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As one of the crucial sensing methods, multisensor fusion recognition aids the Internet of �ings (IoT) in connecting things
through ubiquitous perceptual terminals. �e small size, sluggish �ying speed, low �ight altitude, and low electromagnetic
intensity of unmanned aerial vehicles (UAVs) have put enormous strain on air tra�c management and airspace security. It is
urgent to achieve e�ective UAV target detection. �e radio monitoring method, acoustic detection scheme, computer vision, and
radar signal detection are commonly used technologies in this �eld.�e radio monitoring approach has low accuracy, the acoustic
detection strategy has a limited detection range, computer vision is limited by weather conditions, and the radar signals at low
altitudes are in�uenced by ground clutter. To address these issues, this paper proposes an information fusion strategy based on two
levels of fusion: data-level fusion and decision-level fusion. In this strategy, Computer vision and radar signals complement each
other to improve the detection accuracy. For each level, the method of information fusion is introduced in detail. Furthermore, the
e�ectiveness of the method has been demonstrated by a series of comprehensive experiments. �e results show that the accuracy
of the fusion method is improved, and the proposed method can still work even when the single method loses function.

1. Introduction

�e rapid development of the types and quantities of UAVs
[1] has broadened their range of applications from military
[2–4] to civilian (e.g., smart agriculture [5, 6], smart city [7],
and surroundings [8]). �ese show that UAVs will have a
signi�cant impact on future production and lifestyle. Fur-
thermore, certain UAVs may be illegally used which may
disturb the normal airspace order [9]. �ese issues will put
pressure on air tra�c management and even threaten air-
space security. Faced with these problems, it is crucial to
employ adequate detection methods to accurately detect and
track UAVs. UAV target detection refers to the functions of
positioning, detecting, warning, or classifying through re-
lated technologies. By achieving this goal, researchers can
obtain more precise information on UAVs and provide
support for the following activities, such as path planning,

obstacle avoidance, and equipment maintenance. Computer
vision, capture remote sensing, and radar detection are the
three main approaches in this �eld [9]. In this paper, we
focus on the combined use of computer vision and radar
detection.

�e identi�cation of UAVs based on computer vision
mainly analyses the images captured by cameras or snap-
shotted from video streams. �ese digital images may
contain di�erent kinds of UAVs, which will be judged by the
corresponding algorithms. Bene�tting from easy image
acquisition, simple data processing, and low equipment cost
and weight, this method has attracted lots of attention and
has been used commercially, such as CASIA [10]. In [11], the
author proposed the CenterNet method for drone target
detection, applied TensorRT to accelerate and split the
network model, and proposed a method for location
tracking using multiple cameras. But this method also has
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some limitations in this special field. For example, the
method based on computer vision cannot work properly
during the night.

Radar is another commonly used equipment for
detecting UAVs. By processing the reflection of elec-
tromagnetic waves, the direction, distance, position, and
speed of UAVs can be determined. Electromagnetic
waves will never be affected by light and can penetrate
clouds [12]. )erefore, radar can easily detect high-al-
titude targets. All-round airspace surveillance has been
provided by radars with the continuous development of
radar technology and application of passive radar [13]. In
[14], micro-Doppler characteristics are used to identify
the UAVs and the cepstrum method is used to extract the
number and speed information of the UAV rotor.
However, as an application of electromagnetic waves,
radar signals are easily interfered by other electromag-
netic waves [15]. At the same time, the radar may be
unable to detect low-altitude targets. As a result, the
radar approach is not omnipotent. )ere will be a
detecting-blind area in some cases.

To overcome the shortcomings of computer vision and
radar signals in detection, we propose a set of information
fusion methods based on combining computer vision and
radar signals to overcome the limitation of using a single
method and maximizing the detectable range of the UAVs.
In the process of information fusion, we separately fuse the
two levels of the information, namely data and decision. By
implementing the fusion of the two levels, we examined the
efficiency of the information fusion methods and compared
the improvement of detection accuracy with a single
method.

)e main contributions of this paper are as follows:

(1) According to the two levels of information fusion,
information fusion models suitable for computer
vision and radar signals are given, respectively. For
each model, the modules in it are proposed in detail
to prove its feasibility in theory.)emethods used in
the model can be replaced to make the model
extensible.

(2) For each model, an information fusion imple-
mentation method using specific methods is
designed. In order to prove the effectiveness of this
method, comprehensive experiments were per-
formed to compare the detection accuracy before
and after fusion. )e experimental results showed
that the two specific implementation methods are
feasible and effective.

)e arrangement of the remaining sections in this paper
is as follows: Section 2 discusses the related work of com-
puter vision and radars in UAV detection, and discusses the
existing information fusion methods. Section 3 introduces
the proposed method and gives a specific implementation
method of the data fusion model and the decision fusion
model. Section 4 conducts comprehensive experiments,
implements two methods, and analyses them separately.
Finally, the conclusion of this paper is given in Section 5.

Figure 1 depicts a certain scene of identifying UAVs. In
the city, radars and cameras on rooftops maintain moni-
toring the airspace. When an alien UAV enters the moni-
toring area, it will be detected by both cameras and radars.
)en, the system can identify the UAV by fusing data
collected by cameras and radars. Because both cameras and
radars are used, UAV identification is more efficient and
accurate than either method alone.

Figure 1: )e scene of tracking UAVs with radars and cameras.
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2. Related Work

2.1. Computer Vision. Artificial intelligence (AI), particu-
larly deep learning, has offered significant technical assis-
tance for computer vision. To achieve the objective of
detection, cameras are used to acquire images, and the
corresponding algorithms are used to determine whether
there are specific targets. )is technology has been used
widely in facial recognition, medical diagnosis, UAV de-
tection, and other sectors, with positive results. )e fol-
lowing methods are commonly used in UAV detection.

2.1.1. Convolutional Neural Network (CNN). CNN is widely
used in UAV detection because convolutional kernels can
effectively extract target features from images. In order to
solve the detection of UAVs in a video sequence, Aker and
Kalkan [16] proposed an end-to-end model based on CNN.
Simultaneously, they also proposed an algorithm based on a
background subtracted to solve the problem of insufficient
data in the training model. In order to identify UAVs ac-
curately and determine their types and flight modes,
Allahham et al. [17] proposed a new detection method. )is
method used multichannel-dimensional CNN and achieved
good results in the DroneRF dataset. Reducing background
interference can improve the detection accuracy; therefore,
Zhang et al. [18] used Mask R-CNN to eliminate the invalid
area in the UAV detection process and used the attention
mechanism to detect the targets.

2.1.2. YOLO (You Only Look Once). Unlike other methods,
the YOLOmethod only requires one recognition procedure.
Hu et al. [19] improved YOLO v3 to make it more suitable
for detecting small targets, for example, UAVs. Owing to the
unique advantages of YOLO, how to achieve real-time de-
tection has become the focus of UAV detection [20, 21].

Other computer vision methods are also being applied in
this field, such as boosting [22], fuzzy clustering [23], and
multiple neural networks (MNNs) [24]. )ese methods have
unique characteristics and play an important role in
detecting UAVs.

2.2. Radar Methods. Radar plays a significant role in the
detection of UAVs due to its intrinsic properties. From
military to civilian applications, this technology began to
evolve toward ease of use and low cost. )e radar technology
used in this field mainly includes digital array radar [14],
multi-input-multioutput (MIMO) radar [25], continuous
wave radar [26], synthetic aperture radar (SAR), and inverse
synthetic aperture radar (ISAR).

SAR can penetrate clouds, smoke, and fog, and produce
high-resolution images [27–29], which can reduce the im-
pact of weather conditions in detection. In order to detect
suspicious UAVs and reduce the cost, Park et al. [30]
designed a set of systems based on low-cost SAR. )e
systems had the characteristics of autonomy and mobility,
and performed well in the tests.

During the evolution of SAR, ISAR occurs and plays an
important role in the detection of long-range targets, be-
cause it can provide high-resolution imaging. Pieraccini
et al. [31] examined the radar cross section (RCS) of tiny
UAVs and employed ISAR for 2-dimensional (2D) and 3-
dimensional (3D) imaging, and the experimental results
were good. Authors in [32] proposed a method of intro-
ducing Bayesian statistics into ISAR to solve the problem of a
small RCS. )e efficiency of this strategy was confirmed by
simulation, which used posterior probability density to
determine the imaging results.

2.3. Information Fusion Methods. Some studies examined
multiple types of fusion procedures in order to enhance
accuracy. In the research of Kim et al. [33], new images are
synthesized for UAV detection; this method combined the
time-domain and frequency-domain information of the
micro-Doppler signature (MDS), and these images were the
data set of classification. Training in the CNN could improve
the accuracy by more than 5%, which proved the effec-
tiveness of this merging method. Joshi et al. [34] reviewed
112 articles, all of them fused optical and radar remote
sensing data, which is of great significance to the research of
this paper. )ese studies have been applied in the field of
land, and many studies showed that the effect of using the
fusion method was better than using a single method. At the
same time, for the traditional classification algorithms, the
most commonly used method was to fuse before classifi-
cation, with pixels as input. )is review discussed the related
articles from multiple perspectives and fully explained the
application status of the fusion method.

3. Methods to Identify UAVs by means of
Information Fusion

)e redundancy design of the system helps to improve
system performance and robustness. )is work introduces
the information fusion method based on computer vision
and radar signals to improve the detectable range of UAVs.
A two-level information fusion system including data fusion
and decision fusion is designed in this work. On one hand,
the UAV’s position namely the coordinate is the primary
target in the data fusion part. On the other hand, decision
fusion aims to fuse the unique feature of the UAV. Figure 2
presents the UAV identification system based on informa-
tion fusion.

3.1. Data Fusion

3.1.1. Digital Data Processing. When a 3D object is pho-
tographed by an optical camera, its image will be turned into
a 2D image, but its relative position in the picture remains
unchanged. An image is composed of many pixel points.
Pixel coordinates can be used to express an object’s position
while determining its location. However, it is necessary to
select an appropriate coordinate system. )e image coor-
dinate system, camera coordinate system, and world coor-
dinate system are the three types of coordinate systems used
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in the photographs. Among them, the image coordinate
system is a 2D coordinate system, and the other two co-
ordinate systems are 3D coordinate systems. In this paper,
the camera captures images of the UAVs directly, so the
camera coordinate system is the best option for calibrating
the UAV’s position. In the processing of digital data, the
position of an UAV is marked with 2D coordinates.

3.1.2. Radar Data Processing. Broadband radar can identify
the target’s direction and distance via echo. )rough the
micro-Doppler effect of the UAV, the position of the target
can be obtained, and then, according to the orientation,
other characteristics such as the height of the target can also
be obtained.)erefore, compared with the camera, the radar
can achieve height measurement; therefore, the target’s
position obtained in this way will be 3D information.

3.1.3. Data Fusion Method. In order to better detect the
same UAV targets, the combination of optical images and
radar positioning can be used. If the coordinates of the two
UAVs are the same after being transformed into the same
coordinate system, it can be determined that this is the only
UAV, so as to realize the detection of UAVs at the data level.
It is actually a perspective projection problem to transform
the 3D coordinates of the object obtained by the radar into
the 2D coordinates of the images taken by the camera. )is
problem can be solved in three steps as follows:
(1) Determine the Projection Plane.)e 3D coordinates of the
object obtained by the radar are based on the radar being the
origin of the reference system, so the observation point of the
optical camera often does not coincide with the position of
the origin of the coordinates in the radar. As shown in Figure
3, determine the reference point A (a, b, c), the observer
coordinate S (x0, y0, z0), take any reference direction point
B (d, e, f), and then, set a sight distance λ to determine the
projection plane HPFK. In this case, a projection plane
equation can be determined as follows:

A′x + B′y + C′z + D′ � 0. (1)

A′, B′, and C′ are calculated by

A′, B, C′(  � a − x0, b − y0, c − z0( . (2)

D′ is determined by

λ �
A′x0 + B′y0 + C′z0 + D′

������������

A′
2

+ B′
2

+ C′
2







� 0. (3)

(2) Determine the Projection Plane Coordinate System.After
the reference point A is given, the line between the observer
and the reference point is the normal vector of the pro-
jection plane. )e equation of this straight line I is as
follows:

X − x0

A
�
Y − y0

B
�

c − z0

C
� k1. (4)
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)e straight-line equation and the projected plane
equation can be combined to find the intersection point D
(m, n, w); this point is set as the origin of the projection
plane. In the sameway, the intersection point E (j, k, l) of the
reference direction point with the observer line and the
projection plane can be obtained. )ese two 3D points are
two relative 2D coordinate points on the projection plane,
and the vector (j − m, k − n, l − w) is set to the positive y-
axis direction on the projection plane.

Using the straight line I as the axis, rotate the reference
direction point around this axis (viewed by the position of
the observer) clockwise by 90°, so that there will be no
uncertainty (i.e., no 2 points will be generated), and a new
coordinate point C will be obtained. Similarly, connect this
point with the observer and find the intersection point F
(r, u, v) of the connection line with the projection plane so
the vector (r − m, u − n, v − w) is in the positive x-axis di-
rection on the projection plane.
(3) Conversion of 3D Coordinates to 2D Coordinates. When
determining the coordinates of the target point, the observer
and the target are directly connected, and the intersection
point with the projection plane is the projection point of the
target on the 2D plane. )e origin, the x-axis positive di-
rection, and the y-axis positive direction have been deter-
mined on the projection plane before, so that the projection
coordinates of the target point on the 2D plane can be
obtained.

Figure 4 shows how we convert the coordinates of the
drone in the picture to three-dimensional coordinates of the
real world. Starting with radar coordinates (0, 0, 0), the
coordinate of the camera is (x1, y1, z1). )e maximum
horizontal and vertical viewing angles of the camera are α
and β, respectively. )e length and height of the photos are
l1, l2. Set up a cartesian coordinate system to locate the
coordinates of the points on the photo. )e coordinates of
the upper left corner are (0, 0) and the coordinates of the
lower right corner are (l1, l2). )e coordinates of the UAV in
the picture are (m1, n1). )e coordinates of the UAV in the
cartesian coordinate system with the centre of the picture as
the origin are (m1 − l1/2, l2/2 − n1). α1 and β1 represent the
angle at which the drone is deflected relative to the direction
of the camera.

α1 � arctan θ
m1 − l1/2( 

l1/2( /tan α
,

β1 � arctan θ
l2/2(  − n1

l2/2( /tan β
.

(5)

)e direction vector of camera erection is
(sin θ cos φ, sin θ sinφ, cos θ). )en, the direction vector of
the UAV relative to the camera is

v � sin θ − β1( cos φ − α1( , sin φ − α1( sin φ, cos θ − β1( ( .

(6)

)e connection between the camera and UAV can be
expressed as (x1, y1, z1) + k∗ v, where k is a parameter.

Similarly, another parametric equation of the connection
between the camera and UAV can be worked out, and the

intersection point of the two straight lines is the UAV
coordinate.

3.2. Decision Fusion

3.2.1. Digital Decision Processing. After YOLO was put
forward [35, 36], it has been widely used because it can detect
the target in real time. When it came to YOLOv3 [37], the
accuracy of detection for small targets has been improved
significantly. For UAV detection, the YOLOv3 algorithm is
more suitable. First of all, real-time detection can meet the
detection requirements of UAVs in fast flight: different from
static objects or slow-moving objects (such as pedestrians
and ships), the requirements for time are not very strict, but
the UAV’s speed may be faster; hence, the requirements for
time accuracy will naturally improve. Secondly, UAVs may
have a high flying altitude, which may be the very small
targets in the camera. )e feature extraction effect using the
CNN and other methods may not be obvious. However,
YOLOv3 rebuilt the neural network structure and recon-
structed the loss function, focusing more on the detection of
small targets, which is also suitable for UAV detection. Based
on the abovementioned reasons, YOLOv3 is used to process
the optical images, and the detection results are obtained
before the decision fusion. Figure 5 depicts the workflow of
YOLOv3.

Simple Online and Real-time tracking (SORT) is a
simple and efficient tracking method based on the Kalman
filter and Hungarian matching algorithm. )e main
shortcoming of the SORT algorithm is that the association
metric it uses is valid only when the uncertainty of state
estimation is low. Otherwise, tracking will fail when the
target is covered.

On the basis of the SORT algorithm, the DeepSORT
algorithm combines the motion information and the ap-
pearance information of the target as the association metric.
In this way, the DeepSORTalgorithm can track the occluded
target.

)e DeepSORTalgorithm uses the results of the detector
to initialize the tracker, and sets a counter for each tracker.
)e counter is accumulated after Kalman filtering. When the
prediction result matches the detection result, the counter is
set to zero. If no appropriate detection result is matched
within a period of time, the tracker will be deleted.

)eDeepSORTalgorithm combines motion information
and appearance information to match the prediction box
and tracking box by using the Hungarian algorithm. For
motion information, the algorithm uses Mahalanobis dis-
tance to describe the connection degree of prediction results
and the detection results. When the target movement in-
formation uncertainty is low, the Mahalanobis distance is a
suitable correlation factor. However, when the target is
blocked or the lens view is shaken, only the Mahalanobis
distance correlation will lead to a target identity switch, so
appearance information should be considered. )e Maha-
lanobis distance can provide reliable target location infor-
mation in a short-term prediction, and the cosine similarity
of the appearance feature can be used to recover target
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identification (ID) when the target reappears. Using linear
weighting, the two methods complement each other. Fig-
ure 6 depicts the workflow of the DeepSORT algorithm.

3.2.2. Radar Decision Processing. Chen [38] found that the
micro-Doppler phenomenon caused by micromotion can
also be observed in the microwave radar system, proposed
the mathematical expression of the micro-Doppler effect,
and believed that it has a potential application value in target

feature extraction. In addition to its own main direction
movement, a target may also have other mechanical
movements. )ese additional mechanical movements will
cause the frequency modulation of radar echo, resulting in
the micro-Doppler effect.

)e influence of different kinds of objects’ mechanical
motion on radar echo is quite different (such as the vibration
of birds’ wings and the vibration of UAVs’ rotors). )ere-
fore, the use of micro-Doppler features has a good effect in
distinguishing different types of objects. At the same time,

YOLOv3-SPP

input

SPP

backbone

Feature map

Figure 5: Workflow of the YOLOv3 algorithm.

(11, 12)

(0, 0)

(m1, n1)α1
β1

Figure 4: Locating the UAV using the photovoltaic system.
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the micro-Doppler effect of UAVs will also be greatly dif-
ferent due to the speed, number, length, and other factors of
the rotors; therefore, it also plays an important role in
identifying different types of UAVs.

For micro-Doppler feature extraction, the Fourier
method and time-frequency analysis method are mainly
used. )e frequency information related to the time cannot
be obtained by the Fourier method, so it is not the main-
stream method of micro-Doppler feature extraction. For
time-frequency analysis, the main methods include short-
time Fourier transform [39], generalized S-transform [40],
and Gabor transform [41–43]. Gabor transform is a short-
time Fourier transform with a Gaussian window. It has no
cross-term and faster operation speed also has obvious time-
frequency characteristics, so it is suitable for extracting
micro-Doppler features of UAVs.)is is also the reason why
this method is chosen in this paper.

We initially estimate the position of the UAV using a
one-dimensional image after receiving the radar echo of the
UAV target. )en, based on the target’s distribution, we
choose a suitable approach for separating the UAV target.
Finally, to fulfill the goal of UAV radar system identification,
we employ the cepstrum approach to extract the properties
of the UAV Figure 1 shows the workflow of identifying
UAVs by radar system.

3.2.3. Decision Fusion Methods. When multiple methods are
used to detect the targets, all the detection results can be fused
in the decision-making stage, which is an effective method to
transform the weak classifiers into the strong ones.)is is also
an important idea of the boosting algorithm [44].

X for an unknown target of a certain category, Ti for the
ith detection method, Pi(X) for the probability vector output
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by Ti, Ui(X) for the recall rate of Ti, and Vi(X) for the
accuracy rate of Ti. Pi(X) � Pi,1(X), . . . , Pi,j(X), . . . ,

Pi,M(X)}, Ui(X) � Ui,1(X), · · · , Ui,j(X), · · · , Ui,M(X) , and
Vi(X) � Vi,1(X), . . . , Vi,j(X), . . . , Vi,M(X) , where
i � 1, 2, . . . , N, N represents the number of detection
methods to be fused; j � 1, 2, . . . , M, M represents the
number of target categories. )e following rules were
used for decision fusion.

Maximum rule:

Fmax � j | Fj � max Pi,j , i � 1, . . . , N; j � 1, . . . , M; .

(7)

Minimum rule:

Fmin � j | Fj � min Pi,j , i � 1, . . . , N; j � 1, . . . , M; .

(8)

Mean rule:

Fmean � j | Fj �


N
i�1 Pi,j

N
, i � 1, . . . , N; j � 1, . . . , M;

⎧⎨

⎩

⎫⎬

⎭.

(9)

Product rule:

Fprod � j | Fj � 
N

i�1
Pi,j, i � 1, . . . , N; j � 1, . . . , M;

⎧⎨

⎩

⎫⎬

⎭.

(10)

Recall rule:

Frec � j | Fj � 
N

i�1
Pi(X) · Ui(X), i � 1, . . . , N; j � 1, . . . , M;

⎧⎨

⎩

⎫⎬

⎭.

(11)

Accuracy rule:

Facc � j | Fj � 
N

i�1
Pi(X) · Vi(X), i � 1, . . . , N; j � 1, . . . , M;

⎧⎨

⎩

⎫⎬

⎭.

(12)

Figure 2 depicts the decision fusion model. )e model
shows that the two approaches are independent before a
single detection result is obtained. Multiple detection
methods will not interfere with each other because of this
independent processing, and using both picture and radar
forms can ensure the most data diversity. Because the de-
tection methods utilized can be altered, the model has
scalability. )e data properties reflect this decision-level
fusion as well. )e usage of images mainly extracts features
from targets such as lines and textures of objects, and judges
whether the targets exist. )e use of micro-Doppler signals
mainly extracts time-frequency information, and analyses
the change of frequency over a period of time to infer the
target’s status. )erefore, before the decision fusion, it can
also be seen as the interaction of different features. )ese
features with large differences can jointly complete the task
of target detection.

4. Results and Discussion

)e previous sections explain how the system works. In the
actual work, the identification results may be affected by
external conditions. )erefore, this paragraph will use the
measured results to verify the accuracy of the system’s
identification of UAVs.

4.1. Introduction to the Experimental System. Considering
the actual operation scenario of the system, the experiment
was carried out outdoors. )e test equipment include an
antenna, vector network analyzer, high-speed camera,
turntable, computer, one single rotor UAV and one quad-
rotor UAV, signal amplifier, and power supply. )e device
was connected as shown in Figure 8.

4.2. Outdoor Test. Figure 9 shows the experimental system.
We conducted the outdoor experiments in three dif-

ferent scenarios: one with good light and a short detecting
distance, one with poor light and a short detecting distance,
and one with good light and a long detecting distance. )e
reason why we chose these three scenarios was to check
whether the information fusionmethod works well when the
single method cannot work well in a bad situation. We know
that the computer vision method fails to identify UAVs
when the light is poor. As to the radar method, UAVs are
small targets and their echo signals are weak. It is hard to
extract useful information of targets when the targets are far
enough. However, the common rotors of UAVs are com-
posite materials and their echoes are even weaker than those
made of metal. So, the radar may be unable to detect UAVs
when they are far beyond the detection range. In our ex-
periments, we choose 4 meters as the short detecting dis-
tance and 8 meters as the long detecting distance.

)e outdoor experiment ran three sets of tests on single-
rotor and quadrotor UAVs for every scenario. After the
UAVs are launched, the turntable is activated so that the
radar system and camera system can scan the UAVs. )e
radar system and camera system will collect data and
transmit it to the computer for processing. )e processed
data of the images taken by the camera are shown in
Figure 10.

4.3. ExperimentalResults andDiscussion. It can be seen from
the experimental results that the identification system
confirms that the radar system and the camera system
identify the same target by determining the target coordi-
nates first. )en, the system will compare the identification
accuracy of the two systems. Finally, the identification
system will output the result of the system with higher
identification accuracy in different environments, which
improves the accuracy by a maximum of 9.5%. At the same
time, the robustness of the identification work is guaranteed
(Table 1).

)e single identifying method whether the computer
vision method or radar works well when the light is good
enough and the detecting distance is short. However, the

8 Discrete Dynamics in Nature and Society
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detecting accuracy of the single method will never be higher
than the proposed information fusion method because the
maximum rule is chosen for decision-making in the pro-
posed method. )e detecting performance is significant and
the robustness of the identification work will be guaranteed
in spite of a higher cost. )is is more practical.

In this scenario, images of UAVs from the camera are
clear enough, and it is easy to identify UAVs and track their
location in the images. )e detecting distance is also critical
for radar detecting of UAV targets. Because the UAVs are
made of composite materials to lose weight, the radar echo is
much weaker than those made of metal. )e micro-Doppler
signature is produced by the rotors on the UAVs. Usually,
the rotors are tiny compared with the whole UAV body.
Under current technology conditions, a short detecting
distance is necessary to ensure the extraction of the micro-
Doppler signature. Or else, radars cannot receive a strong
enough echo of UAVs, and the extraction of the micro-
Doppler signature will never be accomplished.

In Table 2, it is obvious that the recognition function of
the computer vision method is out of operation in a poor
light scenario. )e cameras fail to capture images in dark
environments. )erefore, the recognition could never be

carried out. )e computer vision method fails to detect
UAVs in this kind of scenario. It is dangerous for airspace
surveillance. However, the radar can still work well in dark
environments. )e proposed information fusion method
still works well because it is composed of the radar system.
Additional equipment contribute to more robust
performance.

Table 3 shows the weakness of the recognition perfor-
mance of radar when the UAVs are far from radars. )e
radar echo is weak when the distance is long. )e longer the
distance, the weaker the echo, especially when the UAVs are
made of composite materials such as plastic and carbon
fibre. However, the computer visionmethod can still work in
this scenario, though the images of UAVs are smaller in the
picture captured by cameras; the robustness of the identi-
fication work is guaranteed as well.

From experiments 2 and 3, we can conclude that the
proposed method can always guarantee the detecting
function no matter which part loses function. It is more clear
from Figure 11. We equipped additional devices to obtain a
more robust system function regardless of extra costs be-
cause, in airspace surveillance, the detecting performance is
more critical.

Table 1: Experiment 1: identification of UAVs by the information fusion model in a good light and short distance scenario.

Group number 1 2
UAV type Helicopter 4-rotor drone Helicopter 4-rotor drone
Coordinate in the image (745, 559) (1197, 581) (775, 886) (1153, 567)
Recognition accuracy by YOLOv3 0.96 0.90 0.85 0.84
Coordinate by radar (2.5, 3.3, 2.9) (−3.7, 3.1, 2.1) (2.9, 3.4, 2.6) (−3.5, 3.2, 1.9)
Transformed coordinate (743, 562) (1199, 577) (775, 887) (1150, 566)
Recognition accuracy by radar 0.91 0.86 0.93 0.92
Recognition accuracy by the proposed system 0.96 0.90 0.93 0.92
Improved accuracy 5.5% 4.7% 9.4% 9.5%

Table 2: Experiment 1: identification of UAVs by the information fusion model in a poor light and short distance scenario.

Group number 1 2
UAV type Helicopter 4-rotor drone Helicopter 4-rotor drone
Coordinate in the image Failed (897, 521) (675685) Failed
Recognition accuracy by YOLOv3 Failed 0.09(almost failed) 0.05(almost failed) Failed
Coordinate by radar (2.2, 3.1, 2.8) (−3.9, 2.9, 2.1) (2.5, 3.1, 2.7) (−3.8, 2.6, 1.8)
Transformed coordinate (622, 419) (899, 527) (677, 687) (915, 515)
Recognition accuracy by radar 0.95 0.90 0.87 0.82
Recognition accuracy by the proposed system 0.95 0.90 0.87 0.82

Table 3: Experiment 1: identification of UAVs by the information fusion model in a good light and long-distance scenario.

Group number 1 2
UAV type Helicopter 4-rotor drone Helicopter 4-rotor drone
Coordinate in the image (445, 659) (785, 672) (445, 706) (825, 667)
Recognition accuracy by YOLOv3 0.86 0.79 0.85 0.74
Coordinate by radar (4.2, 3.9, 4.9) Failed Failed Failed
Transformed coordinate (433, 672) Failed Failed Failed
Recognition accuracy by radar 0.11(almost failed) Failed Failed Failed
Recognition accuracy by the proposed system 0.86 0.79 0.85 0.74
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5. Conclusions

In this work, we presented a UAV target identification
method based on information fusion of computer vision and
radar signals. )e system uses coordinates to confirm that
the radar system and camera system are identifying the same
target. )en, the system will compare the identification
results of both single systems to give the final identification
result. )e comprehensive experiments verified that the
system can identify a single-rotor UAV and quad-rotor
UAV. And it is superior than the single method. It is a
worthy choice to obtain a more robust system function
regardless of extra costs.

In the future, we will replace YOLOv3 with the latest
YOLOv5 which will provide better performance. After some
improvements to YOLOv5, we will also try to construct a set
of UAV optical image real-time detecting systems with a
hardware platform. Due to a shortage of time, the UAV data
set is insufficient. Situations in the real world are more
complicated. )erefore, more UAVs, seasonal elements, and
targets similar to UAVs (birds and kites) can all be added to
continue to improve UAV data sets. More decision-making
algorithms are also in the plan.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Disclosure

A preprint has previously been published [45].

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e work by Chaoqun Fang was supported by the Central
Guidance on Local Science and Technology Development

Special Fund of Shenzhen City under Project no.
2021Szvup079. )e work by Tao Hong was supported by the
National Natural Science Foundation of China under Grant
no. 61827901.

References

[1] C. F. Liew, D. DeLatte, N. Takeishi, and T. Yairi, “Recent
developments in aerial robotics: A survey and prototypes
overview,” 2017, https://arxiv.org/abs/1711.10085.

[2] M. A. Ma’sum, M. K. Arrofi, G. Jati et al., “Simulation of
intelligent unmanned aerial vehicle (UAV) for military sur-
veillance,” in Proceedings of the International Conference on
Advanced Computer Science and Information Systems
(ICACSIS), pp. 161–166, Sanur Bali, Indonesia, March 2013.

[3] V. Roberge, M. Tarbouchi, and G. Labonte, “Fast genetic
algorithm path planner for fixed-wing military UAV using
GPU,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 54, no. 5, pp. 2105–2117, 2018.

[4] D. Orfanus, E. P. de Freitas, and F. Eliassen, “Self-organization
as a supporting paradigm for military UAV relay networks,”
IEEE Communications Letters, vol. 20, no. 4, pp. 804–807,
2016.

[5] W. Andrew, C. Greatwood, and T. Burghardt, “Aerial animal
biometrics: individual friesian cattle recovery and visual
identification via an autonomous UAV with onboard deep
inference,” CoRR, vol. 1907, Article ID 05310, 2019.

[6] I. Yano, W. Santiago, J. Alves, L. Mota, and B. Teruel,
“Choosing classifier for weed identification in sugarcane fields
through images taken by UAV,” Bulgarian Journal of Agri-
cultural Science, vol. 23, pp. 491–497, 06 2017.

[7] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri,
and A. Tuncer, “UAV-enabled intelligent transportation
systems for the smart city: applications and challenges,” IEEE
Communications Magazine, vol. 55, no. 3, pp. 22–28, 2017.

[8] J. Dandois, M. Olano, and E. Ellis, “Optimal altitude, overlap,
and weather conditions for computer vision UAV estimates of
forest structure,” Remote Sensing, vol. 7, no. 10,
pp. 13895–13920, 2015.

[9] Y. Wei, T. Hong, and M. Kadoch, “Improved kalman filter
variants for UAV tracking with radar motion models,”
Electronics, vol. 9, no. 5, p. 768, 2020.

[10] “Casia-unlocking Your Drones,” 2020, https://www.
irisonboard.com/casia/.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

helicopter 4-rotor
drone

helicopter 4-rotor
drone

Comparision of recognition
accuracy in experiment 1

Recognition accuracy by YOLOv3

Recognition accuracy by radar

Recognition accuracy by proposed system

(a)

Comparision of recognition
accuracy in experiment 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

helicopter 4-rotor
drone

helicopter 4-rotor
drone

Recognition accuracy by YOLOv3

Recognition accuracy by radar

Recognition accuracy by proposed system

(b)

Comparision of recognition
accuracy in experiment 3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

helicopter 4-rotor
drone

helicopter 4-rotor
drone

Recognition accuracy by YOLOv3

Recognition accuracy by radar

Recognition accuracy by proposed system

(c)

Figure 11: Comparison of recognition accuracy in 3 experiments. (a) Experiment 1. (b) Experiment 2. (c) Experiment 3.

Discrete Dynamics in Nature and Society 11

https://arxiv.org/abs/1711.10085
https://www.irisonboard.com/casia/
https://www.irisonboard.com/casia/


[11] L. Tao, T. Hong, and Y. Guo, “Drone identification based on
CenterNet-TensorRT,” IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting, vol. 2020,
Article ID 9379645, 2020.

[12] “Advantages and disadvantages of radar,” 2011, http://
physicsa5.pbworks.com/w/page/38521145/Advantages%
20and%20Disadvantages%20of%20Radar.

[13] M. Edrich and A. Schroeder, “Multiband multistatic passive
radar system for airspace surveillance: a step towards mature
pcl implementations,” in Proceedings of the International
Conference on Radar, pp. 218–223, Adelaide, SA, Australia,
November 2013.

[14] J. Zhao, X. Fu, Z. Yang, and F. Xu, “Radar-assisted UAV
detection and identification based on 5G in the Internet of
things,” Wireless Communications and Mobile Computing,
vol. 2019, pp. 1–12, Article ID 2850263, 2019.

[15] A. Aldowesh, T. Alnuaim, and A. Alzogaiby, “Slow-moving
micro UAV detection with a small scale digital array radar,” in
Proceedings of the IEEE Radar Conference (RadarConf),
pp. 1–5, Boston, MA, USA, Aprile 2019.

[16] C. Aker and S. Kalkan, “Using deep networks for drone
detection,” in Proceedings of the IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance
(AVSS), pp. 1–6, Lecce, Italy, October 2017.

[17] M. S. Allahham, T. Khattab, and A.Mohamed, “Deep learning
for rfbased drone detection and identification: a multi-
channel 1-d convolutional neural networks approach,” in
Proceedings of the IEEE International Conference on Infor-
matics, IoT, and Enabling Technologies (ICIoT), pp. 112–117,
Doha, Qatar, May 2020.

[18] J. Zhang, Q. Zhang, and C. Shi, “An unmanned aerial vehicle
detection algorithm based on semantic segmentation and
visual attention mechanism,” in Proceedings of the 2018 2nd
International Conference on Computer Science and Artificial
Intelligence CSAI, vol. 18, May 2018, Article ID 309313.

[19] Y. Hu, X.Wu, G. Zheng, and X. Liu, “Object detection of UAV
for antiUAV based on improved yolo v3,” in Proceedings of the
Chinese Control Conference (CCC), pp. 8386–8390, Guangz-
hou, China, October 2019.

[20] S. Hassan, T. Rahim, and S. Shin, Real time UAV Detection
Based on Deep Learning Network, in Proceedings of the 2019
International Conference on Information and Communication
Technology Convergence (ICTC, pp. 630–632, Jeju, Korea
(South), December 2019.

[21] N. Tijtgat, W. Van Ranst, T. Goedeme, B. Volckaert, and
F. De Turck, “Embedded real-time object detection for a UAV
warning system,” in Proceedings of the Ce IEEE International
Conference on Computer Vision (ICCV) Workshops, Venice,
Italy, January 2017.

[22] S. Bjrklund, “Target detection and classification of small
drones by boosting on radar micro-Doppler,” in Proceedings
of the 15th European Radar Conference (EuRAD), pp. 182–185,
Madrid, Spain, November 2018.

[23] M. M. Ferdaus, S. G. Anavatti, M. A. Garratt, andM. Pratama,
“Fuzzy clustering based nonlinear system identification and
controller development of pixhawk based quadcopter,” in
Proceedings of the Ninth International Conference on Ad-
vanced Computational Intelligence (ICACI), pp. 223–230,
Doha, Qatar, July 2017.

[24] V. Anavatti and S. Anavatti, “Real-time system identification
of unmanned aerial vehicles: a multi-network approach,”
Journal of Computers, vol. 3, no. 7, p. 07, 2008.

[25] J. Klare, O. Biallawons, and D. Cerutti-Maori, “UAV detection
with mimo radar,” in Proceedings of the 18th International

Radar Symposium (IRS), pp. 1–8, Prague, Czech Republic,
August 2017.

[26] C. Liang, N. Cao, X. Lu, and Y. Ye, “UAV detection using
continuous wave radar,” in Proceedings of the IEEE Inter-
national Conference on Information Communication and
Signal Processing (ICICSP), pp. 1–5, Singapore, November
2018.

[27] M. Caris, S. Stanko, S. Palm, R. Sommer, and N. Pohl,
“Synthetic Aperture Radar atMillimeterWavelength for UAV
Surveillance Applications,” in Proceedings of the IEEE 1st
International Forum on Research and Technologies for Society
and Industry Leveraging a better tomorrow (RTSI), pp. 349–
352, Turin, Italy, November 2015.

[28] P. Kaniewski, C. Lenik, W. Susek, and P. Serafin, “Airborne
radar terrain imaging system,” in Proceedings of the 16th
International Radar Symposium (IRS), pp. 248–253, Dresden,
Germany, July 2015.

[29] L. Lou, K. Tang, B. Chen et al., “A 253mw/channel 4tx/4rx
Pulsed Chirping Phased-Array Radar Trx in 65nm Cmos for
X-Band Synthetic-Aperture Radar Imaging,” in Proceedings of
the IEEE International Solid - State Circuits Conference -
(ISSCC), pp. 160–162, San Francisco, CA, USA, March 2018.

[30] S. Park, Y. Kim, E. T. Matson, and A. H. Smith, “Accessible
synthetic aperture radar system for autonomous vehicle
sensing,” in Proceedings of the IEEE Sensors Applications
Symposium (SAS), pp. 1–6, Catania, Italy, May 2016.

[31] M. Pieraccini, L. Miccinesi, and N. Rojhani, “Rcs measure-
ments and isar images of small UAVs,” IEEE Aerospace and
Electronic Systems Magazine, vol. 32, no. 9, pp. 28–32, 2017.

[32] J. Xu, M. Liu, F. Zhao, K. Cheng, and L. Yang, “Statistical isar
imagery for low-altitude and small-size UAV based on sparse
bayesian learning,” in Proceedings of the 6th Asia Pacific
Conference on Synthetic Aperture Radar (APSAR), pp. 1–6,
Xiamen, China, March 2019.

[33] B. K. Kim, H. S. Kang, and S. O. Park, “Drone classification
using convolutional neural networks with merged Doppler
images,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 1, pp. 38–42, 2017.

[34] N. Joshi, M. Baumann, A. Ehammer et al., “A review of the
application of optical and radar remote sensing data fusion to
land use mapping and monitoring,” Remote Sensing, vol. 8,
no. 1, p. 70, 01 2016.

[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788, Las Vegas, NV, USA, July
2016.

[36] J. Redmon and A. Farhadi, “Yolo9000,” Better, faster, stronger,
vol. 12, 2016.

[37] J. Redmon and A. Farhadi, “Yolov3,” An incremental im-
provement, vol. 04, 2018.

[38] V. C. Chen, “Micro-Doppler effect of micromotion dynamics:
a review,” Proceedings of SPIE - Ce International Society for
Optical Engineering, vol. 5102, pp. 240–249, 2003.

[39] E. Swiercz, “Time-frequency transform used in radar Doppler
tomography,” in Proceedings of the 15th International Radar
Symposium (IRS), pp. 1–5, Gdansk, Poland, August 2014.

[40] Z. Sun, J. Wang, C. Yuan, Y. Bi, and H. Xiang, “Parameter
estimation of walking human based on micro-Doppler,” in
Proceedings of the 12th International Conference on Signal
Processing (ICSP), Hangzhou, China, pp. 1934–1937, 2014.

[41] A. R. Persico, C. Clemente, C. Ilioudis, D. Gaglione, J. Cao,
and J. Soraghan, “Micro-Doppler based recognition of bal-
listic targets using 2d gabor filters,” in Proceedings of the

12 Discrete Dynamics in Nature and Society

http://physicsa5.pbworks.com/w/page/38521145/Advantages%20and%20Disadvantages%20of%20Radar
http://physicsa5.pbworks.com/w/page/38521145/Advantages%20and%20Disadvantages%20of%20Radar
http://physicsa5.pbworks.com/w/page/38521145/Advantages%20and%20Disadvantages%20of%20Radar


Sensor Signal Processing for Defence (SSPD), pp. 1–5, Edin-
burgh, UK, October 2015.

[42] J. Lei and C. Lu, “Target classification based onmicro-Doppler
signatures,” in Proceedings of the IEEE International Radar
Conference, pp. 179–183, Arlington, VA, June 2005.

[43] F. H. C. Tivive, S. L. Phung, and A. Bouzerdoum, “Classifi-
cation of micro-Doppler signatures of human motions using
log-Gabor filters,” IET Radar, Sonar & Navigation, vol. 9,
no. 9, pp. 1188–1195, 2015.

[44] E. Bauer and R. Kohavi, “An empirical comparison of voting
classification algorithms: bagging, boosting, and variants,”
Machine Learning, vol. 36, pp. 105–139, 1999.

[45] Y. Wei, T. Hong, and C. Fang, UAV Target Identification
Based on Information Fusion of Computer Vision and Radar
Signals, Research Square, Beijing, China, 2022.

Discrete Dynamics in Nature and Society 13


