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In this paper, a novel adaptive �nite-time slidingmode backstepping (AFSMBS) control scheme is suggested to control a type of high-
order double-integrator systems with mismatched disturbances and uncertainties. A robust sliding mode backstepping control
method, adaptive control method, and �nite-time stability notion are incorporated to provide a better tracking performance over
applying them individually and to use their bene�ts simultaneously. �e concept of a sliding mode is used to de�ne a new form of a
backstepping controller. �e adaptive control method is utilized to adaptively estimate the upper bounds of the disturbances and
uncertainties and the estimated data are used in the control low. �e notion of the �nite-time stability is incorporated with the
suggested control scheme to ensure the system’s convergence within a �nite time. �e stability proof is obtained for the closed-loop
system in a �nite time utilizing the Lyapunov stability theorem. Simulation results are obtained for an example of a remotely operated
vehicle (ROV) with three degrees of freedom (3-DOF) to demonstrate the e�cacy of the suggested control approach.

1. Introduction

Many practical high-order systems are modeled using
nonlinear di�erential equations due to the stochastic noise,
uncertainties in the parameters, and variations in the ex-
ternal environment which are unknown beforehand and
may occur in the real system [1]. �is makes the control of
these systems a challenge and as a result, di�erent nonlinear
control methods including the nonlinear stability theory [2],
backstepping technique [3], Lyapunov function [4], and
sliding mode control (SMC) [5–8] have come into existence.

A simple and e�cient mathematical framework has been
proposed in [9] to tackle nonlinear problems. A novel
technique has been suggested in [10] to deal with nonlinear
evolutionary issues. A system described as a classical integer-
order di�erential problem has been investigated in [11] to
explore the complexities of the human liver.

An e�ective scheme found in the literature to deal with
uncertainties in single or double-integral system is the
adaptive control [12, 13] and notable adaptive design
methods have been proposed in [14–16] for the control of
high-order systems. An adaptive compensation control
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method has been proposed in [17] to deal with mismatched
disturbances as well as uncertain faults. In addition, the
finite-time stability is known for its fast transient perfor-
mance achievement [18]. Hence, adaptive finite-time control
encompasses the merits of both control techniques. It
guarantees superior disturbance rejection, robustness
properties, and faster convergence rates [19, 20].

(e downside to finite-time adaptive control is the
complications involved in estimating the upper bound of
disturbances and uncertainties [21, 22]. Terminal SMC
(TSMC) has been incorporated in [23] due to its robustness
to obtain adaptive finite-time convergence, fast convergence,
improved transient performance, and higher precision for
high-order systems. However, singularity issues were
present in the controller [24]. Nonsingular TSMC was ap-
plied in [25] to solve the singularity issue; however, finite-
time convergence was not achieved and the convergence rate
to the equilibrium was slow. An integration of adaptive
control with nonsingular TSMC was suggested in [26] to
tackle the issue of unknown upper boundaries in adaptive
control. (e resulting control laws were, however, discon-
tinuous across the terminal sliding mode surface when
external disturbances were involved. In [27], finite-time
SMC has been incorporated with the adaptive control
method to provide the estimated data in the controller.
However, undesirable chattering phenomenon exists in the
control signal of this control method.

Backstepping is a technique introduced in the 1990s [28]
to solve regulation or tracking control problems considering
uncertainties in nonlinear feedback systems [29, 30]. (e
control design process in backstepping begins at the source
of the high-order system and backs out to new controllers
which stabilize each of the outer subsystems a step at a time
till the final control law is obtained [31].(e stability analysis
is established by selecting a suitable Lyapunov function [32].
Backstepping is generally used as an alternative to feedback
linearization [33]. It provides advantages ranging from
transient performance improvement, achieving global sta-
bility to achieving a model-free control scheme [34–36]. It
has the disadvantage of not being applicable to unpar-
ameterized systems or nonlinear systems with structural
uncertainties or [32, 37]. It can, however, be combined with
different control techniques to solve problems relating to
parameter uncertainties, unmodeled dynamics, or external
disturbances.

Motivated by the aforementioned discussions, a new and
enhanced type of sliding mode backstepping control method
is proposed where the concept of sliding mode is utilized to
define the backstepping controller. It is assumed that there is
no information of the upper bounds of disturbances and
uncertainties. So, they are adaptively estimated, and the
estimated data are provided in the controller. (e system’s
convergence is ensured within a finite time utilizing the
Lyapunov stability theorem and the notion of the finite-time
stability.(e suggested control method is designed for a type
of high-order double-integral systems with mismatched
uncertainties and external disturbances. Also, an example of
ROV with 3-DOF is provided to apply the proposed con-
troller and test its performance. Simulation results reveal the

validity of the suggested scheme. (e novelties of the re-
search can be highlighted as follows:

(i) A novel incorporation of the robust sliding mode
backstepping control method, adaptive control
method, and finite-time stability notion is done to
provide a superior tracking performance over ap-
plying them individually and to use their benefits
simultaneously.

(ii) (is proposed controller not only ensures the sys-
tem’s finite-time stability but also does not require
any knowledge of the upper bound of disturbances
and uncertainties for the controller design.

(iii) A new form of the candidate Lyapunov function is
defined to obtain the finite-time stability proof for
the closed-loop system.

(iv) (e proposed control approach is applicable for a
wide range of practical applications described by a
set of independent double integrator subsystems in
the presence of mismatched uncertainties and
disturbances.

(is article is organized as follows. In Section 2, the system
is presented. Mathematical preliminaries and lemmas are
given in Section 3. In Section 4, the stability proof is obtained
within a finite time utilizing Lyapunov stability theorem. In
Section 5, the designed control laws are applied to the ROV
with 3-DOF. Section 6 gives the conclusions.

2. Problem Statement

Consider the high-order double-integrator system that in-
cludes themismatched uncertainties and external disturbances.

_x1 � x2 + d1,

_x2 � f1(t, x) + g1(t, x)u1 + d2,

_x3 � x4 + d3,

_x4 � f2(t, x) + g2(t, x)u2 + d4,

⋮

_x2n−1 � x2n + d2n−1,

_x2n � fn(t, x) + gn(t, x)un + d2n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where fj(t, x), gj(t, x), j � (1, 2, . . . , n) are smooth non-
linear functions; g−1

j (t, x) is available and nonsingular;
di, i � (1, 2, . . . , 2n) is the model of uncertainties and ex-
ternal disturbance; and uj is the system’s control inputs. (e
system can be rewritten as follows:

_x2j−1 � x2j + d2j−1,

_x2j � fj(t, x) + gj(t, x)uj + d2j.

⎧⎨

⎩ (2)

(e external disturbances and uncertainties are given as
follows:

di ≤ hi where hi ≤ 􏽢hi ≤ h
∗
i . (3)

Here, hi is the uncertainty upper bound (that is assumed
to be unknown); 􏽢hi is the estimation of their upper bounds;
and di is the Euclidean norm of disturbances and
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uncertainties. In the following sections, the finite-time
control law is defined utilizing a sliding mode backstepping
control scheme. (e uncertainty upper bounds are also
adaptively estimated and they are utilized in the controller.

Remark 1. A wide range of practical applications can be
described by a set of independent double integrator sub-
systems (given by (1)) including the three-link robotic
manipulator [38, 39], ship course system [40], two-link
robotic manipulator [41], support structure system for
offshore wind turbines [42], etc.

3. Mathematical Preliminaries and Lemmas

Definition 1. Consider a nonlinear system as shown below:

_x � f(t, x), (4)

where x ∈ Rn is the vector of the system states;
f: Rn⟶ Rn is a nonlinear function; and t is considered on
the interval [t0,∞), where t0 ∈ R+⋃ 0{ }. Also, we have
x(t0) � x0.

(e origin of (4) has global finite-time stability if it has
global asymptotic stability and any solution x(t, x0) of (4)
converges to the origin at some finite timemoment for all x0;
i.e., ∀t≥T(x0): x(t, x0) � 0, where
T: Rn⟶ R≥0,∀x0 ∈ Rn, is named settling time function,
then the origin of (4) has global finite-time stability [43, 44].

Definition 2. (e signum function is defined as follows:

sign(a) �

1; a> 0,

0; a � 0,

−1; a< 0.

⎧⎪⎪⎨

⎪⎪⎩
(5)

We note that |a| � asign(a) is always true.

Definition 3. (e function siga(x) is given as follows:

siga
(x) � |x|

asign(x) (6)

(us, we have xsiga(x) � |x|a+1.

Lemma 1. For each value a1, a2, . . . , an ∈ R and 0< q< 2, we
have, |a1|

q + |a2|
q + . . . + |an|q ≥ (a2

1 + a2
2 + . . . + a2

n)q/2 [45].

Lemma 2. Assume there exist two real numbers as ρ1 > 0 and
0< ρ2 < 1 and a continuously differentiable positive function

V(x): Rn⟶ R≥0 in such a way that we have V(x) � 0 for
x(t) � 0. If any solution x(t) of (4) satisfies
_V(x)≤ − ρ1Vρ2(x), then the origin of (4) has global finite-
time stability and the settling time will be
T≤V1− ρ2(x0)/ρ1(1 − ρ2) [14, 46].

4. AFSMBS Controller

Here, the control goal is to define the finite-time controller
for the system given by (2). (en, the stability proof is
obtained by defining a candidate Lyapunov function. (e
backstepping control law is defined using the sliding control
concept as follows:

uj � g
− 1

−fj(t, x) − 􏽢h2jsig
α2j Zj􏼐 􏼑 + _x

∗
2j􏼐 􏼑,

x
∗
2j � −􏽢h2j−1sig

α2j−1 x2j−1􏼐 􏼑,

⎧⎪⎨

⎪⎩
(7)

where we have Zj � x2j − x∗2j and 0< αi < 1.
_􏽢h2j−1 � r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

,

_􏽢h2j � r2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where we have 0< ri < 1.
(e block diagram of the proposed AFSMBS approach is

shown in Figure 1.

Theorem 1. Assume the system given by (2). If the control
law (5) and adaptive law (6) are applied to (2), the system’s
convergence is ensured within a finite time. Also, the un-
certainty upper bounds are adaptively estimated within a
finite time and the online estimated data are provided in the
controller.

Proof. (e stability proof using the backstepping method
consists of two phases as follows. □

Phase 1. To prove the first phase, the candidate Lyapunov
function is defined as V1(x) � 1/2x2

2j−1 + 1/2􏽥h
2
2j−1 where

􏽥h2j−1 � 􏽢h2j−1 − h∗2j−1. Taking its time derivative, we obtain as
follows:

_V1(x) � x2j−1 _x2j−1 + 􏽥h2j−1
_􏽥h2j−1⇒ _V1(x)

� x2j−1 _x2j−1 + 􏽥h2j−1
_􏽢h2j−1.

(9)

(en, we have as follows:

_V1(x) � x2j−1 x
∗
2j + d2j−1􏼐 􏼑 + 􏽥h2j−1

_􏽢h2j−1⇒ _V1(x)≤x2j−1 x
∗
2j + h2j−1􏼐 􏼑 + 􏽥h2j−1

_􏽢h2j−1. (10)

Substituting (5) and (6) into (8) yields as follows:

_V1(x)≤x2j−1 −􏽢h2j−1sig
α2j−1 x2j−1􏼐 􏼑 + h2j−1􏼐 􏼑 + 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

. (11)
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We obtain as follows:

_V1(x)≤ x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌h2j−1 − 􏽢h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

. (12)

Adding ±|x2j− 1|
α2j−1+1h∗2j−1 to (10) yields as follows:

_V1(x)≤ x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌h2j−1 − 􏽢h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1
± x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

h
∗
2j−1. (13)

As a result, we have as follows:

_V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1

h
∗
2j−1 − h2j−1􏼒 􏼓 − 􏽥h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

⇒ _V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Δ11􏼐 􏼑 − 􏽥h2j−1 1 − r2j−1􏼐 􏼑 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

􏼒 􏼓

⇒ _V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ11 − 􏽥h2j−1Δ12

⇒ _V1(x)≤ − Δm x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j−1􏼒 􏼓,

(14)

where Δm1
� min(Δ11,Δ12), and according to Lemma 1, we

obtain as follows:

_V1(x)≤ − Δm1
x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽥h
2
2j− 1􏼒 􏼓

1/2
⇒ _V1(x)≤ − Δm1

2V1(x)( 􏼁
1/2

.

(15)

Choosing ρ11 �
�
2

√
Δm1

and ρ21 � 1/2, we have,
_V1(x)≤ −ρ11V

ρ21
1 (x), and based on Lemma 2, the stability

proof of the first phase is guaranteed. (us, the settling time
upper bound T1 will be T1 ≤V1− ρ21(x0)/ρ11(1 − ρ21).

Phase 2. To obtain the second phase of the proof, the
candidate Lyapunov function is considered as

V2(x) � 1/2Z2
j + 1/2􏽥h

2
2j. Taking its time derivative, we ob-

tain the following:

_V2(x) � Zj
_Zj + 􏽥h2j

_􏽢h2j⇒ _V2(x)

� Zj _x2j − _x
∗
2j􏼐 􏼑 + 􏽥h2j

_􏽢h2j.

(16)

Applying the control law and simplifying it yields the
following:

_V2(x) � Zj fj(t, x) + gj(t, x)uj + d2j − _x
∗
2j􏼐 􏼑 + 􏽥h2j

_􏽢h2j

⇒ _V2(x)≤ − 􏽢h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j
_􏽢h2j.

(17)

Adding ±|Zj|
α2j+1h∗2j to (15), we yield as follows:

Backstepping
control law

High-order double-
integrator system

Adaptive law+ -
xid ei hi uj xiˆ

.

Figure 1: Block diagram of the proposed controller.
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_V2(x)≤ − 􏽢h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j
_􏽢h2j ± Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

h
∗
2j

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j

h
∗
2j − h2j􏼒 􏼓 − 􏽥h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ 􏽥h2jr2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ21 − 􏽥h2j 1 − r2j􏼐 􏼑 Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

􏼒 􏼓

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ21 − 􏽥h2j Δ22􏼐 􏼑

⇒ _V2(x)≤ − Δm2
Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j􏼒 􏼓,

(18)

where Δm2
� min(Δ21,Δ22) and according to Lemma 1, we

have as follows:

_V2(x)≤ − Δm2
Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽥h
2
2j􏼒 􏼓

1/2
⇒ _V2(x)≤ − Δm2

2V2(x)( 􏼁
1/2

.

(19)

Choosing ρ12 �
�
2

√
Δm2

, ρ22 � 1/2, we have _V2(x)≤
−ρ12V

ρ22
2 (x) and based on Lemma 2, the stability proof of the

second phase is guaranteed. Consequently, the settling time
upper bound T2 is as T2 ≤V1− ρ22(x0)/ρ12(1 − ρ22) .

As a result, the stability proof of the system (2) is
completed and the settling time upper bound will be as
T � T1 + T2. n

Remark 2. (e proof shows that in a finite time, we have
Zj⟶ 0. Consequently, in a finite time, we have
x2j⟶ x∗2j as well as all the system states reach zero in a
finite time and remains zero. Also, the uncertainty upper
bounds are estimated in a finite time.

5. Application Example

In [47–50], the ROV model with 3-DOF has been presented
as follows:

p1€x + Vx|V| p2|cos(ϕ)| + p3|sin(ϕ)|( 􏼁 + p4x − p5Vcx Vc

����
���� � Tx,

p1€x + Vy|V| p2|sin(ϕ)| + p3|cos(ϕ)|( 􏼁p4y − p5Vcy Vc

����
���� � Ty,

p6
€ϕ + p7

_ϕ| _ϕ| + p8 Vc

����
����
2sin

ϕ − ϕc

2
􏼠 􏼡 + p9 � Mz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where V � [Vx, Vy]T � [( _x − Vcx), ( _y − Vcy)]T and
Vc � [Vcx, Vcy]T are the vectors of speed in directions x, y

that are constants; pi, i � (1, 2, . . . , 9) are constants which
are provided in Table 1 with their uncertainties;
(Tx, Ty, Mz) � (u1, u2, u3) are control inputs that need to be

designed; ϕc is the current angle between the x axis and the
speed direction.

To obtain the system state equations, state variables are
defined as follows, X � [x1, x2, x3, x4, x5, x6]

T � [x, _x, y,

_y, ϕ, _ϕ]. (en, the state equations are rewritten as follows:

_x1 � x2 + d1,

_x2 � −p
−1
1 Vx‖V‖ p2 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑p4x1,􏼐

_x3 � x4 + d3,

_x4 � −p
−1
1 Vy‖V‖ p2 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x3 − p5Vcy Vc

����
����􏼐 􏼑 + d4 + p

−1
1 u2,

_x5 � x6 + d5,

_x6 � −p
−1
6 p7x6 x6

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p8 Vc

����
����
2 sin

x5 −∅c

2
􏼒 􏼓 + d6 + p

−1
6 u3􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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where ‖Vc‖ �
��������
V2

cx + V2
cy

􏽱
, ‖V‖ �

�������
V2

x + V2
y

􏽱
, and

dj, j � (1, 2, . . . , 6) is the system uncertainty model.
(e control goal is to fulfill a trajectory tracking problem

for the ROV; hence, the dynamic error is defined as
ej � xj − xjd

. Accordingly, the dynamic error is given as
follows:

_e1 � e2 + d1,

_e2 � f1 + d2 − _x2d
+ p

−1
1 u1,

_e3 � e4 + d3,

_e4 � f2 + d4 − _x4d
+ p

−1
1 u2,

_e5 � e6 + d5,

_e6 � f3 + d6 − _x6d
+ p

−1
6 u3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where

f1 � −P
−1
1 Vx‖V‖ p2 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x1 − p5Vcx Vc

����
����􏼐 􏼑,

f2 � −P
−1
1 Vy‖V‖ p2 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x3 − p5Vcy Vc

����
����􏼐 􏼑,

f3 � −P
−1
6 p7x6 x6

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p8V

2
c sin

x5 − ϕc

2
􏼠 􏼡 + p9􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

(e desired trajectory tracking is considered as follows:

xid
� cos(20t) + sin(10t). (24)

In this section, the designed controller in previous
section is applied to the ROV with 3-DOF given by (18). It is
to be noted that _x2jd

given in the control law (5) should track
the desired trajectory. To obtain simulation results, the

Table 1: System parameters with their uncertainties.

p1 12670 Kg ± 10% p2 2667 Kg · m−1 ± 10% p3 4934 Kg · m−1 ± 10%
p4 417 N · m−1 ± 5% p5 46912 Kg · m−1 ± 10% p6 18678 Kg · m2 ± 10%
p7 9200 Kg · m2 ± 10% p8 −308.4 Kg ± 5% p9 1492 N · m ± 5%
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Figure 2: Time responses of x1, x2, x3 and x1d
, x2d

, x3d
using AFSMBS.
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Simulink/MATLAB is utilized with the numerical method of
ode4 and the step-size of 0.001. Also, the control input is
applied after 3 seconds of start up of the system. In (23), the
value of the selected design parameters is given.

α2j−1 � α2j �
5
11

,

ri � 0.1.

(25)

Figures 2 to 4 show the simulation results of the AFSMBS
method for ROV with 3-DOF. Figures 2 and 3 show the
tracking performance before and after applying the con-
troller, where the controller is applied to the system at
t � 3(s). It can be seen that the system states reach the
desired trajectories after applying the controller to the
system.(e efficacy of the controller can be demonstrated by
comparing the behavior of the system states before and after
applying the controller to the system. (e controller effec-
tively drives the system states to their references.

It can be observed from Figure 2 that the states converge
to their references after applying the controller as follows. It
is to be noted that the controller is applied to the system at
t � 3(s).

(i) x1⟶ x1d
within t ≈ 2.2(s) using AFSMBS

(ii) x2⟶ x2d
within t ≈ 0.2(s) using AFSMBS

(iii) x3⟶ x3d
within t ≈ 1.7(s) using AFSMBS

Figure 3 shows that the states reach their references after
applying the controller as follows. Note that the controller is
applied to the system at t � 3(s).

(i) x4⟶ x4d
within t ≈ 0.3(s) using AFSMBS

(ii) x5⟶ x5d
within t ≈ 0.5(s) using AFSMBS

(iii) x6⟶ x6d
within t ≈ 0.6(s) using AFSMBS

Figure 4 shows the control signals u1, u2, and u3 using
the AFSMBS controller. It can be seen that the AFSMBS
controller is applied to the system at t � 3(s).

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

0 1 2 3 4 5 6 7 8 9-40

-20

0

0 1 2 3 4 5 6 7 8 9 10-50

0

50

100

Controller
applied

Controller
applied

Controller
applied

x 6
 (t

)
x 5

 (t
)

x 4
 (t

)

Time (s)

x (t)
xd (t)

Figure 3: Time responses of x4, x5, x6 and x4d
, x5d

, x6d
using AFSMBS.
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6. Conclusion

In this paper, a novel AFSMBS controller is proposed by
incorporating the robust sliding mode backstepping control
scheme, adaptive control method, and finite-time stability
notion for a type of high-order double-integrator systems
considering mismatched uncertainties. (e backstepping
control law is defined utilizing the concept of sliding mode.
(e upper bound of the uncertainties and external distur-
bances is adaptively estimated within a finite time and the
online estimated data are provided in the controller. (e
finite-time stability notion is used to guarantee the system’s
convergence in a finite time. (e stability proof is obtained
for the closed-loop system in the two phases utilizing a
backstepping method and by defining proper candidate
Lyapunov functions. (e proposed method is applied and
simulated for an example of ROV with 3-DOF. (e efficacy
of the suggested method is demonstrated in the simulation
results. For future works, the optimization of the design
parameters is recommended.
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