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+is paper considers the reinsurance-investment problem with interest rate risks under constant relative risk aversion and
constant absolute risk aversion preferences, respectively. Stochastic control theory and dynamic programming principle are
applied to investigate the optimal proportional reinsurance-investment strategy for an insurer under the Vasicek stochastic
interest rate model. Solving the corresponding Hamilton-Jacobi-Bellman equation via the Legendre transform approach, the
optimal premium allocation strategies maximizing the expected utilities of terminal wealth are derived. In addition, several
sensitivity analyses and numerical illustrations are given to analyze the impacts of different risk preferences and interest rate
fluctuation on the optimal strategies. We find that the asset allocation and reinsurance ratio of the insurer are correlated with risk
preference coefficient and interest rate fluctuation, and the insurance company may adjust the reinsurance-investment strategy to
deal with interest rate risk.

1. Introduction

As a financial institution, insurance company plays an
important role in the modern society, and its reinsurance
and investment business is also the focus of the management
because reinsurance and investment are effective at dis-
persing risks and making profits from surplus. Many lit-
erature studies have discussed the reinsurance and
investment problem from different perspectives, and it is
common to convert it into a problem of stochastic optimal
control. In the last decades, stochastic control theory has
been widely used in risk research. For instance, Browne [1]
obtained the optimal investment strategy under the diffusion
model through the Hamilton–Jacobi–Bellman (HJB)
equation, creating a precedent of combining risk theory with
stochastic control theory. Since then, there have been many
papers in which the HJB equation was used to solve optimal
control problems in insurance. According to the research
content, different objective and constraint functions have
been studied, such as minimizing ruin probability (Schmidli

[2], David Promislow and Young [3], and Bai et al. [4]),
maximizing adjustment coefficient (Hald and Schmidli [5]
and Liang and Guo [6]), and maximizing expected utility
(Irgens and Paulsen [7], Bai and Guo [8], Xu et al. [9], Cao
and Wan [10], and Liang et al. [11]). In addition, mean-
variance optimization also gets a lot of attention (Bi and Guo
[12], Zeng and Li [13], and Wang et al. [14]).

In this paper, the objective of the insurer is to maximize
the expected utility of terminal wealth in the finite horizon.
We suppose that the insurer purchases a proportional re-
insurance and is allowed to invest in the financial market.
+e problem is that the insurer intends to find the optimal
strategy to balance the risk and profit. Considering the fact
that interest rate is uncertain in the real-world environ-
ments, the optimal strategy under stochastic interest rate is
more practical. +ere have been many studies on stochastic
interest rate in dynamic portfolio problems; see Li and Wu
[15], Noh and Kim [16], Chang [17], Wang and Li [18], and
so on. For the reinsurance-investment problem, Liang et al.
[19] used an Ornstein-Uhlenbeck process to describe the
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instantaneous rate of investment return under CRRA utility
maximization, and inflation risks are further considered in
Guan and Liang [20]. Li et al. [21] obtained the optimal time-
consistent reinsurance-investment strategy under the mean-
variance criterion. Compared with previous studies, the first
contribution of this paper is that we consider the stochastic
interest rate in the reinsurance-investment problem, and the
stochastic interest rate model and surplus process are dif-
ferent from Guan and Liang [20]. Second, we investigate the
optimal reinsurance-investment strategy under two different
risk preferences, which may provide the insurer with a more
suitable investment strategy. Stochastic dynamic program-
ming is a classical method to solve optimal problems, but the
nonlinear partial differential equation generated in it is not
easy to solve.+erefore, on the basis of the stochastic control
theory, we also use Legendre transformation to obtain the
explicit expression of the optimal strategy. For more ref-
erences on the Legendre transform technique, Jonsson and
Sircar [22], Xiao et al. [23], Chang [24], andHu et al. [25] can
be seen. Finally, we analyze the effects of market parameters
on the optimal trading strategies.

+e rest of this paper is organized as follows. Section 2
formulates the reinsurance-investment problem with the
Vasicek stochastic interest rate. Section 3 derives the explicit
expressions of the optimal reinsurance-investment strategies
under CRRA and CARA utilities. Section 4 provides several
sensitive analyses of market parameters. Section 5 gives
conclusions.

2. The Model

In this section, we formulate a continuous-time reinsurance-
investment model where the insurers can trade in the fi-
nancial market or the insurance market with no taxes or fees.
+e framework consists of four parts: the surplus process,
the financial market, the wealth process, and the optimi-
zation criterion. Let (Ω, F, Ft􏼈 􏼉0≤ t≤T, P) be a complete
probability space with filtration Ft, 0≤ t≤T􏼈 􏼉, where T> 0 is
the time horizon and P is the probability. All stochastic
processes in this paper are supposed to be well defined in this
probability space.

2.1. SurplusProcess. Typically, three types of models are used
in the insurance market: the Cramer–Lundberg model,
approximating diffusion model, and jump-diffusion model.
We adopt the diffusion model to describe the surplus for the
insurers. +e claim process C is described as

dC(t) � adt − bdW1(t), (1)

where a and b are positive constants and W1(t) is a one-
dimensional standard Brownian motion. According to the
expected value premium principle, the pure premium rate of
the insurer is c � (1 + θ)a with safety loading θ> 0, and the
reinsurance premium is paid at the constant rate c1 � (1 +

η)a with safety loading η> θ> 0. Suppose that the insurer
purchases the proportional reinsurance to transfer the un-
derlying risk. For each t ∈ [0, T], the value of risk exposure is
denoted by q(t) ∈ [0, +∞) representing the retention level

of reinsurance. When q(t) ∈ (0, 1], it corresponds to a
proportional reinsurance cover. Let Y denote the total claim
and R: R+⟶ R+ denote the reinsurance function. +en,
R(Y) � (1 − q(t))Y, where 1 − q(t) represents the propor-
tion reinsured. +e dynamics for the surplus process R(t)

associated with reinsurance strategy q(t) is given by

dR(t) � cdt − q(t)dC(t) − (1 − q(t))c1dt

� [θ − (1 − q(t))η]adt + bq(t)dW1(t).
(2)

2.2. Financial Market. In addition to the reinsurance, we
assume that the insurer is allowed to invest its surplus in a
financial market consisting of a risk-free asset (i.e., bond)
and a risky asset (i.e., stock). +e stochastic interest rate r(t)

follows the Vasicek model (see [26]).

dr(t) � (α − λr(t))dt + βdW0(t), r(0) � r0, (3)

where the coefficients α, λ, and β are positive real constants
and W0(t) is a standard Brownian motion which is inde-
pendent of W1(t).

Let S0(t) denote the price process of the bond, which
evolves according to

dS0(t)

S0(t)
� r(t)dt, S0(0) � s0, (4)

where r(t) satisfies equation (3).
Let S(t) denote the price process of the risky asset, which

follows

dS(t)

S(t)
� (r(t) + u(t))dt + σdW(t), S(0) � s, (5)

where u(t)> 0 is a positive real-valued function, the constant
σ > 0 denotes the volatility rate of the risk asset, and W(t) is
another standard Brownian motion, which is independent
with W1(t), and W(t), W0(t) satisfy E[dW0(t)W(t)] � ρdt,
where ρ ∈ [− 1, 1] is the correlation coefficient.

2.3. Wealth Process. Let X(t) represent the wealth of the
insurer at time t with initial value X(0) � x0 and π(t) be the
amount of the wealth invested in the risky assets; then, the
remainder X(t) − π(t) is invested in the risk-free assets at
time t. Since the insurer is allowed to buy reinsurance and
invest in the financial market, the trading strategy is a pair of
dynamic process which is denoted by Π: � (q(t), π(t)),
where q(t) represents the reinsurance strategy and π(t)

denotes the investment strategy. Adopting the reinsurance-
investment strategyΠ, the corresponding reserve X(t) of the
insurer is described by

dX(t) � dR(t) + π(t)
dS(t)

S(t)
+(X(t) − π(t))

dS0(t)

S0(t)

� [r(t)X(t) + u(t)π(t) + θa − (1 − q(t))ηa]dt

+ σπ(t)dW(t)

+ bq(t)dW1(t).

(6)
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2.4. Optimization Criterion. We focus on maximizing the
utility of the insurer’s terminal wealth

max
π,q

E[U(X(T))], (7)

where the utility function U(·) is typically increasing and
concave with constraints (3) and (6). For an admissible
strategyΠ, the value function HΠ(t, r, x) from state (r, x) at
time t is defined by

HΠ(t, r, x) � E[U(X(T))|X(t) � x, r(t) � r], (8)

and the objective function is

H(t, r, x) � sup
π,q

E[U(X(T))|X(t) � x, r(t) � r], (9)

with boundary condition H(T, r, x) � U(x). +e insurer
aims to find a pair of strategy (q∗(t), π∗(t)) such that
H∗Π(t, r, x) � H(t, r, x), where q∗(t) is called the optimal
reinsurance strategy and π∗(t) is called the optimal in-
vestment strategy.

3. Optimal Reinsurance-Investment Strategy

To solve optimal problem (7), we apply the dynamic pro-
gramming approach described in Fleming and Soner [27].
Because of the value function H(t, r, x), its partial deriva-
tives Ht, Hr, Hx, Hrr, Hxx, and Hxr are continuous on
R1

+ × R1, and then H(t, r, x) satisfies the following Hamil-
ton–Jacobi–Bellman (HJB) equation:

Ht +(α − λr(t))Hr +[r(t)x +(θ − η)a]Hx +
1
2
β2Hrr

+ sup
π(t)>0

u(t)π(t)Hx +
1
2
σ2π2

(t)Hxx + ρβσπ(t)Hrx􏼚 􏼛

+ sup
0≤q(t)≤1

ηaq(t)Hx +
1
2
b
2
q
2
(t)Hxx􏼚 􏼛 � 0,

(10)

for (t, x) ∈ [0, T) × R with boundary condition
H(T, r, x) � U(x), where H � H(t, r, x).

Differentiating equation (10) with respect to q(t) and
π(t) and setting their derivatives equal to zero, we have

u(t)Hx + σ2π(t)Hxx + ρβσHrx � 0,

ηaHx + b
2
q(t)Hxx � 0.

(11)

Using the first-order maximizing conditions for
(q(t), π(t)) yields

π∗(t) � −
u(t)

σ2
Hx

Hxx

−
ρβ
σ

Hrx

Hxx

, (12)

q
∗
(t) � −

ηa

b
2

Hx

Hxx

. (13)

Note that q(t)> 0. If q(t)≤ 1, then q∗(t) coincides with
equation (13). If q(t)> 1, then we can let q(t) � 1 which

means that the proportion of reinsurance is zero. We only
consider the case q(t)≤ 1.

Substituting equations (12) and (13) into the left side of
equation (10), we obtain

Ht +(α − λr(t))Hr +[r(t)x +(θ − η)a]Hx +
1
2
β2Hrr

−
1
2
η2a2

b
2

H
2
x

Hxx

−
ρβu(t)

σ
HxHrx

Hxx

−
1
2
β2ρ2

H
2
rx

Hxx

−
1
2

u
2
(t)

σ2
H

2
x

Hxx

� 0.

(14)

Now, the above stochastic control problem has been
transformed into solving a partial differential equation for
the value function H(t, r, x). In the next step, we shall find
the solution to equation (14) with boundary condition
H(T, r, x) � U(x).

Definition 1 (see [23]). Let H: R⟶ R be a convex func-
tion. For z> 0, define the Legendre transform

L(z) � sup
x>0

H(x) − zx{ }. (15)

+e function L(z) is called the Legendre dual of function
H(x).

Following the works of Xiao et al. [23], we define a
Legendre transform

􏽢H(t, r, z) � sup
x>0

H(t, r, x) − zx{ }, (16)

g(t, r, z) � inf
x>0

x|H(t, r, x)≥ zx + 􏽢H(t, r, z)􏽮 􏽯, (17)

where z> 0 denotes the dual variable to x. +e function
􏽢H(t, r, z) is related to g(t, r, z),

g(t, r, z) � − 􏽢Hz(t, r, z). (18)

Noting that H(T, r, x) � U(x) at terminal time T, we
have

􏽢H(T, r, z) � sup
x>0

U(x) − zx{ },

g(T, r, z) � inf
x>0

x|U(x)≥ zx + 􏽢H(T, r, z)􏽮 􏽯,

(19)

from which we have

g(T, r, z) � U′( 􏼁
− 1

(z). (20)

Equation (20) implies that g(T, r, z) is the inverse of
marginal utility. From equation (16), we have
Hx(t, r, x) � z, and

g(t, r, z) � x,

􏽢H(t, r, z) � H(t, r, g) − zg.
(21)
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Referring to Jonsson and Sircar [22], we have the fol-
lowing transformation rules:

Ht � 􏽢Ht,

Hr � 􏽢Hr,

Hxx � −
1

􏽢Hzz

,

Hrx � −
􏽢Hrz

􏽢Hzz

,

Hrr � 􏽢Hrr −
􏽢H
2
rz

􏽢Hzz

,

(22)

where 􏽢H � 􏽢H(t, r, z).
Letting ρ2 � 1 and putting (22) into equation (14), we

have
􏽢Ht +(α − λr(t)) 􏽢Hr +[r(t)x +(θ − η)a]z

+
1
2

η2a2

b
2 +

u
2
(t)

σ2
􏼢 􏼣z

2 􏽢Hzz

−
ρβu(t)

σ
z 􏽢Hrz +

1
2
β2 􏽢Hrr � 0.

(23)

Differentiating equation (23) with respect to z gives the
following equation:

gt +(α − λr(t))gr − r(t)g − r(t)zgz − (θ − η)a + K1(t)

z
2
gzz + 2zgz􏼐 􏼑

−
ρβu(t)

σ
gr + zgrz( 􏼁 +

1
2
β2grr � 0,

(24)

where K1(t) � (1/2)[(η2a2/b2) + (u2(t)/σ2)], and the
boundary condition g(T, r, z) � (U′)− 1(z).

Note that we have transformed the nonlinear partial
differential equation (14) into a linear second-order partial
differential equation (24). In the following sections, we
provide the explicit solutions for equation (14) under CRRA
and CARA utilities by the variable change method.

3.1. Power Utility. Assume that the insurer takes the power
utility function (CRRA)

U(x) �
x

p

p
, p< 1. (25)

According to equation (20), we have

g(T, r, z) � z
(1/p− 1)

. (26)

We conjecture a solution to equation (26) with the form

g(t, r, z) � f(t, r)z
(1/p− 1)

+ h(t, r), (27)

where f(T, r) and h(t, r) are suitable functions such that
equation (27) is a solution of equation (24), and f(T, r) � 1
and h(T, r) � 0. +e derivatives of g(t, r, z) with respect to
the variables t, r, and z are

gt � ft(t, r)z
(1/p− 1)

+ ht(t, r),

gr � fr(t, r)z
(1/p− 1)

+ hr(t, r),

gz �
1

p − 1
f(t, r)z

(2− p/p− 1)
,

grr � frr(t, r)z
(1/p− 1)

+ hrr(t, r),

grz �
1

p − 1
fr(t, r)z

(2− p/p− 1)
,

gzz �
2 − p

(p − 1)
2 f(t, r)z

(3− 2p/p− 1)
.

(28)

Putting the above derivatives back into equation (24)
leads to an equation of f(t, r) and h(t, r),

z
(1/p− 1)

ft(t, r) +(α − λr(t))fr(t, r) − r(t)f(t, r) −
ρβu(t)

σ
fr(t, r) +

1
p − 1

fr(t, r)􏼢 􏼣􏼨

+
1
2
β2frr(t, r) −

r(t)

p − 1
f(t, r) + K1(t)

2 − p

(p − 1)
2 f(t, r) +

2
p − 1

f(t, r)􏼢 􏼣 + ht(t, r)

+(α − λr(t))hr(t, r) +
1
2
β2hrr(t, r) −

ρβu(t)

σ
hr(t, r) − r(t)h(t, r) +(η − θ)a � 0.

(29)

To solve equation (27), we decompose it into the fol-
lowing two equations:
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ft(t, r) + (α − λr(t)) −
ρβu(t)

σ
p

p − 1
􏼢 􏼣fr(t, r) +

pK1(t)

(p − 1)
2 −

pr(t)

p − 1
􏼢 􏼣f(t, r)

+
1
2
β2frr(t, r) � 0,

(30)

with boundary condition f(T, r) � 1, and

ht(t, r) +
1
2
β2hrr(t, r) + (α − λr(t)) −

ρβu(t)

σ
􏼢 􏼣hr(t, r) − r(t)h(t, r) +(η − θ)a � 0, (31)

with boundary condition h(T, r) � 0.

Lemma 1. If a solution of equation (27) is in the form

f(t, r) � A(t)e
B(t)r

, (32)

with the boundary conditions A(T) � 1 andB(T) � 0, then
A(t) and B(t) are given by

A(t) � exp 􏽚
T

t

1
2
β2B2

(s) + α −
ρβu(s)

σ
p

p − 1
􏼠 􏼡B(s) +

pK1(s)

(p − 1)
2􏼢 􏼣ds􏼨 􏼩, (33)

B(t) �
p

λ(p − 1)
e

− λ(T− t)
− 1􏽨 􏽩. (34)

Proof. Plugging solution (32) into equation (30), we obtain

e
rB(t)

A′(t) + rA(t)B′(t) +
1
2
β2A(t)B

2
(t) + α −

ρβu(t)

σ
p

p − 1
􏼢 􏼣A(t)B(t)

+
pK1(t)

(p − 1)
2 A(t) − λrA(t)B(t) −

p

p − 1
rA(t)

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

� 0, (35)

where A′(t) andB′(t) denote the derivatives with respect to
t. In order to eliminate the dependence on r, we decompose
equation (35) into the following two equations:

rA(t) B′(t) − λB(t) −
p

p − 1
􏼠 􏼡 � 0, (36)

A′(t)

A(t)
+
1
2
β2B2

(t) + α −
ρβu(t)

σ
p

p − 1
􏼠 􏼡B(t) +

pK1(t)

(p − 1)
2 � 0. (37)

Solving the ordinary differential equation (36) with
boundary condition B(T)� 0, we obtain equation (34). For
equation (37) withA(T)� 1, the solution is given by equation
(33). □

Lemma 2. If a solution of equation (31) is of the structure

h(t, r) � (η − θ)a 􏽚
T

t

􏽥h(s, r)ds, (38)

Discrete Dynamics in Nature and Society 5



then 􏽥h(t, r) satisfies the following equation:

􏽥ht(t, r) +
1
2
β2􏽥hrr(t, r) + (α − λr(t)) −

ρβu(t)

σ
􏼢 􏼣􏽥hr(t, r)

− r(t)􏽥h(t, r) � 0,

(39)

with the boundary condition 􏽥h(T, r) � 1.

Proof. We define the variational operator ∇ on h(t, r) by

∇h(t, r) � − r(t)h(t, r) + (α − λr(t)) −
βu(t)

σ
􏼢 􏼣hr(t, r)

+
1
2
β2hrr(t, r).

(40)

+en, equation (31) is rewritten in the form

zh(t, r)

zt
+ ∇h(t, r) +(η − θ)a � 0, h(T, r) � 0. (41)

Considering

h(t, r) � (η − θ)a 􏽚
T

t

􏽥h(s, r)ds, (42)

we derive

zh(t, r)

zt
� (η − θ)a 􏽚

T

t

z􏽥h(s, r)

zs
ds − 􏽥h(T, r)􏼢 􏼣, (43)

∇h(t, r) � (η − θ)a 􏽚
T

t
∇􏽥h(s, r)ds. (44)

Substituting equations (43) and (44) into (41), we get

(η − θ)a 􏽚
T

t

z􏽥h(s, r)

zs
+ ∇􏽥h(s, r)􏼠 􏼡ds − 􏽥h(T, r) + 1􏼢 􏼣 � 0.

(45)

+erefore, we obtain

z􏽥h(s, r)

zs
+ ∇􏽥h(s, r) � 0, 􏽥h(T, r) � 1, (46)

which completes the proof. □

Lemma 3. Assume that
􏽥h(t, r) � D(t)e

E(t)r
, (47)

is a solution of equation (39), with boundary conditions
D(T)� 1 and E(T)� 0. ?en, D(t) and E(t) are given by

D(t) � exp 􏽚
T

t

1
2
β2E2

(s) + α −
ρβu(s)

σ
􏼠 􏼡E(s)􏼢 􏼣ds􏼨 􏼩, (48)

E(t) �
1
λ

e
− λ(T− t)

− 1􏼐 􏼑. (49)

Proof. Putting equation (47) into (39) yields

D(t)e
E(t)r D′(t)

D(t)
+ rE′(t) + α − λr −

ρβu(t)

σ
􏼠 􏼡E(t) +

1
2
β2E2

(t) − r􏼢 􏼣 � 0. (50)

Eliminating the dependence on r, we decompose
equation (50) into the following two equations:

r E′(t) − λE(t) − 1( 􏼁 � 0, E(T) � 0, (51)

D′(t)

D(t)
+ α −

ρβu(t)

σ
􏼠 􏼡E(t) +

1
2
β2E2

(t) � 0, D(T) � 1.

(52)

Using the same approach as that of solving equation
(36), the solution to equation (51) with E(T)� 0 is given by
equation (49). For equation (52) with D(T)� 1, we obtain
equation (48).

Note that
Hx

Hxx

� zgz(t, r, z) �
1

p − 1
(x − h(t, r)), (53)

Hrx

Hxx

� − gr(t, r, z) � − B(t)(x − h(t, r)) − hr(t, r). (54)

Substituting equations (53) and (54) into trading
strategies (12) and (13), we get the following theorem. □

Theorem 1. Let ρ2 � 1, and assume that the utility is given
by a power utility function (25) for the optimal investment-
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reinsurance problem (7). ?ere exists a solution g(t, r, z) to
the dual Hamilton–Jacobi–Bellman equation (24) with
boundary condition g(T, r, z) � z(1/p− 1). ?e corresponding

optimal investment π∗p(t) and proportional strategy q∗p(t) of
problem (7) are given by

π∗p(t) � −
u(t)

σ2
Hx

Hxx

−
ρβ
σ

Hrx

Hxx

�
u(t)

σ2
1

1 − p
(x − h(t, r)) +

ρβ
σ

B(t)(x − h(t, r)) + hr(t, r)􏼂 􏼃,

q
∗
p(t) � −

ηa

b
2

Hx

Hxx

�
ηa

b
2

1
1 − p

(x − h(t, r)),

(55)

where h(t, r) � (η − θ)a 􏽒
T

t
􏽥h(s, r)ds is given in Lemmas 2

and 3.

3.2. Exponential Utility. Assume that the insurer takes an
exponential utility function (CARA)

U(x) � −
1
c

e
− cx

, c> 0, (56)

where c represents the absolute risk aversion coefficient. +e
exponential utility function (56) plays a prominent role in
insurance mathematics and actuarial practice.

According to terminal condition (20), we have

g(T, r, z) � −
ln z

c
. (57)

We conjecture a solution to equation (24) with the form

g(t, r, z) � −
1
c

k(t, r)[ln z + v(t, r)] + w(t, r), (58)

with boundary conditions given by k(T, r) � 1, v(T,

r) � 0, andw(T, r) � 0.
A direct calculation yields the partial derivatives

gt(t, r, z) � −
kt(t, r)

c
[ln z + v(t, r)] −

k(t, r)

c
vt(t, r) + wt(t, r),

gr(t, r, z) � −
kr(t, r)

c
[ln z + v(t, r)] −

k(t, r)

c
vr(t, r) + wr(t, r),

gz(t, r, z) � −
k(t, r)

c

1
z

,

gzz(t, r, z) �
k(t, r)

c

1
z
2,

grz(t, r, z) � −
kr(t, r)

c

1
z

,

grr(t, r, z) � −
krr(t, r)

c
[ln z + v(t, r)] −

2kr(t, r)vr(t, r) + k(t, r)vrr(t, r)

c
+ wrr(t, r).

(59)

Introducing the above derivatives back into equation
(24), we derive that
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−
ln z

c
kt(t, r) +(α − λr(t))kr(t, r) − r(t)k(t, r) +

1
2
β2krr(t, r) −

ρβu(t)

σ
kr(t, r)􏼢 􏼣

+ wt(t, r) +(α − λr(t))wr(t, r) − r(t)w(t, r) +
1
2
β2wrr(t, r) −

ρβu(t)

σ
wr(t, r) +(η − θ)a

−
k(t, r)

c

v(t, r)kt(t, r)

k
+(α − λr(t))

v(t, r)kr(t, r)

k
+(α − λr(t))vr(t, r) − r(t)v(t, r)

+
1
2
β2

v(t, r)krr(t, r)

k
+ β2

vr(t, r)kr(t, r)

k
−
ρβu(t)

σ

v(t, r)kr(t, r)

k
+ vr(t, r) +

kr(t, r)

k
􏼢 􏼣 + vt(t, r) − r(t) + K1(t) +

1
2
β2vrr(t, r)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0.

(60)

Equation (60) is split into the following equations:

kt(t, r) − r(t)k(t, r) + (α − λr(t)) −
ρβu(t)

σ
􏼢 􏼣kr(t, r) +

1
2
β2krr(t, r) � 0, (61)

with boundary condition k(T, r) � 1,

wt(t, r) − r(t)w(t, r) + (α − λr(t)) −
ρβu(t)

σ
􏼢 􏼣wr(t, r) +

1
2
β2wrr(t, r) +(η − θ)a � 0, (62)

with boundary condition w(T, r) � 0, and

v(t, r)kt(t, r)

k(t, r)
+ vt(t, r) − r(t)v(t, r) + (α − λr(t)) −

ρβu(t)

σ
􏼢 􏼣

v(t, r)kr(t, r)

k(t, r)

+ (α − λr(t)) −
ρβu(t)

σ
􏼢 􏼣vr(t, r) +

1
2
β2

v(t, r)krr(t, r)

k(t, r)
+ β2

vr(t, r)kr(t, r)

k(t, r)

− r(t) +
1
2
β2vrr(t, r) −

ρβu(t)

σ
kr(t, r)

k(t, r)
+ K1(t) � 0,

(63)

with boundary condition v(T, r) � 0.

Lemma 4. Assume that a solution of equation (61) is in the
form

k(t, r) � e
􏽥A(t)+􏽥B(t)r

, (64)

with the boundary conditions 􏽥A(T) � 0 and 􏽥B(T) � 0. ?en,
􏽥A(t) and 􏽥B(t) are given by

􏽥A(t) � 􏽚
T

t
α −

ρβu(s)

σ
􏼠 􏼡􏽥B(s) +

β2

2
􏽥B
2
(s)􏼢 􏼣ds, (65)

􏽥B(t) �
1
λ

e
− λ(T− t)

− 1􏼐 􏼑. (66)

Proof. Putting solution (64) into equation (61) yields
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k(t, r) 􏽥A′(t) + r􏽥B′(t) − r + α − λr −
ρβu(t)

σ
􏼠 􏼡􏽥B(t) +

β2

2
􏽥B
2
(t)􏼢 􏼣 � 0. (67)

We separate equation (67) into two equations:

􏽥A′(t) + α −
ρβu(t)

σ
􏼠 􏼡􏽥B(t) +

β2

2
􏽥B
2
(t) � 0, (68)

r 􏽥B′(t) − λ􏽥B(t) − 1( 􏼁 � 0. (69)

Solving equation (69) with 􏽥B(T) � 0, we obtain equation
(66). For equation (68) with 􏽥A(T) � 0, we have equation
(67). □

Lemma 5. Assume that a solution of equation (62) takes the
structure

w(t, r) � (η − θ)a 􏽚
T

t

􏽥h(s, r)ds. (70)

?en, 􏽥h(t, r) satisfies equation (39) in Lemma 2.

Proof. Observe that equation (62) has the same solution
with equation (31), i.e., w(t, r) � h(t, r). +e proof is the
same as that of Lemmas 2 and 3; we omit its proof. □

Lemma 6. Assume that a solution of equation (63) is in the
form

v(t, r) � 􏽥D(t) + 􏽥E(t)r, (71)

with the boundary conditions 􏽥D(T) � 0 and 􏽥E(T) � 0. ?en,
􏽥D(t) and 􏽥E(t) are given by

􏽥D(t) � 􏽚
T

t
α −

ρβu(s)

σ
+ β2􏽥B(s)􏼠 􏼡􏽥E(s) + K1(s) −

ρβu(s)

σ
􏽥B(s)􏼢 􏼣ds, (72)

􏽥E(t) �
1
λ

e
− λ(T− t)

− 1􏼐 􏼑. (73)

Proof. From equation (72), we have kr(t, r) � 􏽥B(t)k(t, r).
Introducing equation (60) and kr(t, r), we simplify

equation (61) in the form

vt(t, r) − r(t) + (α − λr(t)) −
ρβu(t)

σ
+ β2􏽥B(t)􏼢 􏼣vr(t, r)

+
1
2
β2vrr(t, r)

−
ρβu(t)

σ
􏽥B(t) + K1(t) � 0.

(74)

Substituting solution (71) into equation (74) yields

􏽥D′(t) + α −
ρβu(t)

σ
+ β2􏽥B(t)􏼠 􏼡􏽥E(t) + r 􏽥E′(t) − λ􏽥E(t) − 1( 􏼁 + K1(t) −

ρβu(t)

σ
􏽥B(t) � 0. (75)

Splitting equation (75) into two equations, we have

􏽥D′(t) + α −
ρβu(t)

σ
+ β2􏽥B(t)􏼢 􏼣􏽥E(t) + K1(t) −

ρβu(t)

σ
􏽥B(t) � 0, (76)

r 􏽥E′(t) − λ􏽥E(t) − 1􏼂 􏼃 � 0. (77)
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Taking into account the boundary condition 􏽥E(T) � 0,
the solution to equation (77) is given by equation (64).
Solving equation (76) with 􏽥D(T) � 0, we obtain equation
(63).

Note that
Hx

Hxx

� zgz(t, r, z) � −
1
c

k(t, r), (78)

Hrx

Hxx

� − gr(t, r, z) � − 􏽥B(t)(x − w(t, r))

+
1
c

􏽥E(t)k(t, r) − wr(t, r).

(79)

Substituting equations (78) and (79) into trading
strategies (14) and (15), we get the following theorem. □

Theorem 2. Let ρ2 � 1, and assume that the utility is given
by an exponential utility function (56) for the optimal in-
vestment-reinsurance problem (7). ?ere exists a solution
g(t, r, z) to the dual Hamilton–Jacobi–Bellman equation (24)
with boundary condition g(t, r, z) − (ln z/c). ?e corre-
sponding optimal investment π∗e (t) and proportional strategy
q∗e (t) of problem (7) are given by

π∗e (t) � −
u(t)

σ2
Hx

Hxx

−
ρβ
σ

Hrx

Hxx

�
u(t)

σ2
1
c

k(t, r)

+
ρβ
σ

􏽥B(t)(x − w(t, r)) −
1
c

􏽥E(t)k(t, r) + wr(t, r)􏼢 􏼣,

(80)

q
∗
e (t) � −

ηa

b
2

Hx

Hxx

�
ηa

b
2
1
c

k(t, r), (81)

where k(t, r) andw(t, r) are given in Lemmas 4 and 5.

4. Sensitivity Analyses and
Numerical Illustrations

In this section, we analyze the effects of market parameters
on the optimal reinsurance-investment strategy, especially
the parameters of interest rate and CARA and CRRA
utilities, and provide several numerical simulations to il-
lustrate our results. +roughout the numerical analyses,
unless otherwise stated, the basic parameters are given by
ρ � 1, a � 0.6, b � 0.4, θ � 0.2, η � 0.25, α � 0.3, λ � 1,

σ � 0.8, t � 0, T � 5, andx � 1.

4.1. Sensitivity Analyses on the Optimal Investment Strategy.
From equation (3), we know that the parameter β represents
the volatility of short interest rate. It means that the bigger
the value of β is, the bigger the volatility resulted from
interest rate is. +e effect of β on the optimal investment
strategy under the CRRA utility is shown in Figure 1, from
which we see that π∗p(t) decreases with the parameter β in
the case of ρ � 1. Due to the positive correlation between
interest rate and stock price dynamics, the volatility of stock
price will become larger. It implies that the underlying risk
becomes larger when the risk of interest rate becomes larger.

+erefore, in order to avoid risks, the investor will decrease
the investment in the stocks.

Figure 2 illustrates that the optimal investment strategy
under the CARA utility first declines slightly and then in-
creases with β. When interest rate fluctuations are small, the
insurer will not change their holdings of risk assets too
much. However, the insurer will increase risky investment
while interest rate fluctuations become larger.

For the CRRA utility, the absolute risk aversion coeffi-
cient ACRRA � − (U″(x)/U′(x)) � 1 − p/x, which implies
that the risk aversion level of the investor decreases as p

increases. +erefore, as it is illustrated in Figure 3, π∗p in-
creases as p becomes larger, and the insurer is willing to
invest more money in the financial markets.

For the CARA utility, we obtain the absolute risk
aversion coefficient ACARA � − (U″(x)/U′(x)) � c. +us, π∗e
decreases with c, which is shown in Figure 4. +e larger c is,
the more risk averse the insurer will be and then will reduce
the investment in risky assets.

4.2. Sensitivity Analyses on the Optimal Reinsurance Strategy.
For the CRRA utility, the volatility of interest rate β has a
negative effect on the optimal reinsurance strategy π∗p (see
Figure 5). +e larger β is, the less the insurer’s retention is.
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Figure 1: +e effects of β on π∗p(t).
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Figure 2: +e effects of β on π∗e (t).
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However, for the CARA utility, the effect of β on the optimal
reinsurance strategy π∗e is positive (see Figure 6). Accord-
ingly, the insurer’s reinsurance strategy is influenced by the
interest rate risk and the utility function.

From equation (55), we derive that

zq
∗
p

zp
�
ηa

b
2

1
(1 − p)

2 (x − h(t, r))> 0, (82)

which implies that q∗p(t) increases as p increases as it is
shown in Figure 7. +e larger p is, the smaller the absolute
risk aversion coefficient is, and the insurer would like to take
risks on their own and reduce the proportion of reinsurance.

From equation (81), we derive that

zq
∗
e

zc
� −

ηa

c
2
b
2e

􏽥A(t)+􏽥B(t)r < 0, (83)
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which implies that q∗e (t) decreases with the risk aversion
coefficient c for the CARA utility as it is shown in Figure 8.
For larger c, the insurer is more risk averse and expects to
reduce retention and transfer risks.

5. Conclusion

+is paper investigates the investment-reinsurance problem
with stochastic interest rate, in which interest rate is assumed
to follow the Vasicek model and be correlated with stock

price. +e optimal reinsurance-investment strategies for
CRRA and CARA utilities are derived by applying the
stochastic dynamic programming and Legendre transfor-
mation. +rough several sensitive analyses of the market
parameters, we find that the optimal reinsurance strategy is
not only affected by the parameters of reinsurance but also
related to the risk preference coefficient and interest rate
fluctuation, and the optimal investment strategy is influ-
enced by both financial market and insurance market. For
further research, considering the chaos dynamics in the
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12 Discrete Dynamics in Nature and Society



financial market (Vaidyanathan et al. [28] and Sukono et al.
[29]), it might be an interesting attempt to study the in-
vestment strategy combining the fractional-order financial
risk chaotic system.
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