
Research Article
Comparative Study of Swarm-Based Algorithms for
Location-Allocation Optimization of Express Depots

Yong-Wei Zhang , Qin Xiao , Xue-Ying Sun , and Liang Qi

College of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 202003, China

Correspondence should be addressed to Qin Xiao; xiaoqincn@just.edu.cn

Received 11 May 2022; Revised 12 June 2022; Accepted 22 June 2022; Published 29 August 2022

Academic Editor: Shi Cheng

Copyright © 2022 Yong-Wei Zhang et al. ­is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

­e location and capacity of express distribution centers and delivery point allocation are mixed-integer programming problems
modeled as capacitated location and allocation problems (CLAPs), which may be constrained by the position and capacity of
distribution centers and the assignment of delivery points. ­e solution representation signi�cantly impacts the search e�ciency
when applying swarm-based algorithms to CLAPs. In a traditional encoding scheme, the solution is the direct representation of
position, capacity, and assignment of the plan and the constraints are handled by punishment terms. However, the solutions that
cannot satisfy the constraints are evaluated during the search process, which reduces the search e�ciency. A general encoding
scheme that uses a vector of uniform range elements is proposed to eliminate the e�ect of constraints. In this encoding scheme, the
number of distribution centers is dynamically determined during the search process, and the capacity of distribution centers and
the allocation of delivery points are determined by the random proportion and random key of the elements in the encoded
solution vector. ­e proposed encoding scheme is veri�ed on particle swarm optimization, di�erential evolution, arti�cial bee
colony, and powerful di�erential evolution variant, and the performances are compared to those of the traditional encoding
scheme. Numerical examples with up to 50 delivery points show that the proposed encoding scheme boosts the performance of all
algorithms without altering any operator of the algorithm.

1. Introduction

Since 2014, the express delivery volume in China has ranked
�rst in the world for six consecutive years [1]. Statistics show
107.7 billion pieces of delivery in China in 2021, with a 31%
growth compared with 2020 [2].

­e rapid growth of the Express Delivery Industry has
brought �erce competition among the participants. ­e
primary delivery companies actively improve service quality
and delivery e�ciency. For regional express delivery service
suppliers, the location of the service center has a signi�cant
impact on e�ciency and, hence, the overall operation cost.

Such a problem is typically modeled as a logistic dis-
tribution problem, which minimizes total distances between
the distribution center (DC) and associated delivery points
(DPs) under certain constraints. ­e problem is twofold: one
considers the location-allocation problem (LAP) of the
distribution centers and the other considers the vehicle

routing problem (VRP) that starts at the distribution center
and goes through each delivery point and back to the dis-
tribution center. ­e joint problem is the location and
routing problem (LRP) [3]. Both LAP and VRP are NP-hard,
and the combined LRP has attracted attention since the 1960s
[4]. ­e problem structure of LRP is shown in Figure 1.

In LRP, the optimal route associated with a given dis-
tribution center may change with the demands of the de-
livery point or the policy of distribution centers. ­erefore,
the VRPmay be left to the distribution centers to solve. Since
the delivery points for each distribution center are not many,
the local VRP can be solved easily. ­erefore, the separation
of LAP and VRP could signi�cantly reduce the complexity of
the problem.

­e LAP may apply to a broader region, such as a
country, state, or province. ­e options for locations are
limited to a list of lower-level cities, and the options for
allocation are subsets of delivery points. ­e solution of
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location usually uses binary representation because the
number of options is �xed.­e solution of allocation usually
uses integers to denote the belonging of delivery points.
Since the total number of distribution centers and delivery
points is �xed, the size of a solution can be �xed as well.
However, for a city-level LAP, the model and solution
representation may vary because the available options for
distribution centers can be many, and the setup cost and
capacity of di�erent options have a signi�cant impact on the
total cost.

On the other hand, the NP-hard nature of LAP makes
heuristic algorithms favorable, among which swarm-based
algorithms are representative [3, 5, 6]. ­e solution repre-
sentation plays a vital role in applying the algorithm because
an e�cient encoding scheme may reduce the length of the
solution string, smooth the solution space, or eliminate the
constraints. For example, choosing N distribution centers
out of 100 candidate locations requires 100 binary bits to
represent the solution, whereas a ¦oating number repre-
sentation of the coordinates needs only 2N numbers. When
considering the capacity of a distribution center, the binary
representation quantizes the solution space and loses
smoothness. Finally, the LAP constraints may result in many
infeasible solutions, hence reducing the search e�ciency.

­is paper discusses the city-level express distribution
center location problem and provides a new perspective for
simplifying the LAP. Floating numbers denote the coordi-
nates of distribution centers, and the delivery point assign-
ment for each distribution center is determined by the
decoded sequence of delivery points and the capacity of the
distribution center. ­e total distance between the distribu-
tion center and delivery points, setup costs, and operational
costs is used to evaluate the solution. Representative swarm-
based algorithms, including particle swarm optimization
(PSO), di�erential evolution (DE), arti�cial bee colony (ABC),
and a powerful variant of DE, and LSHADE-cnEpSin [7], are
compared under two solution encoding schemes.

2. Literature Review

­e LAP tries to determine the location of distribution
centers and the delivery points assigned to each distribution

center simultaneously. LAP can take various forms in dif-
ferent scenarios. For example, distribution centers are sites
for distributing medical services in public health emer-
gencies, and delivery points are a�ected in literature [8].
Distribution centers are wastewater treatment plants in the
wastewater treatment problem, and delivery points are
processing units in literature [9]. Distribution centers are
web servers in web services, and delivery points are user
centers in literature [10]. For an express distribution center
location problem, the operational cost involves the capacity
and location of each distribution center, and the capacity is
either determined or constrained by the assigned delivery
points. Such a problem is called a capacitated location-al-
location problem (CLAP) [11].

Much e�ort has been put into this issue. Pham et al. [12]
applied a hybrid of the Fuzzy-Delphi-TOPSIS approach to
identify the critical criteria for choosing the logistic distri-
bution center. Yang et al. [13] considered the distances
between manufactory and distribution centers and between
the distribution center and customers and combined tabu
search and genetic algorithm to select four distribution
centers out of ten candidates. Karaoglan et al. [14] modeled
the LRP with simultaneous pickup and delivery, which
re¦ects the practice of beer distribution and empty bottle
collection. ­e problem is then solved using an improved
version of the simulated annealing (SA) algorithm.

­e solution of CLAP may bene�t from a geospatial in-
formation system (GIS) since the regional division and distance
between two points can be more precise. Vafaeinejad et al. [15]
developed a vector assignment ordered capacitated median
problem (VAOCMP)model to describe the �re station location
and allocation problem. In the VAOCMP model, the arrival
time of the �re engine to demand points and the capacity of the
�re facility are considered. ­e closeness of the �re facilities
ranks the demand, and a facility will be �lled up with closer
demands. ­e problem is then solved by tabu search and
simulated annealing (SA). Zheng et al. [16] proposed that the
underground metro might be used as a complement to the
urban logistics system.­ey utilize GIS to �nd the shortest path
through all the most demanding points. ­e demanding points
are allocated by the Voronoi diagram, which partitions a plane
into polygons such that all the points inside a polygon are closest
to one of the communities [17].

­e demand for delivery points may be stochastic. Expert
opinions can be introduced to build the distribution model of
the customers with a lack of data. Zhou and Liu [18] used fuzzy
numbers to model the customer demand, and the expected cost
was used as the minimization goal. ­e expected cost is ob-
tained by fuzzy simulation, and the model is solved by network
simplex programming and genetic algorithms. ­e location of
the demands may also be stochastic. Mousavi and Niaki [19]
used the normal distribution to model demand location and
fuzzy variables to model the amount of demand. ­ree cost
functions were proposed: (1) minimization of the fuzzy ex-
pected cost, which is the integration of the credibility of fuzzy
events; (2) the β-costminimizationmodel, whichminimizes the
upper bound of transportation cost that has credibility greater
than β; and (3) the credibility maximization model. ­e model
is then solved by using fuzzy simulation and a genetic algorithm.

VRP

LAP

Distribution Center
Delivery Point
Route

Figure 1: Problem structure of LAP, VRP, and LRP.
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Noticing the redundancy of express terminal nodes that
different express service suppliers establish in the same city,
Meng et al. [20] proposed the express terminal nodes op-
timization integration problem (ETNOIP). ,e goal of
ETNOIP is to establish the minimum number of shared
express terminal nodes that could serve a given number of
customer clusters. ,e capacity and scope of an express
terminal are included in the cost as well. ,e model is then
solved by SA with neighbor search and shows advantages
over immune genetic algorithm (IGA) and CPLEX, an IBM
optimization solver.

Many swarm-based algorithms and their variations have
emerged in the last two decades. Many swarm-based algo-
rithms have been applied to LAP as well. Xu et al. [21] used
the wolf-pack algorithm to optimize the total distance. Bao
et al. [6] applied particle swarm optimization (PSO) to a
logistic vehicle routing problem. A supported vector ma-
chine was introduced to distinguish the state of a particle,
and the state will determine whether or not a group of
particles will be updated. Moonsri et al. [5] discussed the
poultry logistics planning problem, which routes vehicles to
each established depot. A new mutation formula is devel-
oped in the reinitialization phase of differential evolution
(DE) to protect the local structure of the solution, and a
location search of partial variables is used to enhance the
exploitation ability. Guo and Zhang [3] considered the
vehicle routing problem and location-allocation problem as
a whole and applied a discrete artificial bee colony (ABC) to
determine the choice of recycling centers, the vehicles that
serve the recycling center, and the route of the vehicles.

Various models have been proposed in the past decades
to describe different scenarios, and more algorithms have
been developed to solve the proposed models. ,e NP-hard
nature of CLAP and the constraints that come with it make
algorithms unable to reach their full potential. Taking the
express distribution center location-allocation problem as an
example, we propose a general encoding method for swarm-
based algorithms, which eliminates the capacity constraint
in allocating delivery points and improves the efficiency of
the compared algorithms.

3. Swarm-Based Algorithms for LAP

3.1. Particle Swarm Optimization (PSO). PSO is the most
representative swarm-based algorithm.,e core mechanism
is defined as follows:
x

t+1
i,j � x

t
i,j + v

t+1
i,j ,

v
t+1
i,j � w(t)v

t
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t
i,j􏼐 􏼑.

(1)

,e position of particles represents the candidate so-
lutions. ,e symbol xt+1

i,j denotes the j-th coordinate of a
particle i in the t + 1 generation, which is updated by the
velocity vt+1

i,j associated with each particle. ,ree parts de-
termine the velocity of a particle in the next generation:

(1) Current velocity is weighted by a linearly decreasing
factor w(t).

(2) ,e difference between the current position and the
global best position x

gbest
i,j is scaled by the social

learning factor c1 and a uniform distribution random
number rand ∈ [0, 1].

(3) ,e difference between the current position and the
personal best position x

pbest
i,j is scaled by the personal

learning factor c2 and another uniform distribution
random number rand ∈ [0, 1]. ,e last two parts
represent social learning and self-learning.

3.2. Differential Evolution (DE). DE is another widely used
swarm-based algorithm that uses other solutions in a swarm,
instead of the global or personal best, to generate new so-
lutions. Many mutation operators have been proposed in the
literature. In this paper, we adopt the “DE/rand/1” strategy
as follows:

v
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(2)

,e mutated solution vt+1
i,j is generated from three so-

lutions that are randomly selected from the swarm and are
different from the current solution and each other. ,e
difference between the two is scaled by a factor F and then
added to the third solution. Note that only some bits of the
selected solution are mutated by probability CR, allowing a
subtle modification of the solution. Additionally,
randn(1, D) is a random natural number in the range [1, D],
ensuring that at least one bit is mutated. ,e candidate
solution ut+1

i,j is retained if the corresponding cost is better
than the current one. Given the differential nature of the
mutation operator (2), DE conducts large-scale exploration
in the early stages and subtle exploitation in the later stages.

3.3. Artificial Bee Colony (ABC). ABC produces new solu-
tions in three ways that mimic the behaviors of three types of
bees: employed, onlooker, and scout bees. ,e food sources
represent the current best solutions. ,e employed and
onlooker bees share the same mutation operator as follows:

v
t+1
i,j � x

t
i,j + (2rand(•) − 1) x

t
i,j − x

t
r,j􏼐 􏼑, r≠ i. (3)

,e difference between the current solution xt
i,j and a

randomly selected solutionxt
r,j is scaled by a randomnumber in

[−1,1], and added to the current solution. ,is mechanism
allows employed and onlooker bees to search for the alternative
to the current solution. ,e behavior difference between
employed and onlooker bees is that the employed bees make
sure each food source is visited once in a cycle. In contrast, the
food source i is visited by an onlooker bee with a probability pi

defined as follows:

pi �
fiti

􏽐
nPop
n�1 fitn

, (4)
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where nPop is the population size and fiti is the fitness of the
food source i. ,e onlooker bees are dispatched based on the
roulette selection–the solutions with better cost have a
higher chance of being visited. Each food source (solution)
has a visiting limit. If there is no better solution found
around the current solution after a certain number of visits,
the food source is abandoned, and a scout bee is sent to
generate a new random solution in the search space.

,e mechanism of employed bees maintains the di-
versity of the swarm; onlooker bees exploit the neighbors for
better solutions, and the food source visiting limit ensures
that the algorithm will not be stuck on some solutions.

3.4. Ensemble Sinusoidal Parameter Adaptation Incorporated
with LSHADE (LDES). ,e parameter settings of DE par-
tially depend on the problem. ,erefore, research on the
parameter settings of DE [22] and the adaptive parameters of
DE [23] is proposed to tackle this problem. In the research
stream of adaptive DE, Zhang and Sanderson [24] proposed
a self-adaptive DE, JADE, which generalizes the “DE/cur-
rent-to-best” mutation strategy to “DE/current-to-p-best”
and controls the parameters in a self-adaptive manner.
Tanabe and Fukunag [25] proposed a Success-History-Based
Adaptive DE (SHADE). As an enhancement to JADE,
SHADE utilized a history-based parameter adaptation
scheme and ranked third in the real-parameter single ob-
jective optimization competition, CEC 2013. Tanabe and
Fukunaga [26] later proposed the LSHADE algorithm,
which extends the SHADE algorithm with the Linear
Population Size Reduction (LPSR). ,e LPSR of LSHADE
reduces the number of function evaluations in the exploi-
tation stage of optimization and further enhances the per-
formance. LSHADE wins the CEC 2014 competition.

Two years later, Awad et al. [7] proposed the LSHADE-
EpSin algorithm, which incorporated the ensemble sinu-
soidal parameter adaptation and became the joint winner of
the competition of CEC 2016. One year later, Awad et al. [27]
proposed an improved algorithm, LSHADE-cnEpSin, to
tackle the problems with high correlation between variables.
LSHADE-cnEpSin became the second winner in the com-
petition of CEC 2017. For brevity, we will denote LSHADE-
cnEpSin as LDES in the rest of the paper.

4. Problem Formulation and
Solution Representation

4.1. Capacitated Location-Allocation Problem. A complete
planning scheme of distribution centers includes the
number of distribution centers, the location and capacity of
each distribution center, and the delivery points that are
serviced by each distribution center.

,e location of distribution centers affects the delivery
mode and distance, hence the efficiency and service quality
of the distribution centers. ,e factors that may affect the
location selection of distribution centers may be classified
into two classes: natural factors and social factors. Natural
factors include the natural conditions, such as mountains
and rivers, the conditions of the land, and the distribution of

roads [11]. Social factors may include infrastructure, client
demand distribution, suppliers, and policies.

,e capacity of distribution centers determines whether
the demand of the assigned delivery point can be served.,e
assignment of delivery points determines the transportation
cost and the operational cost.

,is paper focuses on the transportation, setup, and
operational cost to simplify the model and highlight the
main factors. To build up the objective functions for the cost,
let us define the symbols as shown in Table 1.

4.1.1. Transportation Cost. ,e transportation costs may
be affected by capital, fuel, lubricant, and operational
costs. Sahin et al. [28] showed that the total cost of a unit
of cargo in road transportation with trucks consists of
14% investment cost, 60% fuel cost, 17% operational cost
and maintenance cost of the vehicle, and 9% external cost,
which are positively related to the route length. Assuming
the vehicles are fully loaded and the cost has a linear
relationship with the route length, the total trans-
portation cost Ct can be formulated in the following
equation:

Ct � 􏽘
N

i

%􏽐
j∈Ωi

dij, (5)

where dij is the city block distance as follows:

dij � p
tx
i − p

dx
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + p
ty
i − p

dy
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (6)

4.1.2. Setup Cost. ,e setup cost may vary depending on
how the distribution center is set, such as renting a ware-
house or building a new depot. Assuming that the average
setup cost for any possible location is known, the total setup
cost is simply as follows:

Cs � 􏽘
N

i

T p
tx
i , p

ty
i􏼐 􏼑, (7)

where the operational cost for a given point (ptx
i , p

ty
i ) can be

determined in advance through investigation.

4.1.3. Operational Cost. ,e operational cost depends on
how many demands a distribution center needs to meet,
which is usually described by a cubic function of demand
[29]. ,erefore, a distribution center’s operational cost per
unit demand is a quadratic function of demand. ,e total
operational cost is formulated as follows:

Co � 􏽘
N

i

a1Q
3
i + a2Q

2
i + a3Qi,

Qi � 􏽘
j∈Ωi

rj,
(8)

where ak(k � 1, 2, 3) are polynomial coefficients. ,e total
demand Qi that is assigned to the distribution center i is
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determined by the decision variable Ωi. ,e cost per unit
demand is then formulated as

Cpud � a1Q
2
i + a2Qi + a3. (9)

,e optimal capacity for a distribution center is the
solution to the following equation:

dCpud

dQi

� 2a1Qi + a2 � 0. (10)

To summarize, the total cost for an express CLAP is

C � Ctwt + Csws + Cowo, (11)

where wt, ws, and wo are the weight coefficients for trans-
portation, setup, and operational cost, respectively.

4.1.4. Constraints. ,e boundary constraints for the deci-
sion variables are as follows:

0≤N≤Nmax, (12)

0≤p
tx
i ≤p

tx
max, 0≤p

ty
i ≤p

ty
max, i ∈ 1, . . . , N. (13)

,e capacity of the distribution center must satisfy the
total demand of all delivery points serviced by it:

Qi ≤ ci ≤R, R � 􏽘
M

j�1
rj, (14)

where R is the total demand as described in Table 1. Each
delivery point is serviced by one distribution center:

Ω � 􏽘
N

i�1
Ωi,Ωi ∩Ωj � ∅ for any i≠ j. (15)

4.2. Encoding Scheme and Evaluation Criteria. ,e selected
algorithms work on a set of floating number vectors xi

(known as the population X � [xi, . . . , xnPop]T, where nPop
is the population size). ,erefore, the solutions of CLAP
need to be encoded into floating number vectors before the
algorithms can be applied. When a new vector is found by an
algorithm, it must be interpreted (decoded) into the actual
location and allocation plans before it can be evaluated. ,is
section discusses the encoding/decoding schemes and the
evaluation criteria of the plan.

4.2.1. Traditional Encoding Scheme. A complete location
planning scheme of distribution centers can be repre-
sented by the decision variables described in Table 1. ,e
location of a distribution center requires two numbers to
denote the horizontal and vertical coordinates. Another
quantity is required to denote the capacity. Furthermore,
a number denoting the belonging of a delivery point is
also required. Given that the length of the solution
representation in the selected algorithms is fixed, the
traditional encoding/decoding scheme can be as shown in
Figure 2.

For a traditional encoding/decoding scheme, the length
of a solution string is 3 N + M, where gj ∈ Z+, j ∈ 1, . . . , N

is a positive integer and denotes that the j-th delivery point
belongs to the gj-th distribution center. ,e decision var-
iables are obtained as follows:

p
tx
i � x3i−2,

p
ty
i � x3i−1,

ci � x3i,

i � 1, . . . , N,

gj � x3N+j,

j � 1, . . . , M,

Ωi � j � 1, . . . , M|gj � i􏽮 􏽯,

(16)

where xi ∈ R+ are floating numbers. x3i−2 and x3i−1
(i � 1, . . . , N) have the same range as ptx

i and p
ty
i , respec-

tively. ,e range of x3i (i � 1, · · · , N) is [0, R] because the
lower bound of the capacity cannot be determined in this

Table 1: Symbols and description.

Description Symbol Property
Maximum number of distribution centers Nmax Parameter
Number of distribution centers N Decision variable
Number of delivery points M Parameter
Horizontal coordinate of distribution center i ptx

i , i ∈ 1, . . . , N Decision variable
Vertical coordinate of distribution center i p

ty
i , i ∈ 1, . . . , N Decision variable

Maximum horizontal coordinate of distribution center ptx
max

Horizontal coordinate of the delivery point j pdx
j , j � 1, . . . , M Parameter

Vertical coordinate of the delivery point j p
dy
j , j � 1, . . . , M Parameter

Distance between the i-th distribution center and j-th delivery point dij Parameter
Capacity of distribution center i ci, i ∈ 1, . . . , N Decision variable
,e demand of delivery point j rj, j ∈ j, . . . , M Parameter
Total demand of all delivery points R Parameter
Set of all delivery points Ω � 1, . . . , M{ } Parameter
Set of delivery points served by distribution center i Ωi Decision variable
Average operational cost is determined by the position of the distribution center (ptx

i , p
ty
i ) T(ptx

i , p
ty
i ) Parameter
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encoding scheme. x3N+j ∈ [0, N] (j � 1, · · · ,M) and � · � is
the rounded-up function.

­e traditional encoding scheme is straightforward,
but the drawbacks are clear: (1) the number of distri-
bution centers must be determined in advance, and (2)
solution strings generated in the search process may
violate the constraints. For the boundary constraints
de�ned in Equations (12) and (13), the abovementioned
algorithms will truncate the exceeded solutions. How-
ever, for the constraints in Equations (12) and (13), an
infeasible solution means that the decoded plan cannot be
executed.

For example, the delivery points assigned to a distri-
bution center may have greater total demand than the ca-
pacity of the distribution center, or no delivery points may
be assigned to a distribution center. Hence, a punishment
term is de�ned as follows to suppress the infeasible
solutions:

Cp �∑
N

i

max ∑
j∈Ωi

rj − ci, 0  . (17)

­e modi�ed cost function can be as follows:

C � Ctwt + Csws + Cowo + Cpwp, (18)

where wp is the weight of the punishment term. If no de-
livery point is assigned to a distribution center, the wasted
resources are naturally a punishment for the cost. Such
solutions will not compete with the solutions that take
advantage of the available capacity.

4.2.2. Constraint-Solved Encoding Scheme. ­e above-
mentioned encoding scheme and cost function allow the
existence of infeasible solutions, which decreases the search
e�ciency since there are invalid calculations for the infea-
sible solutions. ­is paper presents an improved encoding
scheme that introduces random proportion and random key
(RPK) as shown in Figure 3, which transfers the constraint
problem into an unconstraint problem.

As shown in Figure 3, a ¦oating number vector x �
[x1, . . . , x3Nmax+M+1] is used as the solution string, where
xi ∈ [0, 1]. ­e number x1 will be mapped into the number
of distribution centers and [x2, . . . , x2N+1] will be mapped
into the position of each distribution centers by

N � x1Nmax, (19)

ptxi � x2ip
tx
max,

ptyi � x2i+1p
ty
max, i � 1, . . .N.

(20)

Note that ifN<Nmax, the numbers [x2N+2, . . . , x2Nmax+1]
will be omitted.

­e numbers [x2Nmax+2, . . . , x3Nmax+M+1] can be decoded
into the capacity of each distribution center and the as-
signment of delivery points through random proportion and
random key mapping.

­e random key mapping determines a sequence of
delivery points as follows. ­e partial vector
[x3Nmax+2, . . . , x3Nmax+M+1] is sorted in either ascending or
descending order to obtain the sorting index [h1, . . . , hM].
For example, h1 denotes the order of x3N+2 in the sorted
vector and hM denotes the order of x3N+M+1 in the sorted
vector.­e index [h1, . . . , hM] represents the sequence of the
delivery points.

­e random proportion mapping uses a partial vector
[x2Nmax+2, . . . , x2Nmax+N+1] to determine the lower bound
capacity c̃i of a distribution center:

c̃i �
x2N+1+i

∑3N+1
j�2N+1+ixj

R,

i � 1, . . . , N − 1.

(21)

Note that the numbers [x2Nmax+N+2, . . . , x3Nmax+1] are
omitted as well if N<Nmax.

­e assignment of delivery points for the distribution
center i is determined as follows:

Ωi � ha(i), . . . , hb(i){ },

c̃i ≤ ∑
j∈Ωi

rj, i � 1, . . . , N − 1, (22)

1 � a(1)< b(1)< a(2)< b(2)< . . . < a(N)< b(N) �M,
(23)

where ha(i), . . . , hb(i){ } is a continuous partial sequence in
[h1, . . . , hM], which makes the summation of demands from
the set of delivery points Ωi just greater than the lower
bound c̃i.

­e actual capacity of the distribution center i is de-
termined by the summation of demand from the delivery
point assigned to it:

ci � ∑
j∈Ωi

rj, i � 1, . . . , N. (24)

­e idea of RPK is to determine the number of distri-
bution centers dynamically and make the capacity just
enough for the assigned delivery points. ­e logical pro-
cedure of obtaining a feasible capacitated location-allocation
plan from any x ∈ [0, 1]3N+M+1 is as follows:

Step 1: obtain the number of distribution centers N by
Equation (19)
Step 2: obtain the position ofN distribution centers by
Equation (20)

x1

c1 g1cN gMp1
tx pN

tx pN
typ1

ty

x2 x3 x3N–2 x3N–1 x3N+1 x3N+Mx3NEncoded solution ... ...

......Decoded solution

Figure 2: Traditional encoding/decoding scheme TES.
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Step 3: sort [x3Nmax+2, . . . , x3Nmax+M+1] and get the index
[h1, . . . , hM]
Step 4: a(1)←1
Step 5: for i in 1, . . . , N − 1{ } do

Calculate the lower bound capacity c̃i by (21)
Starting from a(i) + 1, �nd the �rst b(i) that satis�es
Equation (22)
­e set of delivery points assigned to the distribution
center i is Ωi � ha(i), . . . , hb(i){ }
a(i + 1)←b(i) + 1
Obtain the actual capacity of the distribution center i
by (24)

Step 6: ΩN � hb(3)+1, . . . , hM{ }, cN � ∑j∈ΩNrj
A decoding example is as follows. Assume thatNmax � 2,

M � 5, ptxmax � 100, ptymax � 120, and R � 500, and demands
for each delivery point are [100, 80, 110, 150, 60]. A vector x
with the length 3N +M + 1 � 12 is [0.66, 0.1, 0.35, 0.5, 0.6,
0.7, 0.9, 0.4, 0.95, 0.25, 0.55, 0.6]. ­en,N � 0.66 × 2 � 2, ptx1
� 0.1 × 100 � 10, pty1 � 0.35 × 120 � 42, ptx2 �
0.5 × 100 � 50, pty2 � 0.6 × 120 � 72, c̃1
� 0.7/0.7 + 0.9 × 500 � 218.75, and c̃2 � 0.9/0.7 + 0.9 × 500
� 281.25. ­e sorting index of the ascending order of [0.4,
0.95, 0.25, 0.55, 0.6] is [1–5]. ­e minimum set Ω1 that
satis�es equation (22) is 2, 5, 1{ }; therefore,
c1 � r2 + r5 + r1 � 240, Ω2 � 3, 4{ }, and c2 � r3 + r4 � 260.

For an arbitrary x ∈ [0, 1], the RPK encoding scheme
always produces a unique and feasible plan. ­e total ca-
pacity of the distribution centers equals the total demand,
which maximizes resource utilization. Furthermore, the
RPK encoding scheme allows algorithms to operate on a
uniform vector x ∈ [0, 1], which facilitates the application of
algorithms.

5. Evaluation Experiments

5.1. Experiment Settings. ­e evaluation experiments were
conducted on a 10 km by 10 km square region of Zhenjiang,
China [30]. ­e map of this region is divided into 10 × 10
grids, and the setup cost for each lattice is obtained via
investigation. ­e map, grid, and setup cost matrix are
shown in Figure 4.

­e setup costs are scaled into �ve levels. Level 5 rep-
resents the most expensive setup cost. ­e central area
(slightly above the middle) has the highest cost, and the
suburbs have the lowest cost. A mountain is located slightly
below the middle, and some waters are in the north, where a
distribution center cannot be set up. We set the cost much
higher than the maximum level cost (20 in this case) to
prevent generating a distribution center located in these
areas. While a �ner grid may bring a plan closer to reality, a
10 × 10 grid is su�cient to show the algorithm’s mechanism
and maintain the map’s readability.

­e TES and RPK encoding schemes are applied to
four algorithms: PSO, DE, ABC, and LDES. Since the
compared algorithms use di�erent population sizes, we
use the number of cost function evaluations (FEs) instead
of the number of generations to measure the perfor-
mance. ­e algorithms will stop when the maximum FEs
are reached. RPK works on a uni�ed search space and
transforms a solution x ∈ [0, 1]D into a location and al-
location plan, where D is the dimension of the search
space, i.e., the number of variables. ­e algorithm pa-
rameters are shown in Table 2.

5.2. Comparison of TES and RPK Encoding Schemes. ­e
comparison is conducted on the map in Figure 4. ­ere are
20 delivery points on the map, each with di�erent demands.
­e maximum number of delivery centers is set to 5. ­e
location of delivery points and the associated demands are
shown in Figure 5.

Each algorithm runs 30 times, and the optimum costs
found by each algorithm are averaged over 30 runs. ­e
results are shown in Table 3.

From Table 3, we observe that the RPK encoding scheme
improves the performance of all compared algorithms. ­e
average optimum cost was reduced by at least 11.38%. ABC
shows the best average performance for both RPK and TES
encoding schemes. ­e DE and LDES show comparable
performance with ABC for the RPK encoding scheme, while
the smaller standard deviations (0.05 and 0.09), respectively,
indicate more stable performance.

­e improvement has two sources: �rst, the RPK allows
automatic selection of the number of distribution centers;
since each distribution center has a setup cost, fewer

Encoded solution x1

N

x2

p1
tx pNtxmax pN

ty
max

cNmaxp1
ty

x3

c1 h1 hM

x2Nmax x2Nmax+1 x2Nmax+2 x3Nmax+1 x3Nmax+2 x3Nmax+M+1

Decoded solution

...

... ... ...

... ...

Random Key
3N+1

Σ
i=2N+2

xi

Figure 3: Unconstraint encoding/decoding scheme RPK.
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Table 2: Parameter settings for PSO, DE, ABC, and LDES
algorithms.

Parameter description Value
General parameters
­e maximum number of cost function
evaluations FEmax

200,000

Search space [0, 1]D
Transportation cost weight wt 1
Setup cost weight ws 1
Operational cost weight wt 0.1
Punishment weight wp 30
Polynomial coe�cients a for operational cost [0.0025,−0.1, 2]
Coordinate bounds [ptxmax, p

ty
max] [0, 1]

PSO parameters (Bao et al. [6])
Social learning factor c1 2
Personal learning factor c2 2
Weight range [wmin, wmax] [0.4,0.9]
Population size nPop 30
Velocity range [vmin, vmax] [−0.2,0.2]
DE parameters (Moonsri et al. [5])
Population size nPop 37
Crossover probability 0.9455
Scaling factor 0.6497
ABC parameters (Guo and Zhang [3])
Population size 50
Number of onlooker bees 25
Number of employed bees 25
Food source visiting limit 500
LDES parameters (Awad et al. [27])
Initial population size 360
Minimum population size 4
Covariance matrix learning probability pc 0.4
Selection probability ps 0.5
Selection rate of the best solutions p_best_rate 0.11
Archive rate arc_rate 1.4
Memory size 4
­e initial number of neighbors SEL 180
Scaling factors Adaptive adjust
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Figure 4: ­e regional grid map of Zhenjiang, China, with an
operational cost for each lattice.

Figure 5: Location and demands of delivery points. ­e circles
show the location, and the circle’s diameter shows the value of
demand. ­e larger the diameter, the greater the demand.

Table 3: Average cost over 30 runs and standard deviate for PSO,
DE, ABC, and LDES using RPK and TES encoding scheme.

Encoding
scheme

Average cost
(standard deviation)

PSO DE ABC LDES

RPK 17.23
(0.74)

15.95
(0.05)

15.54
(0.4)

15.96
(0.09)

TES 21.71
(1.39)

19.35
(0.61)

17.53
(0.52)

18.82
(0.52)

Improvement 20.64% 17.57% 11.38% 15.20%
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Figure 6: Statistics of the optimal costs in 30 runs of PSO, DE,
ABC, and LDES using RPK and TES encoding scheme.
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distribution center reduces the total cost. However, fewer
distribution centers increase the number of delivery points
to be serviced, hence increasing the route length of travel
through all delivery points and leading to greater trans-
portation costs. On the other hand, TES adopts a �xed
number of distribution centers (in this case, 5), and the setup
cost is on an average greater than RPK.­e RPK balances the
number of distribution centers and the route length, which
allows each distribution center to operate at a lower average
cost.

Second, the capacity distribution mechanism in RPK
ensures that the total capacity equals the total demand and
no capacity is wasted, which produces a more e�cient al-
location plan.

­e statistics and convergence curves of the four algo-
rithms in the two encoding schemes are shown in Figures 6
and 7. ­e nonoverlapping notch of the boxes corre-
sponding to di�erent encoding schemes of the same algo-
rithm shows that RPK reduces the median of the optimal
cost by 5%.
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Figure 8: Location and allocation plan of ABC using RPK (a) and TES (b) encoding schemes.
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Table 4: ,e detailed location and allocation plan of ABC using RPK and TES encoding schemes.

Encoding DC index ptxi ptyi ci Ωi Qi Ct,i Cs,i Co,i

RPK

DC #1 0.900 0.500 24.000 [3, 5–7, 9, 15, 18, 19] 24 2.501 1 24.960
DC #2 0.350 0.100 20.000 [2, 4, 11, 14, 20] 20 1.651 1 20.000
DC #3 0.249 0.900 9.000 [1, 8, 10, 12, 13, 16, 17] 9 2.051 1 11.723
Subtotal N/A N/A 53.000 N/A 53 6.203 3 56.683

TES

DC #1 0.550 0.951 1.071 17 1 0.001 1 2.031
DC #2 0.350 0.100 20.001 [2, 4, 11, 14, 20] 20 1.650 1 20.001
DC #3 0.900 0.500 19.054 [3, 6, 7, 9, 15, 18, 19] 19 2.001 1 19.097
DC #4 0.399 0.100 5.004 5 5 0.401 1 7.817
DC #5 0.100 0.850 8.000 [1, 8, 10, 12, 13, 16] 8 1.700 1 10.880
Subtotal N/A N/A 53.130 N/A 53 5.753 5 59.825

Table 5: ,e averaged optimal costs and standard deviations with various numbers of DCs and DPs.

Number of DCs Algorithm Encoding scheme
Number of DPs

#DP� 10 #DP� 20 #DP� 30 #DP� 40 #DP� 50

#DC� 2

PSO RPK 9.75 (0.2) 17.71 (1.1) 28.93 (0.9) 63.35 (1.1) 100.94 (0.9)
TES 10.00 (0.6) 19.14 (0.8) 31.29 (1.1) 66.06 (1.3) 104.53 (1.6)

DE RPK 9.79 (0.0) 16.18 (0.4) 27.11 (0.3) 60.78 (0.3) 97.12 (0.6)
TES 9.17 (0.3) 16.65 (0.6) 27.39 (0.5) 61.36 (0.7) 102.68 (3.7)

ABC RPK 9.00 (0.2) 15.94 (0.0) 27.07 (0.2) 60.52 (0.1) 97.19 (0.2)
TES 9.16 (0.3) 16.76 (0.4) 28.22 (0.6) 62.24 (0.7) 99.26 (0.9)

LDES RPK 9.76 (0.2) 15.94 (0.0) 27.04 (0.3) 60.90 (0.3) 97.11 (0.3)
TES 8.87 (0.1) 16.12 (0.2) 28.47 (0.7) 63.70 (0.9) 102.22 (1.0)

#DC� 4

PSO RPK 9.74 (0.2) 17.20 (0.9) 25.67 (1.1) 36.72 (1.7) 46.76 (1.7)
TES 12.38 (0.8) 21.14 (1.3) 29.44 (1.9) 42.22 (1.6) 54.54 (2.1)

DE RPK 9.79 (0.0) 15.95 (0.0) 21.69 (0.7) 34.98 (2.5) 44.31 (2.1)
TES 12.09 (0.5) 17.95 (0.4) 24.19 (1.3) 37.95 (2.6) 48.81 (3.4)

ABC RPK 8.94 (0.2) 15.59 (0.3) 21.43 (0.4) 30.07 (0.6) 38.86 (0.6)
TES 10.85 (0.3) 16.68 (0.5) 22.56 (0.6) 32.68 (0.9) 42.24 (1.3)

LDES RPK 9.75 (0.1) 15.94 (0.0) 22.01 (0.4) 31.75 (1.3) 41.42 (1.4)
TES 10.99 (0.3) 17.74 (0.5) 24.52 (1.0) 35.54 (1.5) 46.47 (1.6)

#DC� 6

PSO RPK 9.76 (0.1) 17.74 (0.9) 25.53 (1.2) 36.94 (1.5) 45.41 (1.6)
TES 15.42 (1.2) 23.72 (1.6) 33.20 (1.9) 44.28 (2.5) 53.08 (2.3)

DE RPK 9.79 (0.0) 15.94 (0.0) 21.44 (0.5) 34.33 (2.7) 41.59 (3.0)
TES 14.25 (0.8) 20.49 (0.6) 26.99 (1.4) 40.48 (3.5) 51.23 (5.3)

ABC RPK 8.92 (0.2) 15.53 (0.4) 21.55 (0.4) 30.11 (0.6) 36.45 (1.1)
TES 12.72 (0.2) 18.46 (0.4) 23.88 (0.5) 31.47 (0.8) 37.29 (1.0)

LDES RPK 9.79 (0.0) 15.94 (0.0) 22.21 (0.7) 31.52 (1.6) 39.23 (2.4)
TES 13.19 (0.5) 20.39 (0.9) 26.53 (1.1) 35.21 (1.3) 41.94 (2.1)

#DC� 8

PSO RPK 9.73 (0.2) 17.31 (0.9) 25.66 (1.3) 37.13 (1.5) 45.11 (1.8)
TES 17.94 (1.2) 27.92 (1.9) 37.98 (2.1) 48.02 (3.0) 56.36 (3.3)

DE RPK 9.78 (0.0) 15.96 (0.0) 23.17 (1.1) 34.54 (1.9) 43.21 (3.8)
TES 15.37 (0.5) 22.49 (0.5) 36.58 (2.5) 48.52 (10.8) 58.75 (15.8)

ABC RPK 8.94 (0.2) 15.54 (0.4) 21.49 (0.4) 30.32 (0.5) 36.47 (0.7)
TES 14.76 (0.2) 20.41 (0.4) 25.98 (0.5) 32.75 (0.6) 37.29 (0.8)

LDES RPK 9.79 (0.0) 15.96 (0.1) 22.27 (0.7) 31.10 (1.5) 38.72 (2.7)
TES 15.73 (0.7) 22.22 (0.8) 29.23 (2.2) 36.24 (1.3) 42.00 (2.1)

#DC� 10

PSO RPK 9.76 (0.1) 17.86 (1.1) 25.67 (1.7) 36.81 (1.3) 45.10 (1.8)
TES 22.21 (1.9) 31.67 (3.0) 41.91 (3.3) 52.69 (3.1) 60.96 (3.4)

DE RPK 9.78 (0.1) 17.02 (0.7) 24.45 (1.3) 33.70 (2.0) 40.60 (3.1)
TES 17.60 (0.7) 24.81 (0.8) 39.60 (3.1) 57.69 (14.9) 82.14 (27.3)

ABC RPK 9.07 (0.2) 15.47 (0.4) 21.66 (0.7) 30.33 (0.7) 36.75 (0.9)
TES 16.74 (0.2) 22.40 (0.5) 27.97 (0.5) 34.60 (0.5) 39.06 (0.8)

LDES RPK 9.69 (0.3) 15.95 (0.0) 22.62 (0.9) 31.09 (1.9) 38.77 (2.5)
TES 17.40 (0.5) 23.96 (0.9) 31.38 (2.5) 38.13 (1.3) 45.89 (4.5)
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Figure 7 shows that most optimization processes con-
verge within 50000 function evaluations regardless of the
algorithm or the encoding scheme. Except for ABC with
RPK, the search of the other algorithms makes small
progress throughout the entire process. ­is observation
shows that the visiting limit mechanism keeps the ABC from
being stuck in the local optima.

­e best location and allocation plan found by ABC
using RPK and TES encoding schemes are shown in Fig-
ure 8. A distribution center and associated delivery points
are depicted in the markers with the same shape, where a
solid marker denotes the distribution center and hollow
markers denote delivery points. ­e size of each marker is
proportional to the capacity/demand of DC/DP.

Both RPK and TES avoid the mountains and water
areas. RPK allows the algorithm to automatically choose
the number of distribution centers (in this case, 3). ­e
delivery points are clustered around each distribution
center to minimize transportation costs. ­e optimized
number of distribution centers distributes the demands
so that each distribution center may operate at a capacity
with the lowest possible cost. For the TES, a �xed number
of distribution centers prevents some distribution centers
from operating at the lowest possible cost. Although the
average transportation cost is reduced due to fewer de-
livery points serviced by each distribution center, the
increased setup cost and operational cost make the al-
location plan less economical.
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Figure 9: Boxplots of the performance statistics for di�erent combinations of algorithms, encoding schemes, number of DCs, and number
of DPs.
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­e algorithm is smart enough under both encoding
schemes to choose a location right on the edge of the lattice,
which minimizes the setup cost and the transportation cost
simultaneously. ­e detailed plan is shown in Table 4. ­e
symbols Ct,i, Cs,i, and Co,i represent the transportation,
setup, and operational costs of each distribution center,
respectively.

­e coordinates ptxi and ptyi show that all distribution
centers are located on the edge of the lattices, where the
setup cost is the lowest, and the distance to delivery points is
minimized. ­e capacities of each distribution center with
the RPK encoding scheme are the same as the total demands
assigned to them. In contrast, the capacities of TES are
slightly greater than the demands, which are a waste of
resources and cause greater costs. Meanwhile, the capacities
of RPK are closer to the optimal capacity (the optimal ca-
pacity can be obtained by solving (10), which is 20 in this
case). ­e total transportation cost of RPK is greater than
TES. However, lower setup costs and operational costs
compensate for the overall cost.

5.3. Sensitivity of the Number of DCs and DPs. ­is
section considers the impact of the number of distribution
centers and delivery points. ­e number of delivery points is

10, 20, 30, 40, and 50. ­e maximum number of distribution
centers is 2, 4, 6, 8, and 10. All four algorithms are tested.
RPK and TES are also compared. ­e results are given in
Table 5.

Improvement of RPK over TES can be observed in most
cases (except for DE and LDES with #DP� 10 and #DC� 2).
For #DC� 2 cases, the improvements of RPK with di�erent
numbers of delivery points are not signi�cant because two
distribution centers are not enough for any encoding scheme
to distribute the demands into economic capacity. When
#DC� 4, the average improvement is at least 5% (ABC with
#DP� 30), and the highest improvement is 21.3% (PSO with
#DP� 10). When #DC� 10, the average improvement is up
to 56.05% (PSO with #DP� 10).

For #DP� 10, the averaged costs of RPK are steady with
di�erent numbers of distribution centers, whereas the av-
eraged costs of TES keep rising with the increasing number
of distribution centers.­e reason behind this observation is
that two distribution centers are su�cient for the optimal
distribution of the total demand of 10 delivery points. Even if
the maximum number of distribution centers varies, RPK
automatically selects two distribution centers to distribute
the demands and produce similar solutions. On the other
hand, TES uses a �xed number of distribution centers.
­erefore, the TES has a similar performance with RPK
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Figure 10: Improvement of RPK over TES when the number of DPs increases.
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when #DC� 2 but deteriorated performance with the in-
creasing number of distribution centers because additional
distribution centers cause additional setup and operational
costs.

,e statistics of different combinations of algorithms,
encoding schemes, and the number of distribution centers
are shown in Figure 9.

,e improvements of RPK over TES are shown in
Figure 10. When the total demands rise with the number
of delivery points, the maximum number of distribution
centers that RPK shows a significant improvement (over
20%) rises as well. For example, when #DP � 10, the
maximum number of distribution centers needs to be at
least 4 for PSO to have an improvement of greater than
20%. When #DP � 50, the number rises to 10. Below a
certain maximum number of distribution centers, neither
RPK nor TES could find a better allocation plan. In
contrast, above the threshold, the dynamic number of
distribution centers in RPK shows excellent efficiency in
solving the CLAP.

6. Conclusion

,e solution representation of practical engineering prob-
lems may significantly affect the performance of swarm-
based algorithms. Proper encoding of the solutions may
bring three significant advantages:

(1) ,e encoded solution could have uniform ranges,
which is suitable for the algorithm adopting a
“crossover” operator that may switch the position of
the elements in a solution vector

(2) ,e landscape of the solution space is altered to
provide more “algorithm-friendly” information,
such as gradients and continuity

(3) Some constraints may be eliminated, which
increases the rate of feasible solutions in the newly
generated solutions, hence improving the search
efficiency

We propose the random proportion and random key
(RPK) encoding scheme to represent the location and al-
location plan of an express CLAP. RPK brings three ad-
vantages over traditional encoding schemes:

(1) RPK dynamically chooses the number of distribution
centers in the search process. ,e solutions with
different numbers of distribution centers coexist and
evolve in the same swarm.

(2) ,e allocation of delivery points is determined by the
order of elements instead of the value of elements.
,en, the candidate capacity is determined by the
proportion of the total demand. ,is mechanism
allows the delivery point assignment constraint and
capacity/demand constraint to be satisfied simulta-
neously. ,ere is no need to introduce a punishment
term for violation of constraints.

(3) RPK benefits all continuous optimization algo-
rithms, swarm-based or not, by the means of

transformation of the search landscape and elimi-
nation of constraints.
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