
COVID-19 registered globally), we reject the null hypothesis
of normality. /e test values are quite far from the corre-
sponding normal distribution, which supports that the series
is not normally distributed. Figure 1 exhibits the density,
distribution, and quantile-quantile (QQ) plots. In line with
the outcomes reported in Table 3, the distribution of the
selected series is dissimilar from the normal one.

/e correlations between included variables are plotted
in Figure 2. Alike [37], the correlations were reduced.
/erefore, our empirical outcomes will not be affected by the
multicollinearity issue.

Figure 3 shows the evolution of the number of new cases
at the European and global levels due to COVID-19. Cássaro
and Pires [73] argued that the number of cases is growing
rapidly, which has been achieved by stability later, this mode
is called a step function.

Further, the daily evolution of the BET-NG index and
the companies listed on BSE are presented in Figure 4.
During the third and fourth quarters of 2021, BET-NG, the
index of the 10 Romanian companies in the energy and
utility sectors, registered a relatively steady evolution. EL,
SNG, and TGN, which are among the most traded com-
panies on BSE, had a similar evolution to the BET-NG index,
but TEL was marked by slightly more significant episodes of
volatility than the rest of the energy companies.

Likewise, the evolution related to the return of the
Physical Electricity Index (Phelix), Amsterdam Power Ex-
change (APX), and London Natural Gas Index is exhibited
in Figure 5. Energy prices have witnessed high episodes of
volatility compared to the price of natural gas. /e return of
global activity, as the restrictions imposed by the pandemic
and the complete reopening of economies have lifted, has led
to a rapid increase in demand for natural gas, both for
electricity production and for manufacturing reasons.

4.2. 5e Outcomes of Time Series Investigation

4.2.1. Stationarity Analysis. Tables 4 and 5 show the out-
comes of stationarity analysis for series at the level and in the
first difference through the augmented Dickey–Fuller and
Kwiatkowski–Phillips–Schmidt–Shin unit root test. A
couple of variables are stationary at the first difference (e.g.,
new cases of COVID-19 worldwide and in Europe) because
the probability is above the 1% and 5% relevance level, while
some are already stationary (e.g., BET-NG, SNG, EL, TGN,
TEL, EEX-B, EEX-P, APX, and LNGI). Alike Bildirici et al.
[8], Ali et al. [25], Si et al. [28], Mensi et al. [38], and Yousaf
[47], we notice a common integration order of I (0), ex-
ception makes the indicators related to the evolution of
COVID-19, so in this case, we can reject the null hypothesis
and conclude that the series is not stationary.

Further, Table 6 reveals the outcomes of stationarity
analysis of the variables with one structural break by means
of the Zivot-Andrews unit root test, alike Zhang et al. [7], Le
et al. [24]. Accordingly, the occurrence of a structural break
in our sample is proved, while the mix integration is
strengthened.

Table 3: Descriptive statistics of the variables.

Variables Mean Std. dev. Skewness Kurtosis Jarque-Bera Probability
CNE 231054 108995 0.89 2.44 18.01 0.00
CNW 578864 113085 0.35 2.38 4.50 0.11
BET-NG 0.0001 0.01 −0.74 4.40 21.55 0.00
SNG 0.0012 0.01 −0.82 6.56 79.63 0.00
EL −0.0020 0.01 −0.75 5.23 37.41 0.00
TEL −0.0012 0.02 0.48 8.58 165.98 0.00
TGN −0.0022 0.01 −0.37 4.52 14.75 0.00
EEX-B 0.0124 0.27 0.15 5.49 32.58 0.00
EEX-P 0.0134 0.34 0.10 5.88 43.04 0.00
APX 0.0124 0.19 0.59 6.53 71.43 0.00
LNGI 0.0099 0.06 2.06 43.21 8442.14 0.00
Source: author’s own work. Notes: for the definition of variables, please see Table 2.
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Figure 1: Density, distribution, and QQ plots for daily returns. Source: author’s own work. Notes: variables’ descriptions are provided in
Table 2.
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4.2.2. Volatility Examination. Because all Jarque–Bera
figures are larger than three as Bildirici et al. [8], Zhang
and Wang [57] found, and the distributions of the se-
lected series diverge from normally distributed data;
GARCH models are required and appropriate for high-
lighting the progress of volatility. Further, the autocor-
relation function (ACF) and partial autocorrelation
function (PACF) are used to test for heteroskedasticity.
In this regard, Figure 6 exhibits the plots of ACF and
PACF. /us, the existence of serial correlation is inherent
in the correlogram of squared returns, except LNGI for
which the GARCH model will not be estimated.

Table 7 reports the findings after estimating the
GARCH (1, 1) model. In the case of TEL, the sum of
ARCH and GARCH parameters is roughly equal to one
(e.g., 0.989732), in line with Napon and Asama [4],
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Bildirici et al. [8]. Hence, at time t, a shock wave will last
longer. Specifically, the conditional variance is persistent
consistent with Maneejuk et al. [44], Iglesias, and Rivera-

Alonso [51]. /e findings, however, show the existence of
a mean-reverting process because the sum of the ARCH
and GARCH effects is less than one. However, in the case

Table 4: /e outcomes of the augmented Dickey–Fuller unit root test.

Variables
Level 1st difference

t-statistic Prob. t-statistic Prob.
BET-NG −10.96815 0.00000 −8.02504 0.00000
SNG −9.79747 0.00000 −7.02206 0.00000
EL −10.89207 0.00000 −8.21217 0.00000
TGN −11.57374 0.00000 −8.25544 0.00000
TEL −10.62924 0.00000 −7.73848 0.00000
EEX-B −9.28420 0.00000 −10.03859 0.00000
EEX-P −9.26251 0.00000 −7.88023 0.00000
APX −3.85224 0.00330 −9.07506 0.00000
LNGI −10.80412 0.00000 −6.78637 0.00000
D (CNW) −1.05455 0.73150 −6.46469 0.00000
CNE 1.49212 0.99920 −3.17439 0.02410
Source: author’s own work. Notes: null hypothesis: each series has a unit root. Intercept included in test equation. Lag length: automatic selection based on
Akaike info criterion. Test critical values: 1% level: −3.484198; 5% level: −2.885051; 10% level: −2.579386. For the definition of variables, please see Table 2.

Table 5: /e outcomes of the Kwiatkowski–Phillips–Schmidt–Shin unit root test.

Variables Level 1st difference
LM-stat. LM-stat.

BET-NG 0.12317 0.10802
SNG 0.05132 0.27447
EL 0.07358 0.22224
TGN 0.33589 0.09240
TEL 0.09570 0.03197
EEX-B 0.26477 0.10671
EEX-P 0.25460 0.10521
APX 0.30014 0.14376
LNGI 0.06838 0.33024
D (CNW) 0.11972 0.09233
CNE 1.17286 0.13543
Source: author’s own work. Notes: null hypothesis: each series is stationary. Intercept included in test equation. Asymptotic critical values: 1% level: 0.739000;
5% level: 0.463000; 10% level: 0.347000. For the definition of variables, please see Table 2.

Table 6: /e outcomes of the Zivot–Andrews unit root test.

Variables
Level 1st difference

t-statistic Prob. Chosen breakpoint t-statistic Prob. Chosen breakpoint
BET-NG −11.60250 0.01458 10/29/2021 −10.16953 0.36943 9/28/2021
SNG −10.09328 0.10998 10/28/2021 −8.84880 0.39676 11/11/2021
EL −11.14620 0.03227 10/28/2021 −7.83243 0.31284 11/22/2021
TGN −12.34624 0.00983 11/05/2021 −9.03870 0.11226 11/24/2021
TEL −10.82827 0.09506 10/26/2021 −8.09940 0.04814 10/22/2021
EEX-B −9.51280 0.04077 10/25/2021 −9.62517 0.18050 10/22/2021
EEX-P −9.47839 0.21478 10/11/2021 −11.07540 0.17081 10/22/2021
APX −8.48267 0.03560 10/14/2021 −10.47777 0.08917 10/08/2021
LNGI −11.55259 0.00709 10/07/2021 −8.20949 0.02625 10/04/2021
D (CNW) −9.57362 0.00002 8/23/2021 −15.98563 0.34203 9/16/2021
CNE −2.45574 0.00130 10/19/2021 −6.62953 0.02393 10/06/2021
Source: author’s own work. Notes: null hypothesis: each series has a unit root with a structural break in the intercept. Break included in the intercept. 1%
critical value: −5.34.5% critical value: −4.93.10% critical value: −4.58. For the definition of variables, please see Table 2.
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of EEX-B, EEX-P, and APX, the sum of parameters is
larger than one, thus suggesting that the conditional
variance process is explosive.

We estimated the conditional volatilities (CV) after
assessing the GARCH model (1, 1), as shown in Figure 7.
Among the Romanian companies operating in the energy
field, we notice that the highest CV was registered by the
major performers in the energy allocation and supplymarket
in Romania, respectively Electrica.

4.2.3. ARDL Estimation Results. Since the stationarity test
confirmed that the selected variables are integrated in the
order of 0 and 1, in line with Le et al. [24], this fact allows us
to consider the approach of the ARDL analysis technique.
/is method permits the cointegration examination of
variables that are stationary and non-stationary. For the
proper choice of the ARDL model that would allow us to

research the relationships that are established between the
variables, it is imperative to choose the correct number of
offsets. /erefore, alike Nyga-Łukaszewska and Aruga [39],
we will analyze the Akaike Information Criteria (AIC) to
select the optimal offsets for the variables included in the
ARDL model. We will apply the criteria graph, which will
indicate the right lags for the ARDL model, and the lowest
value is preferred. Figure 8 shows the plots of criteria graph
for each ARDL model which considers every energy variable
(e.g., BET-NG, SNG, EL, TGN, TEL, EEX-B, EEX-P, APX,
and LNGI), as well as the number of new cases at European
and global level due to COVID-19. /e horizontal axis of
each chart represents the ARDL models estimated, and the
vertical axis shows the AIC value of the models. /e top 20
results are presented in the criteria graph.

/e figures in Table 8 signify the results for the ARDL
bound test for cointegration. /ere are provided two critical
values for the cointegration test: the lower critical bound
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Table 7: /e outcomes of the GARCH (1, 1) model.

Dependent variable: BET-NG Dependent variable: SNG
Variable Coefficient Std. error z-statistic Prob. Variable Coefficient Std. error z-statistic Prob.
C 0.000512 0.000777 0.658956 0.5099 C 0.002226 0.000964 2.30789 0.021

Variance equation Variance equation
C 4.21E− 05 4.80E− 05 0.876802 0.3806 C 9.67E− 05 0.000181 0.533331 0.5938
RESID (−1)2 −0.07493 0.068867 −1.088046 0.2766 RESID (−1)2 −0.04884 0.072398 −0.674602 0.4999
GARCH (−1) 0.656334 0.456352 1.43822 0.1504 GARCH (−1) 0.542073 0.916932 0.591181 0.5544
T-DIST. DOF 5.061521 3.142783 1.610522 0.1073 T-DIST. DOF 3.452623 1.250747 2.760448 0.0058
ARCH+GARCH 0.581404 ARCH+GARCH 0.493233
R-squared −0.001889 Mean dependent var 8.42E− 05 R-squared −0.006586 Mean dependent var 0.001153
Adjusted R-
squared −0.001889 S.D. dependent var 0.009884 Adjusted R-

squared −0.006586 S.D. dependent var 0.013269

S.E. of regression 0.009894 Akaike info criterion −6.409628 S.E. of regression 0.013313 Akaike info criterion −5.904976
Sum squared resid 0.01204 Schwarz criterion −6.295907 Sum squared resid 0.0218 Schwarz criterion −5.791255

Log likelihood 402.3969 Hannan–Quinn
criterion. −6.363432 Log likelihood 371.1085 Hannan–Quinn

criterion. −5.85878

Durbin-Watson
stat 1.988924 Durbin-Watson

stat 1.7568

Dependent variable: EL Dependent variable: TGN
Variable Coefficient Std. error z-statistic Prob. Variable Coefficient Std. error z-statistic Prob.
C −8.80E− 06 0.000686 −0.012818 0.9898 C −0.001581 0.000705 −2.242621 0.0249

Variance equation Variance equation
C 0.000349 0.008276 0.042186 0.9664 C 6.14E− 06 5.86E− 06 1.048826 0.2943
RESID (−1)2 −1.784395 42.03255 −0.042453 0.9661 RESID (−1)2 0.075788 0.074665 1.015035 0.3101
GARCH (−1) 0.987717 0.018899 52.26289 0 GARCH (−1) 0.874339 0.102292 8.547464 0
T-DIST. DOF 2.024389 0.58422 3.465116 0.0005 T-DIST. DOF 4.349566 2.444385 1.779412 0.0752
ARCH+GARCH −0.796678 ARCH+GARCH 0.950127
R-squared −0.025806 Mean dependent var −0.001991 R-squared −0.004356 Mean dependent var −0.002206
Adjusted R-
squared −0.025806 S.D. dependent var 0.012388 Adjusted R-

squared −0.004356 S.D. dependent var 0.009498

S.E. of regression 0.012547 Akaike info criterion −6.171115 S.E. of regression 0.009519 Akaike info criterion −6.559459
Sum squared resid 0.019363 Schwarz criterion −6.057394 Sum squared resid 0.011145 Schwarz criterion −6.445738

Log likelihood 387.6091 Hannan–Quinn
criterion. −6.124919 Log likelihood 411.6864 Hannan–Quinn

criterion. −6.513262

Durbin–Watson
stat 1.93045 Durbin–Watson

stat 2.091561

Dependent variable: TEL Dependent variable: EEX-B
Variable Coefficient Std. error z-statistic Prob. Variable Coefficient Std. error z-statistic Prob.
C −0.000856 0.000926 −0.924074 0.3554 C 0.006158 0.010772 0.571666 0.5675

Variance equation Variance equation
C 5.27E− 06 1.80E− 06 2.936929 0.0033 C 0.006022 0.014758 0.408033 0.6832
RESID (−1)2 −0.05078 0.016305 −3.114411 0.0018 RESID (−1)2 1.51924 4.01251 0.378626 0.705
GARCH (−1) 1.040512 0.01393 74.69655 0 GARCH (−1) 0.67125 0.110199 6.091232 0
T-DIST. DOF 5.767578 3.219184 1.791627 0.0732 T-DIST. DOF 2.200545 0.599848 3.668503 0.0002
ARCH+GARCH 0.989732 ARCH+GARCH 2.19049
R-squared −0.000593 Mean dependent var −0.001222 R-squared −0.000556 Mean dependent var 0.012439
Adjusted R-
squared −0.000593 S.D. dependent var 0.015068 Adjusted R-

squared −0.000556 S.D. dependent var 0.267469

S.E. of regression 0.015073 Akaike info criterion −5.758566 S.E. of regression 0.267543 Akaike info criterion −0.16669
Sum squared resid 0.027944 Schwarz criterion −5.644845 Sum squared resid 8.804247 Schwarz criterion −0.052969

Log likelihood 362.0311 Hannan–Quinn
criterion. −5.71237 Log likelihood 15.3348 Hannan–Quinn

criterion. −0.120494

Durbin-Watson
stat 1.930154 Durbin-Watson

stat 2.342452

Dependent variable: EEX-P Dependent variable: APX
Variable Coefficient Std. error z-statistic Prob. Variable Coefficient Std. error z-statistic Prob.
C 0.005919 0.011652 0.507994 0.6115 C 0.006374 0.010206 0.624526 0.5323

Variance equation Variance equation
C 4.01294 5739.496 0.000699 0.9994 C 0.011582 0.045943 0.252091 0.801
RESID (−1)2 492.9499 705091.9 0.000699 0.9994 RESID (−1)2 0.641769 2.500938 0.256611 0.7975
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assumes all the variables are I (0), meaning that there is no
cointegration and the upper bound assumes that all the
variables are I (1), meaning that there is cointegration among
the variables. If the value of the F-statistic is more than the
critical value of bounds, it indicates the long-run relation-
ship between variables. Accordingly, in all cases, the value of
the F-statistical test is higher than the limit of 1%, which
suggests that there is a long-term relationship between
variables. Hence, the null hypothesis is rejected, which
means that the variables in all estimated models are coin-
tegrated. As such, we notice cointegration relationships
between COVID-19 and BET-NG, SNG, EL, TGN, TEL,
EEX-B, EEX-P, APX, and LNGI.

Table 9 shows the results of the long-term relationship
between variables for COVID-19 new cases in Europe and
worldwide and energy market-specific variables. /e
quantitative outcomes provide support for no impact of the
number of new cases of COVID-19 in Europe and globally

on the price of energy, natural gas, the BET-NG index, and
most of the companies operating in the energy field in
Romania. However, there is noticed a positive long-term
impact of the number of new cases in the EU and globally on
TGN.

Table 10 shows the short-run impact of pandemic on the
energy market. For all energy market variables is registered a
coefficient of the error correction term (CointEq(−1)) which
is negative and significant at the 5% level of significance.
Consequently, the negative and significant error correction
term, which indicates the speed of conversion, exhibits that
on the next day, the dependent variable will reach equi-
librium with a speed of between 87% and 229%. Also, the
short-term results provided in Table 10 show a positive
impact of the new cases of COVID-19 registered in Europe
on the evolution of the TEL share price. /erefore, an in-
crease in the number of new cases of COVID-19 in Europe
during the period under review leads to an increase in the
price of TEL. Such a relationship was also identified in the
case of TGN, where the new number of COVID-19 cases
both in Europe and globally exerts a positive impact on the
share price. Another outstanding result identified from these
ARDLmodels is that, in the short term, the outcomes show a
negative impact of new cases of COVID-19 disease in
Europe on the variable EEX-B–proxy variable for the price of
electricity.

Further, alike Jeris and Nath [37], Geyikçi [41], this study
applied cumulative sum (CUSUM) and cumulative sum of
the squares (CUSUM of Squares) to confirm the stability of
the long-run and short-run parameters, respectively the
reliability and stability of the examined models. While the
cumulative sum of squares test detects abrupt changes from
the constancy of the regression coefficient, the cumulative
sum test captures systematic variations in the regression
coefficients [74]. Under the null hypothesis, the regression
coefficients remain constant over time, being equal (or
stable) in all sequential subsamples Ploberger and Krämer
[75]. Hence, the estimated models are stable and there is no
structural break in the observed time series, if the null

.000

.002

.004

.006

.008

.010

5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20

M7 M8 M9 M10 M11 M12

CV_BET_NG CV_SNG CV_EL
CV_TGN CV_TEL

Figure 7: Conditional volatility (CV) plot of Romanian stock
market index and energy companies. Source: author’s own work.
Notes: variables’ descriptions are provided in Table 2.

Table 7: Continued.

Dependent variable: BET-NG Dependent variable: SNG
Variable Coefficient Std. error z-statistic Prob. Variable Coefficient Std. error z-statistic Prob.
GARCH (−1) 0.758657 0.086541 8.766479 0 GARCH (−1) 0.787782 0.11503 6.848478 0
T-DIST. DOF 2.000299 0.427798 4.675804 0 T-DIST. DOF 2.148645 0.643148 3.340823 0.0008
ARCH+GARCH 493.708557 ARCH+GARCH 1.429551
R-squared −0.000496 Mean dependent var 0.013354 R-squared −0.001009 Mean dependent var 0.012429
Adjusted R-
squared −0.000496 S.D. dependent var 0.335083 Adjusted R-

squared −0.001009 S.D. dependent var 0.191365

S.E. of regression 0.335166 Akaike info criterion 0.157424 S.E. of regression 0.191462 Akaike info criterion −0.736736
Sum squared resid 13.81739 Schwarz criterion 0.271145 Sum squared resid 4.508874 Schwarz criterion −0.623015

Log likelihood −4.760306 Hannan–Quinn
criterion. 0.20362 Log likelihood 50.67763 Hannan–Quinn

criterion. −0.69054

Durbin–Watson
stat 2.542814 Durbin–Watson

stat 2.697083

Source: author’s own work. Notes: method: ML ARCH–student’s t distribution (BFGS/Marquardt steps). Sample: 7/01/2021–12/21/2021. Included ob-
servations: 124. For the definition of variables, please see Table 2.
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Figure 8: Continued.
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hypothesis is valid [76]. Contrarily, the alternative as-
sumption is that the regression coefficients fluctuate during
the course of the sample. Nevertheless, the test is commonly
questioned on the grounds that it is quite straightforward
and does not request a priori information regarding the
timing of the structural change [78]. Concretely, these tests
produce a diagram by recurrently computing the regression
coefficients and residuals [76]. For the stability of the esti-
mated outcomes, the graph should maintain the critical
values.

/e results of CUSUM and CUSUM of squares are
plotted in Figure 9. As far as the CUSUM test is concerned,
all the models are stable as the CUSUM blue line is within
the 5% significance boundaries illustrated by red dotted
lines. Howbeit, the CUSUM test is less powerful because the
confidence interval of the test is approximated [77]. In

addition, the CUSUM of Squares test shows the stability of
APX, BET-NG, EEX-P, and TGN models, but EEX-B, EL,
LNGI, SNG, and TEL models are unstable as the CUSUM of
Squares blue line crosses the 5% boundary. However, al-
though it is known that the CUSUM of Squares test statistic
is distributed as a beta random variable, there should be
acknowledged that the confidence interval of the test is also
approximated [77].

Further, even though several models are unstable as
pointed out by Figure 9, Table 11 provides supplementary
diagnostic tests in order to check for robustness. To avoid the
serial correlation problem (the association among included
variables and its lagged value), the Breusch-Godfrey LM test
for autocorrelation (presence of autocorrelation in the null
hypothesis) was conducted, while heteroscedasticity was
examined by Breusch-Pagan-Godfrey test. Accordingly, the
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Figure 8: Akaike information criteria (AIC). Source: author’s own work. Notes: for the definition of variables, please see Table 2.
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hypothesis of no serial correlation between variables and its
lagged value is rejected at a 5% level of significance (Prob.
Chi-Square> 0.05), except for the EEX-Pmodel. In addition,
the probability associated with the Chi-Square value is above

the 0.05 significance level signifying that the assumption of
homoscedasticity fails to be rejected, except EEX-B, EEX-P,
and SNGmodels./erefore, the errors of the EEX-B, EEX-P,
and SNG models are not homoscedastic.

Table 9: ARDL long-term term coefficients.

Variables Coefficient Std. error t-statistic Prob.
APX
CNE 0 0 0.800675 0.425
D (CNW) 0 0 −0.22699 0.8208
BET-NG
CNE 0 0 −0.99716 0.3207
D (CNW) 0 0 0.314219 0.7539
EEX-B
CNE 0 0 0.629579 0.5303
D (CNW) 0 0 −0.43845 0.6619
EEX-P
CNE 0 0 0.671389 0.5034
D (CNW) 0 0 −1.31788 0.1903
EL
CNE 0 0 −0.82507 0.411
D (CNW) 0 0 0.827637 0.4095
LNGI
CNE 0 0 0.110985 0.9118
D (CNW) 0 0 0.012388 0.9901
SNG
CNE 0 0 −0.73428 0.4642
D (CNW) 0 0 1.504202 0.1352
TEL
CNE 0 0 −1.35105 0.1794
D (CNW) 0 0 0.221226 0.8253
TGN
CNE 0 0 −2.46409 0.0152
D (CNW) 0 0 −2.27302 0.0249
Source: author’s own work. Notes: for the definition of variables, please see Table 2.

Table 8: /e results of the ARDL bounds test for the model environment and COVID-19.

Test statistic: F-statistic
BET-NG 40.32473
SNG 33.30209
EL 39.27895
TGN 52.79222
TEL 40.24938
EEX-B 25.06441
EEX-P 25.75187
APX 23.92644
LNGI 38.06681

Critical value bounds
Significance I0 bound I1 bound
10% 3.17 4.14
5% 3.79 4.85
2.50% 4.41 5.52
1% 5.15 6.36
Source: author’s own work. Notes: null hypothesis: no long-run relationships exist. For the definition of variables, please see Table 2.
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4.2.4. Variance Decomposition Research. To determine the
extent to which COVID-19 variables contribute to the ex-
planation of energy market variables, the variance decom-
position approach was used, the outcomes being revealed in
Table 12. Decomposition variation indicates the extent to
which a certain variable can explain the evolution of the
variation of another variable. In addition, it shows which of

the independent variables is stronger in explaining the
variability of dependent variables over time.

From the results obtained after the decomposition of the
variance, it can be noticed that the number of new cases of
COVID-19 registered in Europe shows a higher contribution
in the case of EEX-B, EEX-P, LNGI, EL, SNG, and TGN,
whereas for the variables BET-NG, APX, TEL, the largest

Table 10: ARDL cointegrating and short-term coefficients.

Variables Coefficient Std. error t-statistic Prob.
Dependent variable: APX
D(APX(−1)) 0.809048 0.227774 3.551977 0.0006
D(APX(−2)) 0.434999 0.163033 2.668164 0.0087
D(APX(−3)) 0.253036 0.091628 2.761563 0.0067
D(CNE) 0 0 0.795941 0.4277
D(D(CNW)) 0 0 −0.22721 0.8207
CointEq(−1) −2.297643 0.272947 −8.41792 0
Dependent variable: BET-NG
D(CNE) 0 0 −0.99377 0.3224
D(D(CNW)) 0 0 0.314607 0.7536
CointEq(−1) −1.003723 0.09165 −10.9517 0
Dependent variable: EEX-B
D(EEX-B(−1)) 0.833263 0.190063 4.384153 0
D(EEX-B(−2)) 0.464822 0.140376 3.311257 0.0013
D(EEX-B(−3)) 0.313867 0.087614 3.582395 0.0005
D(CNE) −0.000001 0.000001 −2.19195 0.0305
D(D(CNW)) 0 0 −0.43939 0.6612
CointEq(−1) −2.033893 0.235973 −8.61918 0
Dependent variable: EEX-P
D(EEX-P(−1)) 0.839216 0.208358 4.027771 0.0001
D(EEX-P(−2)) 0.514926 0.152479 3.377025 0.001
D(EEX-P(−3)) 0.279896 0.089542 3.125875 0.0023
D(CNE) −0.000002 0.000001 −1.75091 0.0827
D(D(CNW)) 0 0 −0.75757 0.4503
CointEq(−1) −2.206487 0.257442 −8.57081 0
Dependent variable: EL
D(CNE) 0 0 −0.82438 0.4114
D(D(CNW)) 0 0 0.833004 0.4065
CointEq(−1) −0.99039 0.091465 −10.8281 0
Dependent variable: LNGI
D(CNE) 0 0 0.110969 0.9118
D(D(CNW)) 0 0 0.012388 0.9901
CointEq(−1) −0.983164 0.091917 −10.6962 0
Dependent variable: SNG
D(CNE) 0 0 −0.73723 0.4625
D(D(CNW)) 0 0 0.835434 0.4052
CointEq(−1) −0.873453 0.089253 −9.78628 0
Dependent variable: TEL
D(CNE) 0 0 1.383263 0.1693
D(CNE(−1)) 0 0 0.101994 0.9189
D(CNE(−2)) 0 0 2.33551 0.0213
D(D(CNW)) 0 0 0.221264 0.8253
CointEq(−1) −1.005732 0.091574 −10.9827 0
Dependent variable: TGN
D(CNE) 0 0 2.840856 0.0053
D(CNE(−1)) 0 0 3.286466 0.0013
D(D(CNW)) 0 0 −2.36328 0.0198
CointEq(−1) −1.086295 0.088083 −12.3326 0
Source: author’s own work. Notes: for the definition of variables, please see Table 2.
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Figure 9: Continued.
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Figure 9: CUSUM test and CUSUM of square test of each ARDL model. Source: author’s own work. Notes: for the definition of variables,
please see Table 2.

Table 11: ARDL diagnosis tests.

APX
Breusch–Godfrey serial correlation LM test

F-statistic 1.956852 Prob. F(2, 111) 0.1461
Obs∗R-squared 4.086932 Prob. Chi-square(2) 0.1296

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 0.871964 Prob. F(6, 113) 0.5179
Obs∗R-squared 5.310026 Prob. Chi-square(6) 0.5047
Scaled explained SS 13.70353 Prob. Chi-square(6) 0.0331

BET-NG
Breusch–Godfrey serial correlation LM test

F-statistic 0.095708 Prob. F(2, 117) 0.9088
Obs∗R-squared 0.200903 Prob. Chi-square(2) 0.9044

Heteroskedasticity test: Breusch-Pagan-Godfrey
F-statistic 2.362356 Prob. F(3, 119) 0.0747
Obs∗R-squared 6.91355 Prob. Chi-square(3) 0.0747
Scaled explained SS 10.20941 Prob. Chi-square(3) 0.0169

EEX-B
Breusch–Godfrey serial correlation LM test

F-statistic 1.43912 Prob. F(2, 110) 0.2416
Obs∗R-squared 3.059835 Prob. Chi-square(2) 0.2166

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 3.030858 Prob. F(7, 112) 0.0059
Obs∗R-squared 19.11122 Prob. Chi-square(7) 0.0078
Scaled explained SS 36.21409 Prob. Chi-square(7) 0

EEX-P
Breusch–Godfrey serial correlation LM test

F-statistic 3.67646 Prob. F(2, 109) 0.0285
Obs∗R-squared 7.583398 Prob. Chi-square(2) 0.0226

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 2.361501 Prob. F(8, 111) 0.0219
Obs∗R-squared 17.45327 Prob. Chi-square(8) 0.0257
Scaled explained SS 36.76958 Prob. Chi-square(8) 0

EL
Breusch–Godfrey serial correlation LM test

F-statistic 0.078257 Prob. F(2, 117) 0.9248
Obs∗R-squared 0.164321 Prob. Chi-square(2) 0.9211

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 1.515814 Prob. F(3, 119) 0.214
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contribution comes from the number of new COVID-19
cases registered globally.

4.2.5. Causality Assessment. To explore causality between
selected variables, the Granger causality test is applied. To
employ the Granger causality test, the data series must be
stationary and have therefore been converted into stationary
series. Table 13 shows the results after the Granger causality
test for the energy market and COVID-19 variables.

/e causality test confirms that between the number of
new cases of COVID-19 registered in Europe and TEL,
respectively TGN, there is a one-way relationship running
fromCNE to both energy companies listed on the BSE. From
an econometric point of view, we came to this decision
because the p-value is below the threshold of 10% and 5%
respectively, which leads to the rejection of the null hy-
pothesis: the number of new cases of COVID-19 in Europe

does not determine Granger-type causation variables
analyzed.

To our knowledge, the existing studies on the impact of
COVID-19 on the energy market during July-December
2021, did not address this type of relationship study, the
novelty of the article deepening consisting in this ARDL
model that will allow the analysis of long-term relationships
between variables selected, as well as the decomposition of
the variance and the identification of the causal relations.

/e innovations of this research include the following
aspects. First, this studymeasured the impact of the COVID-
19 pandemic on the energy market. Second, this research
integrated advanced econometric models to obtain detailed
results on the long-term or short-term relationships between
COVID-19 variables and the energy market. /ird, this
study will help fill the gap in the literature and will be a focal
point for future energy market research during the COVID-
19 pandemic.

Table 11: Continued.

APX
Breusch–Godfrey serial correlation LM test

Obs∗R-squared 4.527293 Prob. Chi-square(3) 0.2099
Scaled explained SS 8.60173 Prob. Chi-square(3) 0.0351

LNGI
Breusch–Godfrey serial correlation LM test

F-statistic 0.03895 Prob. F(2, 117) 0.9618
Obs∗R-squared 0.081841 Prob. Chi-square(2) 0.9599

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 0.019132 Prob. F(3, 119) 0.9964
Obs∗R-squared 0.059298 Prob. Chi-square(3) 0.9962
Scaled explained SS 1.165012 Prob. Chi-square(3) 0.7614

SNG
Breusch–Godfrey serial correlation LM test

F-statistic 0.210536 Prob. F(2, 115) 0.8105
Obs∗R-squared 0.445074 Prob. Chi-square(2) 0.8005

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 4.599008 Prob. F(4, 117) 0.0017
Obs∗R-squared 16.57594 Prob. Chi-square(4) 0.0023
Scaled explained SS 38.89259 Prob. Chi-square(4) 0

TEL
Breusch–Godfrey serial correlation LM test

F-statistic 0.4525 Prob. F(2, 112) 0.6372
Obs∗R-squared 0.969886 Prob. Chi-square(2) 0.6157

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 0.837925 Prob. F(6, 114) 0.5431
Obs∗R-squared 5.110863 Prob. Chi-square(6) 0.5297
Scaled explained SS 14.91187 Prob. Chi-square(6) 0.021

TGN
Breusch–Godfrey serial correlation LM test

F-statistic 0.246637 Prob. F(2, 114) 0.7818
Obs∗R-squared 0.525616 Prob. Chi-square(2) 0.7689

Heteroskedasticity test: Breusch–Pagan-Godfrey
F-statistic 1.580195 Prob. F(5, 116) 0.1711
Obs∗R-squared 7.779751 Prob. Chi-square(5) 0.1688
Scaled explained SS 10.33263 Prob. Chi-square(5) 0.0663
Source: author’s own work. Notes: for the definition of variables, please see Table 2.
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5. ConcludingRemarks andPolicy Implications

/e extreme insecurity of the pandemic and the related
economic failures have made markets very volatile and
unpredictable. Hence, the risks of the global financial market
boosted considerably in response to the disease. In this
article, we examined how the number of new COVID-19
cases in Europe and globally is affecting the Romanian
energy market. To achieve our goal, we used daily data for
the period July 1, 2021–December 21, 2021, which includes
the fourth wave of the COVID-19 pandemic. We have se-
lected a wide range of variables that characterize the energy
market: energy price indices, natural gas, and the BET-NG
index of the Bucharest Stock Exchange. Also, we covered
several companies listed on BSE that act in the energy field
which are also among the most traded companies in
Romania.

Due to the mix of stationary and nonstationary variables,
the ARDL model was adopted in this research. /rough this
model, it was feasible to study the relationships that are
established in the long and short term. /ere should be
noted that the number of short-term relationships was
higher, which is also due to the short episodes of high
volatility recorded in the investigated timeframe. However,
in the long run, there is a positive impact on the number of
new cases in Europe and in the world on the return of TGN.
In contrast, no long-term relationship was identified be-
tween COVID-19 variables and the price of electricity and

natural gas. In the short term, a negative impact of new cases
of COVID-19 infection in Europe on the price of electricity
has been identified. As well, in the short run, the positive
impact of the new COVID-19 cases is noticed in the
companies traded on BSE. Hence, an increase in the number
of new COVID-19 cases in Europe during the analyzed
period leads to a rise in the share price of TEL. In the same
vein, an increase in the number of new cases of COVID-19
both in Europe and globally have a positive impact on the
price of TGN shares.

To explore causality between variables, the Granger
causality test was applied. One-way causal relationships have
been identified from the number of new COVID-19 cases in
Europe to the returns of TEL and TGN. Nevertheless, no
Granger causal relationships have been found between the
COVID-19 variables and the price of electricity or natural
gas.

/is research showed that the variables do not have a
direct impact on energy prices, but certainly, the effects of
the COVID-19 pandemic are those that contributed to the
increase in energy prices, obviously indirectly by reflecting
the negative effects of measures to combat the spread of
COVID-19 virus. Our empirical findings provide insight
into how the energy market is affected by the COVID-19
pandemic.

As it turned out, prices have risen, and this is due to the
supply deficit. /erefore, we consider a series of measures
that should be implemented by the administrative sector in

Table 12: /e results of the variance decomposition.

Variance decomposition of BET-NG
Period BET-NG CNE D(CNW)
4 98.29786 0.515906 1.186235
Variance decomposition of APX
Period APX CNE D(CNW)
4 95.79962 0.579511 3.620871
Variance decomposition of EEX-B
Period EEX-B CNE D(CNW)
4 98.26753 1.351639 0.380828
Variance decomposition of EEX-P
Period EEX-P CNE D(CNW)
4 97.44553 1.829981 0.724489
Variance decomposition of LNGI
Period LNGI CNE D(CNW)
4 97.0762 2.171236 0.75256
Variance decomposition of EL
Period EL CNE D(CNW)
4 97.45433 1.630974 0.914701
Variance decomposition of SNG
Period SNG CNE D(CNW)
4 96.26766 2.22723 1.505114
Variance decomposition of TEL
Period TEL CNE D(CNW)
4 98.29561 0.720873 0.983517
Variance decomposition of TGN
Period TGN CNE D(CNW)
4 91.5325 5.388915 3.078584
Source: author’s own work. Notes: null hypothesis: no long-run relationships exist. Notes: for the definition of variables, please see Table 2.
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order to avoid a social crisis. In the immediate vicinity, aid
may be provided to vulnerable household consumers for
price increases, either in cash or by partial payment of the
budget bill; temporary delays in paying bills and avoiding
disconnections during this period; reduction of taxes and
duties (for the most vulnerable consumers); state aid to
industry; increasing market liquidity and transparency; and
investigations into speculation or market abuse.

We also presume that increasing investment in renew-
ables, as well as energy efficiency in buildings and industry, is
a solution that will only bring positive results in the long run.
As a result, transitioning to clean energy is the best way to
protect against future price shocks and should be
accelerated. /erefore, the findings of this study can help
investors optimize their portfolios while also providing
guidance to decision-makers and regulators. In addition, in
order to help the oil market, governments may relax
quarantine restrictions and reopen their businesses [12].

Because of the ongoing changes in the pandemic, as well
as the various geopolitical and economic events that may
occur, more research on this topic is likely in the future.

/ese findings should be considered by investors and pol-
icymakers because they argue that the relationship between
energy goods and COVID-19 is dynamic rather than linear.
For the reason that the current study is limited to the fourth
wave of the disease, upcoming investigations should also
cover the preceding COVID-19 waves. /e current study is
limited to merely the Romanian energy market and the
fourth wave of the COVID-19 pandemic. However, further
research avenues should cover more international energy
markets, as well as the prior pandemic period. As well,
upcoming studies might assess the co-movements of the
energy market with other variables such as gold or agri-
cultural commodities.
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