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In this paper, we study e�ect algebra-induced partial ordered sets. All possible cases of e�ect algebras generated by bounded partial
ordered setMI of height 2 are given. In addition, the structure of chain e�ect algebra is studied carefully and the corresponding
results are obtained.

1. Introduction

In the past few decades, algebraic structure models used to
describe objective things have emerged in large numbers,
providing e�ective tools for our scienti�c research. In the
�eld of quantum mechanics and quantum logic, there are
e�ects algebra [1], mv-algebra and bck-algebra [2]. In
particular, e�ect algebra greatly promotes the rapid devel-
opment of quantum theory and quantum logic.

E�ect algebra is an important concept introduced by
Foulis and Bennett through algebraic abstraction when they
studied quantum logic. Since 1994, the study of e�ect algebra
has been favored by scholars.First, Foulis and Bennett gave a
series of basic properties of e�ect algebra [1]. In 1996,
Gudder proposed the concept of accurately measurable el-
ements and pivot elements [3], and proved that the e�ect
algebra in which all elements are pivot elements is an or-
thogonal modular lattice. In 1999, Riecanova removed the
condition of existence of identity elements in the e�ect
algebra and obtained the generalized e�ect algebra [4]. In
2002, Gudder and Greechie extracted some properties of
sequence product operation in Hilbert space and proposed
sequence e�ect algebra [5]. In 2019, Wu et al. proposed
L-algebras in [6], which is a generalization of homogeneous
e�ect algebra. �e relationship between e�ect algebras and
other algebraic structures has also been studied extensively.

Generally speaking, e�ects algebra is an algebraic
structure with a binary partial operation and a unary op-
eration, and contains elements 0,1. �e elements of e�ects
algebra are events that are not sharp or clear, such as fuzzy
events, quantum e�ects. �erefore, we can think of e�ect
algebra as fuzzy and ambiguous quantum logic [7]. E�ects
algebra, of course, is also an algebraic abstraction of the
various physical models of quantummechanics. At the same
time, e�ect algebra is in the category of partial order
structure, it is MV-algebra.

As we all know, e�ect algebra has been applied to
quantum theory and quantum logic with great success.
However, because e�ect algebra is a defect of partial algebra,
its algebraic structure is not perfect, which brings inconve-
nience to the application research. �e partial binary oper-
ation+ of e�ect algebra are fully embodied in the partial order
relation introduced.�erefore, it is a good idea to study e�ect
algebra from the perspective of partial ordered sets.

To avoid the di�culty of partial algebras, starting from
the concept of e�ect algebras, we use e�ect algebras to induce
the unique partial order and make it a partial order set. We
study e�ect algebras from this perspective. �e types,
quantities and structures of partial ordered sets are discussed
in e�ect algebras. �e results show that this method can give
some interesting theorems describing the structure of e�ect
algebras perfectly.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2022, Article ID 3414493, 15 pages
https://doi.org/10.1155/2022/3414493

mailto:zhfcun@163.com
https://orcid.org/0000-0001-7524-7305
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3414493


Below, we first give the basic definition and some
properties used in the paper.

2. Preliminaries

First we introduce the concept of effects algebra and some
properties that will be used.

Definition 1. [1] An effect algebra (EA for short) is a
systemX � (X, +, 0, 1)where0, 1 ∈ Xand+ is a partial binary
operation onXsatisfying the conditions:

(E1) for all u, v ∈ X, u + v is defined⇒ v + u is defined,
and u + v � v + u;
(E2) for all u, v, w ∈ X, (u + v) + w is defined⇒u + (v+

w) is defined, and (u + v) + w � u + (v + w);
(E3) for all u ∈ X there is a unique u′ ∈ E such that
u + u′ � 1;
(E4) for all u ∈ X, if 1 + u is defined then u � 0.

+e mapping x↦x′ is a total unary operation on X We
can define the so-called induced order≤X on X by
stipulation

≤X � (a, b) ∈ X × X |∃r ∈ X s.t. a + r � b{ }. (1)

Since 0≤Xu≤X1 is true for any u ∈ X, (X, ≤X) is a
bounded poset, denoted by P(X). When ≤X is a lattice-
order relation, we call the effect algebra X a lattice-order
effect algebra (LEA for short). When ≤X is a total-order
relation, we call the effect algebra X a chain effect algebra
(CEA for short).

Definition 2. Two effect algebras X � (X, +,′, 0X, 1X) and
Y � (Y,⊕,†, 0Y, 1Y) are isomorphic if there is a bijection φ
from X to Y such that for every u, v in X the following four
equations hold:

(I1) u + v is defined ⇔φ(u)⊕φ(v) is defined and then
φ(u + v) � φ(u)⊕φ(v);
(I2) φ(0X) � 0Y;
(I3) φ(1X) � 1Y;
(I4) φ(u′) � (φ(u))†.

Such a φ is called an isomorphism , denoted by
X ≃

φ
Y(X≃ Y for short).

Definition 3. (see[8]). Let(F, ≤ )be a poset, andf, g ∈ P.

(1) gcoversfinF, denoted byf≺g, iff<gand∀t ∈ P,f≤ t

≤g⇒f � t org � t.

In a poset (F, ≤ ) with a smallest element 0, the
element covering the 0 is called an atom. Let A(F) �

a ∈ F|a{ is an atom }.
(2) f, g ∈ F are called comparable iff≤gorg≤f.

Otherwisefandgare incomparable, which denoted
byf

����g.

+e following are the basic properties of effect algebra
given by Foulis and Bennett in 1994, which we will use.

Lemma 1 (see[1]). Let X � (X, +, 0, 1) be an EA and
g1, g2, k, l ∈ X . 4en

(1) g1 + g2 is defined ⇔g2 ≤Xg1′⇔g1 ≤Xg2′ ;
(2) if g1 + g2 is defined then k + l is defined for all

k≤X g1 and l≤Xg2 ;
(3) g1 ≤Xg2⇔g2′ ≤Xg1′ ;
(4) k′′ � k ;
(5) if g1 ≤Xg2 and g2 + k is defined then g1 + k is defined

and g1 + k≤X g2 + k;
(6) g1 + g2 � k⇔g1′ � g2 + k′ ⇔g1 � (g2 + k′)′.

Theorem 1. 4e necessary and sufficient condition for the EA
X � (X, +,′, 0E, 1E) and Y � (Y,⊕,†, 0F, 1F) to be isomor-
phic is that there exists a bijective φ from X to Y such that
∀g, h ∈ X the following condition (I1) is true.

(I1) g + h is defined ⇔φ(g)⊕φ(h) is defined and
φ(g + h) � φ(g)⊕φ(h),

Proof. (⇐): Since φ: X⟶ Y is a bijection, then ∃j ∈ X,
such that φ(j) � 1Y. Hence

φ 1X(  � φ j + j′(  � φ(j)⊕φ j′(  � 1Y⊕φ j′( . (2)

By (E3), we have φ(j′) � 0Y. +erefore, φ(1X) � 1Y , j �

1X and j′ � 0X, which shows that (I2) and (I3) holds.
For every l ∈ X , Since l + l′ � 1X, we have

φ(l)⊕φ l′(  � φ l + l′(  � φ 1X(  � 1Y. (3)

Hence φ(l′) � (φ(l))†, i.e. (I4) holds. +erefore, X≃
φ
Y.

(⇒): By Definition 2, it is trivial. □

Definition 4. By an isomorphism between two posets (S, ≤ )

and (T, ≤ ) , is meant a one-one correspondence ψ between S

and T such that

s≤ t⇔ψ(s)≤ψ(t). (4)

Two posets are called isomorphic iff there exists an
isomorphism between them, we writeψ: S≃

ψ
poTor justS≃T;

an isomorphism of a partly ordered set with itself is called an
automorphism. A many-one corregiondence satisfying (4) is
called isotone .

By the converse of a relation R is meant the relation Rc

such that xRcy if and only if yRx.

Definition 5. By the dualPc of a poset P is meant that poset
defined by the converse relation on the same elements.

According to Definitions 2 and 4, we can obtain the
following lemma. It gives the conclusion that the
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isomorphism of EA isomorphism can imply the order
isomorphism.

Lemma 2. LetX � (X, +,′, 0X, 1X) andY � (Y,⊕,†, 0Y, 1Y)

be EAs, X≃
φ
Y . 4en (X, ≤X)≃

φ
po(Y, ≤Y).

+e condition (I1) can be further simplified by the
following theorem.

Theorem 2. Two effect algebras X � (X, +,′, 0X, 1X) and
Y � (Y,⊕,†, 0Y, 1Y) are isomorphic iff ∃φ: X⟶ Y, and for
allw, v ∈ X

(I1) ′ if w + v is defined then φ(w)⊕φ(v) is defined and
φ(w + v) � φ(w)⊕φ(v),
(li) (X, ≤X)≃

φ
po(Y, ≤Y)

Proof. (⇐): First of all, since (X, ≤X)≃
φ

po(Y, ≤Y), φ is
bijective.

For all u ∈ Y, 0X + φ− 1(u) is defined, then so does
φ(0X)⊕φ(φ− 1(u)) and

φ 0X( ⊕φ φ− 1
(u)  � φ 0X + φ− 1

(u)  � φ φ− 1
(u)  � u.

(5)

+us φ(0X) � 0Y.
Since φ: X⟶ Y is a bijection, then ∃h ∈ X, such that

φ(h) � 1Y. Hence

φ 1X(  � φ h + h′(  � φ(h)⊕φ h′(  � 1Y⊕φ h′( . (6)

By (E3), we have φ(h′) � 0Y. +us h′ � 0X and
h � 1Y.+erefore, which shows that (I2) and (I3) holds.

For every w ∈ X, Since w + w′ � 1X, we have

φ(w)⊕φ w′(  � φ w + w′(  � φ 1X(  � 1Y. (7)

Hence φ(w′) � (φ(w))†, i.e. (I4) holds.
+e following is the proof of condition (I1)′ and (li)

implication condition (I1).
Let k, l, r ∈ X and φ(k)⊕φ(l) is defined, φ(k)⊕φ(l) �

φ(r) in Y. +en

φ(k)≤Yφ(r). (8)

therefore

k≤Xr. (9)

∃o ∈ X, such that k + o � r. By (I1), we have
φ(k)⊕φ(o) � φ(r). +en φ(l) � φ(o) and l � o. i.e. (I1)
holds.

+erefore, X≃
f
Y.

(⇒):By Definition 2 and Lemma 2, it is trivial. □

Remark 1. 4e condition (I1)′ in +eorem 1 does not imply
the condition (I1), see Example 1.

Example 1. LetX1 � 01, 11, p1, q1, , X2 � 02, 12, p2, q2,  . It
is easy to verify that X1 � (X1, +,′, 01, 11) and
X2 � (X2,⊕,†, 02, I2) are effect algebras, where+,′ , ⊕,† see the
follows.

Let f: X1⟶ X2, 01↦02, 11↦12, p1↦p2, q1↦q2. +en
f is a bijection from X1 to X2, and satisfies condition (I1)′.
But the effect algebras X1 and X2 are not isomorphic.

For each effect algebra E, a unique partially ordered set
P(E) can be obtained under (1). +en, for a given bounded
poset (P, ≤ ), can we introduce partial binary operation +

and unary operation′such that (P, +,′, 0, 1) is an EA and the
induced order relation on P is exactly ≤ ?

+e following counterexamples answers this question.

Example 2. Let V5 � 0, 1, v1, v2, r , 0< r< v1 < 1, 0< r<
v2 < 1, (see Figure 1).

If E(V5) � (V5, +,′, 0, 1) is an EA. Since 0< r< v1 < 1, we
have r + r � v1. Similarly, since 0< r< v2 < 1, we have
r + r � v2, hence v1 � v2. +is is a contradiction. +us,
(V5, ≤ ) cannot be constructed as an EA.

Example 3. LetV4 � 0, 1, v1, v2 and partial binary opera-
tions +, ⊕ and unaryoperations′,† are defined by

It is easy to prove that E1(V4) � (V4, +,′, 0, 1) and
E2(V4) � (V4,⊕,†, 0, 1) are two completely different effect

algebras, but they both induce partial ordered sets of V4 (see
Figure 2). In face, We have more general examples.

Discrete Dynamics in Nature and Society 3



Example 4. Let E0 � [0, 1]⊆R(R is a set of real numbers)
and define⊕nand′nas follows:

x⊕ny �
x

n
+ y

n
( 

1/n
x

n
+ y

n ≤ 1

− x
n

+ y
n > 1

⎧⎨

⎩ x′n � 1 − x
n

( 
1/n

. n ∈ Z
+

( .

(10)

+en En � (E0,⊕n,′n , 0, 1) is a LEA with the induced
order ≤ n. For all u1, u2 ∈ [0, 1], since

u1 ≤ nu2⇔∃h ∈ [0, 1] s.t. u1⊕nd � u2. (11)

+us, if (u1, u2) ∈ ≤ n, then u2 � u1⊕nd �
������
un
1 + dnn


⩾u1,

i.e. (u1, u2) ∈ ⩽, where ⩽ is usual orders onR. Hence ≤ n⊆⩽.
Conversely, let (s, t) ∈ ⩽, i.e. 0⩽s⩽t⩽1, then we have

0⩽sn⩽tn⩽1 and
������
tn − snn

√
∈ [0, 1], s⊕n(

������
tn − snn

√
) � t, hence

s≤ nt, i.e. ≤⊆≤ n. +us ≤ n � ⩽(n � 1, 2, · · ·).

Theorem 3. Let (X, ≤ ) be a bounded poset with |X| � n (
n ∈ Z+ ). If n≤ 4 , then poset (X, ≤ )can be used to construct
an EA.

Proof

(1) When n � 1, the statement is clearly true.
(2) If n � 2, then X � 0, 1{ }, 0 + 0 � 0, 0 + 1 � 1 + 0 � 1,

0′ � 1, 1′ � 0, and X � (X, +, 0, 1) is an EA.
(3) Since (X, ≤ ) is a bounded poset, when n � 3, we

have X � 0, a, 1{ }, and 0< a< 1, i.e. poset (X, ≤ ) is a
3-element chain. Define + and′ as follows:

therefor, X � (X, +, 0, 1) is an EA.

(4) For a bounded poset (X, ≤ ) , there are two cases
when n � 4, one is a chain of four elements and the
other is V4 (see Example 1). So by +eorem 2 and
Example 1, we get (X, +), which can be converted
into EA. +e proof is complete. □

1

0

r

v1 v2

Figure 1: Lattice V5.

v1 v2

0

1

Figure 2: Lattice V4.
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Remark 2. 4ese results can be summarized in the following
table.

We use E(n) to denote n-element effect algebras
(n � 1, 2, 3).

Remark 3. Example 2 shows lattice V5with the least number
of elements in non-effect algebra.

Lemma 3. LetK � (K, +, 0, 1) be an EA.4en′: K≃Kc, that
is. (K, ≤K) is automorphic.

Proof. for all k1, k2 ∈ K, if k1 ≤ k2, then k2′ ≥ k1′ by Lemma 1
(3). And if k2′ ≥ k1′, then

k1 � k
′′
1 � k1′( ≤ k2′( , � k

′′
2 � k2. (12)

by Lemma 1 (4). +us ′: K≃Kc. □

Theorem 4. In the isomorphism sense, there are only four
types of effect algebra for five elements, which are:

(1) C5 � 0, u, v, w, 1{ }. Define + and′ as follows:

(2) N5 � 0, u, v, w, 1{ }. Define + and ′ as follows:

Discrete Dynamics in Nature and Society 5



(3) M3 � 0, u, v, w, 1{ }. Define + and ′ as follows:

(4) M3 � 0, u, v, w, 1{ }. Define + and ′ as follows:

Proof. Since there are only three kinds of automorphic
bounded five-element partial ordered sets: C5, N5, and M3,
the theorem holds. □

Remark 4. 4e five-element effect algebras whose induced
poset isM3 are not unique. 4ere are altogether four of them.
We’ll look at this in the next section.

Corollary 1. Let L � (L, +,′, 0, 1) be an EA with |E| � n (
n ∈ Z+ ). If n< 6 , then L � (L, +,′, 0, 1) is a LEA.

Example 5. [6] 4eP6 � (P6, +,′, 0, 1)is an EA, where+,′see
the follows.

Let (F, ≤ ) be a poset, r, s ∈ F and r< s. Here are the
definitions of the intervals:

[r, s] � d ∈ F|r≤d≤ s{ }, (r, s) � d ∈ F|r<d< s{ }. (13)

Note that P6 is not a lattice, next, we will consider lattice-
ordered effect algebras.

3. Homo-Ordered Effect Algebras

Next we will study the poset induced by the effect algebra
with the same property, and first give the definition of the
same order effect algebra.

Definition 6. Two effect algebras X � (X, +, 0X, 1X) and
Y � (Y, +, 0Y, 1Y) are calledHomo-ordered if the posets

(X, ≤ X) and (Y, ≤ Y) are isomorphic, denoted by X�
po

Y .

In Example 3, E1(V4)�
po

E2(V4) and in Example 4,
En �

po
E1, n � 1, 2, · · · holds. Below, we have more general

results.

Theorem 5. Let Z � (Z, +, 0Z, 1Z) be an EA, (K, ≤ ) be a
poset. IfP(Z)≃h (K, ≤ ), then Z�

po
K, where

K � (K,⊕,†, 0K, 1K), ∀ l1, l2 ∈ K:

l1⊕l2 �
h h

− 1
l1(  + h

− 1
l2(   h

− 1
l1(  + h

− 1
l2( is defined,

− otherwise,

⎧⎨

⎩ l
†
1 � h h

− 1
l1(  . (14)

Proof. First, we prove that K � (K,⊕,†, 0K, 1K) is an EA.
For all l1, l2 ∈ K, if l1⊕l2 is defined, then h− 1(l1) + h− 1

(l2) is defined, and h− 1(l1) + h− 1(l2) � h− 1(l2) + h− 1(l1) is
defined, hence l2⊕l1 is defined and

l2⊕l1 � h h
− 1

l2(  + h
− 1

l1(  

� h h
− 1

l1(  + h
− 1

l2(   � l1⊕l2.
(15)

i.e. (E1) holds. Similarly, we can prove that (E2) holds as
well.
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l1⊕l
†
1 � l1⊕ h h

− 1
l1(  ′  

� h h
− 1

l1(  + h
− 1

h h
− 1

l1(     ,

� h h
− 1

 l1(  + h
− 1

l1(  ′ 

� h 1Z(  � 1K.

(16)

+en (E3) holds.
Let 1K⊕l is defined (l ∈ K), then h− 1(1K) + h− 1(l) �

1Z + h− 1(l) is defined. +us, h− 1(l) � 0Z,

l � h h
− 1

(l)  � h 0Z(  � 0K. (17)

i.e. (E4) holds. Hence K � (K,⊕, †, 0K, 1K) is an EA.
Next, we show that P(K) � (K, ≤ ). i.e. ≤K � ≤ .
Let k1, k2 ∈ K and k1 ≤ k2. +en we have h− 1(k1)≤

h− 1(k2) and ∃y ∈ Z, h− 1(k1) + y � h− 1(k2).i.e.

h
− 1

k1(  + h
− 1

(h(y)) � h
− 1

k2( . (18)

+erefore k1⊕h(y) � h(h− 1(k1) + h− 1(h(y))) � h(h− 1

(k2)) � k2, i.e. k1 ≤Kk2.
Since k1 ≤Kk2, then ∃r ∈ K, k1⊕r � k2. therefore we

have h− 1(k1) + h− 1(r) � h− 1(k2). Hence h− 1(k1)≤

Zh− 1(k2). Since P(Z)≃h (K, ≤ ), we have k1 ≤ k2. +us, we
conclude that P(K) � (K, ≤ ) holds as well. +erefore,
P(Z) and P(K) are isomorphic.

+us, Z�
po

K, the proof is complete. □

Remark 5

(1) +is theorem gives a way to construct a new EA from
the poset of an EA.

(2) 4is method is not sufficient, see Example 3,
E1(V4)�

po
E2(V4)holds, but+and ⊕ do not satisfy the

relationship of +eorem 5.

Definition 7. Let K1 � (K1, +K1
,′K1 , 0, 1) and K2 � (K2,

+K2
,′K2 , 0, 1) are effect algebras and K1 ∩K2 � 0, 1{ },

M � K1 ∪K2. If we put

r + t ≔

r+K1
t, r+K1

t is defined r, t ∈ K1,

r+K2
t, r+K2

t is defined r, t ∈ K2,

− otherwise,

⎧⎪⎪⎨

⎪⎪⎩
r′

≔
r′K1 , r ∈ K1,

r′K2 , r ∈ K2,

⎧⎨

⎩

(19)

for all r, t ∈M thenM � (M, +,′, 0, 1) is EA, we callM a
union effect algebra of K1 and K2, denoted by
M � K1⊔K2 (see Figure 3.

In Example 3, if we put G � 0, a, 1{ }, H � 0, b, 1{ }, then
E1(V4) � G⊔H.

Definition 8. Let K � (K, +K,′
K

, 0K, 1K) and
L � (L, +L,′

L
, 0L, 1L) are EA. If we put

k1, h1(  + k2, h2(  ≔
k1+Kk2, h1+Lh2( , k1+Kk2 and h1+Lh2 are defined,

− , otherwise,


k1, h1( ′ ≔ k
′K
1 , h
′L
1 .

(20)

for all (k1, h1), (k2, h2) ∈ K × L, obviously
K⊗L � (K× L, +,′, (0K, 0L), (1K, 1L)) is EA, we callK⊗L
a direct product effect algebra ofKandL.

In Example 3, if we put G � H � 0, 1{ }, G � (G, +,′, 0, 1),

H � (H, +,′, 0, 1) and 0 + 0 � 0, 0 + 1 � 1 + 0 � 1,

0′ � 1, 1′ � 0, then E2(V4) � G⊗H � E(2)⊗E(2).
If all sub-chains in a poset P � (P, ≤ ) contain at most

m + 1 element (m ∈ N), then we say that the height of the
poset P � (P, ≤ ) is m, denoted by h(P) � m.

Lemma 4. Let H � (H, ≤ ) be a bounded poset with
h(H) � 2, then H � MI, where MI � (MI, ≤M),

MI � 0, 1{ } ∪ I, I≠∅, 0≤Ma≤M1, for all a ∈ I (see
Figure 4).

Proof. +e proof can be obtained directly from the
boundedness and height of the poset (H, ≤ ). □

Theorem 6. Let H � (H, ≤ )be a bounded poset with
h(H) � 2, then there is an EA X � (H, +,′, 0, 1) such that
P(X) � (H, ≤ ).

Proof. Let 0, 1 be the smallest and largest element of a
bounded poset (H, ≤ ), that is: 0≤ x≤ 1, for any x ∈ H.

Since h(H) � 2, H � I∪ 0, 1{ }, I � x, y, · · ·  by Lemma
4 (see Figure 4). Obviously, X � (H, +,′, 0, 1) is an EA and
P(X) � (H, ≤ ), where +,′ see the follows.

0 + j � j + 0 ≔ j, j + j ≔ 1; j′ � j, for all j ∈ I,

0 + 1 � 1 + 0 � 1, 0 + 0 � 0; 0′ � 1, 1′ � 0.
(21)

□

Theorem 7. Let X � (X, +,′, 0, 1)be an EA and
I � X/ 0, 1{ }. 4en the following are equivalent:

(1) P(X) � MI;
(2) For all u, v ∈ I, if u + v is defined then u + v � 1.

Discrete Dynamics in Nature and Society 7



Proof

(1) ⇒ (2). For all u, v ∈ I, if u + v is defined, then
u, v≤ u + v and u∨ v ≤ u + v. In MI, u∨ v � 1 for all
u, v ∈ I. +us we have u + v � 1.
(2)⇒ (1). For all u, v ∈ I, when u≠ v, we have u< u∨ v

or v< u∨ v. +en ∃s, t ∈ I, such that

u∨ v � u + s, or u∨ v � v + t. (22)
and u∨ v � 1 by (2).

Since X≃Xc by Lemma 3, u∧v � 0 for all u, v ∈ I. Hence
P(X) � MI, the proof is complete. □

Theorem 8. Let Z � (Z, +,′, 0, 1) be an EA with
P(Z) � MI, I � Z/ 0, 1{ }. 4en

Z � ⊔ Za|a ∈ I , (23)

where Za � (Za, +,′, 0, 1), Za � 0, a, a′, 1 , a ∈ I.

Proof. For all a ∈ I, Za � ( 0, a, a′, 1 , +,′, 0, 1) and

Za � 0, a, a′, 1  �
0, a, 1{ }, a � a′;

0, a, a′, 1 , a≠ a′.

⎧⎨

⎩ (24)

It is easy to verify that Za is an EA and

Zr ∩Zs �
0, 1{ }, r≠ s and r ≠ s′;

Zr � Zs, r � s or r � s′.

⎧⎨

⎩ (25)

for all r, s ∈ I. +us, ⊔ Za|a ∈ I  is defined and
∪ a∈IZa � Z, therefore, u + v is defined iff v ∈Zu by +e-
orem 7. HenceZ � ⊔ Za|a ∈ I , the proof is complete. □

Corollary 2. Let |I| � n ∈ Z+. In the isomorphism sense,
there are altogether [n/2] + 1 different homo-ordered effect
algebras with MI as the induced partial ordered set.

Remark 6

(1) In +eorem 8, when a≠ a′, Ea≃E(2)⊗E(2).
+erefore, the effect algebra E with P(E) � MI is

0

1

K1 K2

Figure 3: Union effect algebra K1⊔K2.

1

0

x y

Figure 4: Bounded poset MI.
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obtained by some 2-element effect algebras and 3-
element effect algebras through ⊗ and ⊔ operations.

(2) We find out the structure of the EA of height 2 of its
partial ordered set.

+e structure of the EA of height 3 of its partial ordered
set. Here are some examples.

(1) +,′ of C1 � E(2)⊗E(2)⊗E(2):

(2) +,′ of C2 � (E(2)⊔E(2))⊗E(2):

Example 6. P6, C1 � E(2)⊗E(2)⊗E(2) and
C2 � (E(2)⊔E(2))⊗E(2) are effect algebras whose partial
ordered sets have height 3. But the poset P(P6) ofP6 is not a
lattice, and C1�

po
C2, P(C1) � P(C2) is a cube C2 × C2× C2

(see Figure 5(a)).

Here is another example of an EA X whose poset P(X)

is not a lattice.

Example 7. It is easy to verify that P8 � (P8, +,′, 0, 1) is an
EA, where +,′ see the follows.

(P8, ≤ ) is not a lattice (see Figure 5(b)).

Example 8. 4e poset in Figure 6is not an induced poset of
any lattice effect algebra(n≥ 4). At the same time, we notice
that atn≠ 2,Znis all lattice, and we callZncrown lattice.

Figure 7 below shows the crown lattice Z1, Z2, Z3, and
Z4 with n � 1, 2, 3, and 4.

4. Chain Effect Algebra (CEA)

In the previous section we obtained the complete structure
of a class of effect algebras.+ey are constructed from 2-
element and 3-element effect algebra by ⊗ and ⊔ operations.
Since both 2-element and 3-element effect algebras are chain
effect algebras, we will discuss chain effect algebras in this
section.

Lemma 5. Let X � (X, +,′, 0, 1)be an EA and u, v, p, q ∈ X.
4en

(1) if u + p � u + q then p � q;
(2) if u + p � p then u � 0;
(3) u≺v iff there exists a atomp ∈ Xsuch thatu + p � v;
(4) if u≺v then v′≺ u′.

Proof

(1) Let w � u + p � u + q, then p′ � u + w′, q′ � u + w′
by Lemma 1 (4). +us p′ � q′, that is p � q.

(2) Since u + p � p � 0 + p, Hence p � 0 by (1).
(3) If u≺v, then ∃d ∈ X, u + d � v. Let y ∈ X, 0≤y<d,

since u + d � v, we have u + y is defined and u≤ u +

y< u + d � b by (1), then u � u + y and y � 0 by (2).

Discrete Dynamics in Nature and Society 9



1

0

k2

k1r1
s1

s2 r2

(a)

1

0

k2

k1r1
s1

s2 r2

(b)

Figure 5: Lattice C2 × C2 × C2 and poset P8. (a) C2 × C2 × C2 (b) P8.

0

1

g2 gngn–1

fn–1 fn

g1

f2f1

Figure 6: +e crown lattice Zn.

1

0

1

00

1

n = 3n = 2n = 1

0

1

n = 4

g2 g2 g3

f2 f2 f3

g1

g1 g1

g1 g1 g3 g4

f1

f1 f2 f3 f4

f1
f1

Figure 7: +e crown lattices Z1, Z2, Z3, Z4.
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Hence d is atom of (X, ≤ ). Conversely, let d be an
atom of X, and u + d � v, then u≤ v. If there ∃e ∈ X

u≤ e< v. that is e � u + y< v � u + d for some
y ∈ X. +en 0≤y<d, Since d is an atom, we have
y � 0, i.e. u � e. Hence u≺v.

(4) Since u≺v , then ∃w ∈ X , u + w � v and w is atom of
X by (3). We have u′ + w � v′ by Lemma 1 (4), +en
v′≺u′, the proof is complete. □

Theorem 9. If (L, ≤ ) is an n -element chain 0 � l1 < l2 < · · ·

< ln− 1 < ln � 1}, there is and only one effect algebra con-
structed by poset (P, ≤ ), and its+and′operations are as
follows:

Proof. Obviously, the + and ′ operations given in the the-
orem satisfy the condition (E1) – (E4), that is,
L � (L, +,′, 0, 1) is an EA. +e order relation induced onL

is ≤ .
+e following shows that the effect algebra constructed

by (L, ≤ ) is unique.
Let (L,⊕,†, 0, 1) be an EA and the induced poset is the

(L, ≤ ). Since l1 � 0, we have

l1⊕ lr � lr, r � 1, 2, . . . , n. (26)

Since lr≺lr+1, then ∃x ∈ L, lr⊕x � lr+1(r � 1, 2, ·n − 1),
then x � l2 by Lemma 5 (1). Hence

l2⊕lr � lr+1 (r � 1, 2, . . . , n − 1), and l2⊕ln is not defined.

(27)

+erefore, lr+2 � l2⊕lr+1 � l2⊕(l2⊕lr) � (l2⊕l2)⊕lr �

l3⊕lr, that is

l3⊕lr �
lr+2 (r � 1, . . . , n − 2),

− (r � n − 1, n).
 (28)

Similarly, we can show that

l4⊕lr �
lr+3 (r � 1, . . . , n − 3),

− (r � n − 2, n − 1, n),


· · · · · · · · · · · · · · · · · · · · · · · · ,

li⊕lr �
lr+(i− 1) (r � 1, . . . , n + 1 − i),

− (r � n + 2 − i, . . . , n − 1, n),


i � 1, 2, 3, . . . , n − 1.

(29)

Considering the above mentioned, we can get: ⊕ � +.
And, according to the above equation, lk⊕ln− k+1 � 1, hence
l†k � ln− k+1, (k � 1, 2, . . . , n), i.e. †�′.

+us, the effect algebra constructed by poset (L, ≤ ) is
unique, the proof is complete. □

Definition 9 (see[9]). Let(P, ≤ )be a partial ordered set.

(1) (P, ≤ )has the ascending chain condition (ACC ) if it
has no infinite strictly ascending sequences, that is, for
any ascending sequence

a1 ≤ a2 ≤ a3 ≤ · · · . (30)

∃m ∈ N , am+r � am for all r≥ 0.
(2) (P, ≤ )has the descending chain condition ( DCC ) if

it has no infinite strictly descending sequences, that is,
for any descending sequence

a1 ≥ a2 ≥ a3 ≥ · · · . (31)

∃m ∈ N , am+r � am for all r≥ 0.
(3) An effect algebra X � (X, +,′, 0, 1)has the ACC (

DCC ) if(X, ≤ )has the ACC (DCC).
where ≤ is induced order of X.

Definition 10 (see[9]). A poset(P, ≤ )is said to have a
maximal condition if each non-empty subset of
(P, ≤ )contains a maximal element. Dually, the pos-
et(P, ≤ )can be defined to have minimal conditions.

Lemma 6 (see[9]). Let (X, ≤ ) be a poset, then

(1) 4e sufficient and necessary condition for (X, ≤ ) to
satisfy ACC is that (X, ≤ ) has the maximum
condition.

(2) 4e sufficient and necessary condition for (X, ≤ ) to
satisfy DCC is that (X, ≤ ) has the minimal condition.

Theorem 10. Let X � (X, +, 0, 1) be an EA, then Xhas the
ACC iff it has the DCC.

Proof. If X has the ACC and let p1, p2, p3, · · · ⊆X be
descending sequence, i.e.

p1 ≥p2 ≥p3 ≥ · · · . (32)

+en p1′ ≤p2′ ≤p3′ ≤ · · · , therefor, ∃m ∈ N , am+k
′ � am

′ for
all k≥ 0 by ACC. +us an+k � an for all k≥ 0, and X �

(X, +,′, 0, 1) has the DCC, i.e. ACC⇒ DCC and vice versa.
+e proof is complete.

Using the above two theorems, we get the following
result. □

Theorem 11. A chain effect algebraC � (C, +,′, 0, 1) must is
one of the following:

(1) Cis a finite set 0 � p1, p2, . . . , pn− 1, pn � 1 and

0 � p1 <p2 < · · · <pn− 1 <pn � 1. (33)

(2) Chave an infinite strictly ascending chain
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1> q1 > q2 > q3 > · · · , (34)

and an infinite strictly descending chain

0< q1′ < q2′ < q3′ < · · · . (35)

Proof. If C is a finite set. Obviously, (1) is true.
Now let’s assume that C is an infinite set, and let’s prove

that C can only be (2). In face, C fails to have the DCC and
ACC (if not, C has the ACC, then C has the DCC by
+eorem 10, hence C is a finite set. +is is a contradiction.).
Hence (C, ≤ ) have an infinite strictly ascending chain

1> q1 > q2 > q3 > · · · . (36)

Obviously,

0< q1′ < q2′ < q3′ < · · · . (37)

is an infinite strictly descending chain in (C, ≤ ). +e
proof is complete.

Here is the simplest example of an infinite chain effect
algebra. □

Example 9. Let C0 � 0 � a0, a1, . . . , an, . . . , bn, bn− 1, . . . , b1,

b0 � 1} , and define +and ′ as follows:
as + at � as+t, bs + bt � − , as + bt

�
bt− s (s≤ t),

− (s> t),
 ∀s, t � 0, 1, 2, · · ·),

as
′ � bs, bs

′ � as(∀s � 0, 1, 2, · · ·).

(38)

+en C0 � (C0, +,′, 0, 1) is an infinite CEA. And

0 � a0 < a1 < · · · < an < · · · < bn < bn− 1 < · · · < b1 < b0 � 1.

(39)

Theorem 12. Let X � (X, +, 0, 1) be an EA, ≤ its induced
order, t, u, w ∈ X . If t< u and u + w is defined then
([t, u], ≤ )≃ ([t + w, u + w], ≤ ).

Proof. Since u + w is defined, t< u, we have z + w is defined
and z + w ∈ [t + w, u + w](∀w ∈ [t, u]) by Lemma 1 (2) and
(5).

Let f: ([t, u], ≤ )⟶ ([t + w, u + w], ≤ ), z↦z + w,

(∀z ∈ [t, u]).

For every l, k ∈ [t, u]

l≤ k⇔l + w≤ k + w⇔f(l)≤f(k). (40)

+us, ([t, u], ≤ )≃([t + w, u + w], ≤ ). □

Corollary 3. Let L � (L, +, 0, 1) be a CEA, p ∈ C.
Ifnp � ︷p + p + · · · + p

n
is defined then we have:

([0, p], ≤ )≃([p, 2p], ≤ )≃([2p, 3p], ≤ )

≃ · · ·≃([(n − 1)p, np], ≤ ).
(41)

Theorem 13. LetX � (X, +, 0, 1) be an EA with (X, ≤ ) has
no atoms. If l< k, l, k ∈ Xthen ∃w ∈ X such that l<w< k.

Proof. Consider l, k ∈ X, l< k. So ∃s ∈ X, s≠ 0 such that l +

s � k by Definition 1 (E1). Since (X, ≤ ) has no atoms, we
have: ∃y ∈ X such that 0<y< s, therefore l< l + y< l + s �

k, the result holds. □

Corollary 4. Let M � (M, +, 0, 1) be a finite EA. If (M, ≤ )

has a atom p ∈M, such that ∀t ∈M/ 0{ }, p≤ t, then (M, ≤ )

is a chain.

Proof. For the sequence d, 2d, 3d, · · · in (M, ≤ ), since M is
finite, we have: ∃k ∈ N, kd ∈M but (k + 1)d is undefined.

Since k d≤ 1, we have k d + m � 1 for some m ∈M. If
m≠ 0, then d≤ b and (k + 1)d � kd + d is defined by Lemma
1 (2). +is is a contradiction, hence m � 0 . +us kd � 1.
Now let’s drove that M is equal to 0, d, 2d, . . . , (k − 1)d, 1{ }.

Assume that c ∈M and c ∉ 0, d, 2d, . . . , (k − 1)d, 1{ }.
Since d< c and 0≺d≺2d≺ · · ·≺(k − 1)d≺1, then ∃t(1≤ t< k),
td< c, but (t + 1)d< c. Hence

c � t d + y(∃y ∈M). (42)

Obvious, y≠ 0, and y≥d, thus c � td + y≥ td + d. +is
is a contradiction. Hence

M � 0, d, 2 d, . . . , (k − 1)d, 1{ }, |M| � k + 1, (43)

and (M, ≤ ) is a chain.
+e following example shows that Corollary 4 fails when

L is an infinite EA. □

Example 10. Let K � 0, 1, kp, (kp)′|k � 1, 2, · · · ∪ at|t �

0, ± 1, · · ·}∪ bt|t � 0, ± 1, · · · , and
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Figure 8: Poset (K, ≤ ).
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Figure 9: Chain (K, ≤ ).
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sp + tp � (s + t)p, sp +(tp)′ �
((t − s)p)′ s< t,

1 s � t,

− s> t,

⎧⎪⎪⎨

⎪⎪⎩
s, t ∈ Z

+
( ,

np + ai � an+i, ai + aj �

1 i + j � 0,

((− i − j)p)′ i + j< 0,

− i + j> 0,

⎧⎪⎪⎨

⎪⎪⎩
( i, j ∈ Z),

np + bi � bn+i, bi + bj �

1 i + j � 0,

((− i − j)p)′ i + j< 0,

− i + j> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(i, j ∈ Z).

(44)

then K � (K, +, 0, 1) is an EA, but (K, ≤ ) is not chain
(See Figure 8). In face, (K, ≤ ) is not even a lattice ( a0, b0 

has no least upper bound in (k, ≤ )).

Example 11. Let

K0 � 0, p, 2p, . . . , np, . . . , (np)′, . . . , (2p)′, p′, 1 

∪ a0, a1, a− 1, · · · ,

(45)

sp + tp � (s + t)p, sp +(tp)′

�

((t − s)p)′ s< t,

1 s � t,

− s> t,

⎧⎪⎪⎨

⎪⎪⎩
s, t ∈ Z

+
( ,

np + ai � an+i, ai + aj

�

1 i + j � 0,

((− i − j)p)′ i + j< 0,

− i + j> 0,

⎧⎪⎪⎨

⎪⎪⎩
( i, j ∈ Z).

(46)

then K0 � (K0, +, 0, 1) is an EA, and (K0, ≤ ) is a chain
(See Figure 9).

We naturally ask the question: in Corollary 4, if L �

(L, +, 0, 1) is a LEA must (L, ≤ ) be a chain?
+e following theorem answers this question.

Theorem 14. Let L � (L, +, 0, 1) be a LEA. If (L, ≤ ) has a
atom p ∈ L , such that ∀l ∈ L/ 0{ }, p≤ l , then (L, ≤ ) is a chain.

Proof. If ∃m ∈ N such that mp ∈ L but (m + 1)p is unde-
fined.+en by Corollary 4, we know that the theorem is true.
+e theorem will be proved in the case where np is defined
(∀n ∈ N).

Obvious, for all k ∈ N, 0< kp< 1. According to the proof
of Corollary 4, similarly, we can get

x ∈ L|x≤ np  � 0, p, 2p, . . . , (n − 1)p, np ,

0<p< 2p< · · · < np,
(47)

and its dual

x ∈ L|x≥ np′(   � 1, p′, (2p)′, . . . , (np)′ ,

(np)′ < · · · <(2p)′ <p′ < 1.
(48)

Since p<p′, we have np< (np)′(n ∈ N).
Next, we will prove that L is a chain. Since

0, p, 2p, . . . , np, . . . , (np)′, . . . , (2p)′, p′, 1 ⊆C. (49)

Assume that u, v ∈ L are incomparable. +en

w, v ∉ 0, p, 2p, . . . , np, . . . , (np)′, . . . , (2p)′, p′, 1 , (50)

and, ∀s, t ∈ N , sp<w, v< (tp)′. Since (L, ≤ ) is a lattice, we
have w∧v ∈ L, let d � w∧v. Since d<w, v, we have
∃x, y ∈ L, x, y≥p such that d + x � w, d + y � v. +en

d � w∧v � (d + x)∧(d + y) � d +(x∧y), (51)

hence x∧y � 0, +is is a contradiction, thus (L, ≤ ) is a
chain. □

Definition 11. Let Lbe a lattice, j, m ∈ L,

(1) j is join-irreducible ifj � u∨v⇒ j � u or j � v,
(u, v ∈ L).

(2) m is meet-irreducible ifm � s∧t⇒m � s orm � t,
(s, t ∈ L).

J(L) � j ∈ L|j is join-irreducible} and M(L) �

m ∈ L|m{ is meet-irreducible}.

Theorem 15. Let C � (C, +, 0, 1) be a LEA. 4en the fol-
lowing conditions are equivalent:

(1) (C, ≤ )is a chain.
(2) 1is join-irreducible element of(C, ≤ ).
(3) 0is meet-irreducible element of(C, ≤ ).

Proof

(1)⇒ (2): Let s∨t � 1, s, t ∈ C. Since (C, ≤ ) is a chain,
we have: x and y are comparable. Hence s∨t � s or
s∨t � t, that is. 1 � s or 1 � t.+us, 1 is join-irreducible.
(2) ⇒ (3): By Lemma 2.
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(3) ⇒ (1): Let C � (C, +, 0, 1) be a LEA. Suppose that
(C, ≤ ) is not a chain. then ∃p, q ∈ C have p‖q holds.

Since (C, ≤ ) is a lattice, p∧q ∈ C, let d � p∧q. Since p‖q,
we have: d<p, q, then ∃x, y ∈ C, x, y> 0 such that
d + x � p, d + y � q. Hence

d � p∧q � (d + x)∧(d + y) � d +(x∧y), (52)

that is. x∧y � 0, +at contradicts the fact that 0 is meet-
irreducible element. +us (C, ≤ ) is a chain. □

Corollary 5. Let L � (L, +, 0, 1) be a LEA. If 0 is meet-ir-
reducible element of (L, ≤ ) , then L � J(L) � M(L).

5. Conclusion

+emain content of this paper is to study the properties and
structures of LEAs from the perspective of partial ordered
sets. We study the characterization of original effect algebras
by partial ordered sets induced by EAs. +e structure and
number of effect algebras generated by MI bounded partially
ordered sets of height 2 are solved.

We study the chain effect algebra and give some nec-
essary and sufficient conditions for determining the LEA as a
CEA. It is proved that a finite EA is a CEA if and only if it has
only one atom, and some counterexamples are given.
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