
Research Article
Minimizing the Machine Processing Time in a Flow Shop
Scheduling Problem under Piecewise Quadratic Fuzzy Numbers

Tingwei Zhou ,1 Hamiden Abd El-Wahed Khalifa ,2,3 Seyyed Esmaeil Najafi ,4

and S.A. Edalatpanah 5

1School of Mathematics and Physics, Bengbu University, Bengbu 233000, China
2Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
3Department of Mathematics, College of Science and Arts, Qassim University, Al- Badaya 51951, Saudi Arabia
4Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran 46818-53617, Iran
5Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran

Correspondence should be addressed to S.A. Edalatpanah; saedalatpanah@gmail.com

Received 16 June 2022; Accepted 3 August 2022; Published 31 August 2022

Academic Editor: Reza Lot�

Copyright © 2022 Tingwei Zhou et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e piecewise quadratic fuzzy number (PQFN) can signify uncertain information that exists in scienti�c, technological, and
engineering �elds. Hence, it is a useful tool for describing information in scheduling problems. �is study examines structured
n-job �ow shop scheduling with fuzzy piecewise quadratic processing times and three machines. Close interval approximation of
PQFNs is also o�ered as one of the most e�ective approximate intervals. Furthermore, the leasing cost of equipment is minimized
with the use of a fuzzy style and an inventive algorithm. To demonstrate how the proposed framework can be used, a numerical
illustration is provided.

1. Introduction

Scheduling dilemma is concerned with determining the
optimal or nearly optimal schedule under certain limi-
tations. Numerous methods have been proposed by
several researchers to solve this problem. Scheduling to
achieve a speci�c goal requires a variety of activities by
spending time and budget. Flow shop is the most studied
production setting in the literature on scheduling. In [1],
one of the earliest results in �ow shop scheduling is an
algorithm for minimizing the completion time of all
activities in a two or three-machine shop. Gupta [2]
suggested a method for determining the best time to
schedule a �ow shop scheduling problem (FSSP) with a
certain structure.

�e method [2] has important considerations and de-
veloped by several scholars; see [3− 7]. Narian and Bagga [9]
investigated the problem of obtaining a sequence that
provides the lowest possible cost of renting while mini-
mizing the time spent. Schulz et al. [10] explored a mixture

FSSP with varying discrete production speed levels. An
upgraded multi-objective algorithm was used by Gheisarihe
et al. [11] to solve the �exible FSSP with sequence-based
transportation time, a probable network, and setup time.

In the real-world applied scienti�c problems, due to the
complexity of di�erent systems and the inaccuracy of data,
classical methods cannot take into account inaccuracies in
discussions. �erefore, using tools such as fuzzy perspective
[12] can be helpful in managing this important task (see also
[13, 14]).

�e theory of fuzzy sets and its applications in opti-
mization were proposed by Zimmermann [15]. Kaufmann
and Gupta [16] studied several fuzzy mathematical models
with their applications to engineering and management
sciences.

By using triangular fuzzy sets to describe work pro-
cessing times, Petrovic and Song [17] studied the task se-
quence problem in a two-machine �ow shop. Multi-product
parallel multi-stage cell manufacturing organizations can
apply Saracoglu and Suer’s methodology [18] to create items
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on time. *ey employed this methodology in the case study
of a shoe manufacturing plant to produce products on time.
Pang et al. [19] presented the FSSP and hybrid flow shop
scheduling with the intention of determining the optimal
scheduling approach for manufacturing facilities. Shao et al.
[20] examined a distributed fuzzy blocking FSSP with
processing times represented by fuzzy numbers, with the
goal of minimizing the fuzzy makespan across all compo-
nents. Recently, some papers are introduced to deal with
real-world problems in fuzzy environments and their ex-
tensions (see [21–26]).

*is study aims to investigate a particular n-job of
scheduling with piecewise quadratic fuzzy number
(PQFN). Given the total time elapsed, in which processing
times are shown in PQFN, an innovative approach to
sequencing tasks is proposed, which minimizes the cost of
renting machines.

1.1. ResearchGap andMotivation. *e following points may
lead to motivation of the proposed study.

(1) *e piecewise quadratic fuzzy number (PQFN) in-
troduced by Jain [27] is an extended concept of fuzzy
set.

(2) In real-world scenarios, distinct parameters are
further classified into disjoint sets having sub-
parametric values. It presents the optimal selection
with the help of suitable parameters. In decision
making, the jury may endure some sort of tendency
and proclivity while paying no attention to such
parametric categorization during the decision.

(3) Inspired from the above literature, new notions of
PQFN are conceptualized along with some ele-
mentary essential properties and generalized typical
results. Moreover, decision-making algorithmic
approaches are proposed.

1.2. Main Contributions and Advantages. *e following are
the main contributions of this proposed study:

(1) *e existing relevant models are made adequate with
the consideration of multi-argument approximate
function through the development of the fuzzy set
theory.

(2) *e scenario where parameters are further parti-
tioned into sub-parametric values in the form of sets
is tackled by using PQFNs.

(3) Some fundamentals like elementary properties and
arithmetic operations of PQFNs are characterized.

(4) Decision-making applications are discussed based
on the proposal of PQFNS arithmetic operations.

(5) *e results of the proposed similarity are compared
with relevant existing models.

(6) *e proposed structure is compared with relevant
models under suitable evaluating indicators.

(7) *e advantageous aspects of the proposed structure
are discussed. *e generalization of proposed
structure is presented.

1.3. Paper Organization. *is paper is organized as follows.
*e next section introduces the preliminaries of PQFNs and
some notations. A three-stage FSSP model is provided in
Section 3. Section 4 provides an efficient method for de-
termining the sequence of jobs that minimizes the cost of
equipment rental. Section 5 gives a numerical example for
illustration. Section 6 introduces a comparative study with
the existing methods. Finally, the conclusions are drawn in
Section 7.

2. Prerequisites

Here, we study some preliminaries that we need for the main
sections (for more details, see [27]).

Definition 1. A PQFN is denoted by 􏽥WPQ � (w1, w2, w3,

w4, w5), where w1 ≤w2 ≤w3 ≤w4 ≤w5 are real numbers, and
its membership function μ􏽥WPQ

is given by

μ􏽥WPQ

�
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1
2

1
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1
2

1
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2
, w4 ≤ x≤w5;

0, x>w5.
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(1)

Figure 1 shows the graphical representation of a PQFN.

Definition 2. Let 􏽥UPQ � (u1, u2, u3, u4, u5) and 􏽥VPQ � (v1,

v2, v3, v4, v5) be two PQFNs. *en, we have

(i) Addition: 􏽥UPQ(+) 􏽥VPQ � (u1 + v1, u2+ v2, u3 + v3,

u4 + v4, u5 + v5).
(ii) Subtraction: 􏽥UPQ(− )􏽥VPQ � (u1 − v5, u2− v4, u3 − v3,

u4 − v2, u5 − v1).
(iii) Scalar multiplication:

k 􏽥UPQ �
(ku1, ku2, ku3, ku4, ku5), k> 0,

(ku5, ku4, ku3, ku2, ku1), k< 0.
􏼨 .

Definition 3. For the close interval approximation (CIA) of
PQFN of [U] � [U−

α , U+
α], we call 􏽢U � U−

α + U+
α/2 as the

associated real number of [U].
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Definition 4. For [U] � [U−
α , U+

α] and [V] � [V−
α , V+

α], we
have the following properties:

(1) Addition: [U](+)[V] � [U−
α + Vb−

α , U+
α + V+

α].

(2) Subtraction: [U](− )[V] � [U−
α − V+

α , U+
α − V−

α].

(3) Scalar multiplication:k[U] �
[kU

−
α , kU

+
α], k> 0

[kU
+
α , kU

−
α], k< 0􏼨 .

(4) Multiplication: [U](×)[V], [U+
α V−

α + U−
α V+

α/2,

U−
α Vb−

α + U+
α V+

α/2].

(5) Division: [U](÷)[V],
[2(U

−
α/V

−
α + V

+
α),

2(U
+
α/V

−
α + V

+
α)], [V]> 0, V

−
α + V

+
α ≠ 0

[2(U
+
α/V

−
α + V

+
α),

2(U
−
α/V

−
α + V

+
α)], [V]< 0, V

−
α + V

+
α ≠ 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.

(6) *e order relations:

(i) [U](<
􏽥

)[V] if U−
α ≤V−

α and U+
α ≤V+

α or
U−

α + U+
α ≤V−

α + V+
α .

(ii) [U] is preferred to [V] if and only if
U−

α ≥V−
α , U+

α ≥V+
α .

2.1. Symbolization. Table 1 shows the symbols of our work.

3. Methodology

Before we discuss the issue formulation, let us define the
rental cost.

3.1. Cost of Renting. *e machines are rented out if needed
and returned if they are no longer needed. For example, the
first machine is rented at the beginning of the work process,
the second machine is rented when the first work is com-
pleted in the first machine, and so on.

Suppose that some tasks i, i � 1, n under the definite
rental policy L are managed on three machines
Mj, j � 1, 2, 3. Let 􏽥a

PQ
ij be the PQFPT of i-th task on j-th

machine (see Table 2). Let Sij, i � 1, n; j � 1, 2, 3. Determine
the related processing times with crisp number on devices
M1, M2, and M3 in such a way that either 􏽢aj2 ≤ 􏽢ai1 or
􏽢aj2 ≤ 􏽢ai3;∀i, j. Our objective is to determine Sk􏼈 􏼉 of the tasks
that minimizes the cost of renting the equipment.

*e problem may be expressed mathematically as
follows:

min 􏽥R
PQ

Sk( 􏼁 � 􏽘
n

i�1

􏽥a
PQ

i1 × C1 + 􏽥U
PQ

2 Sk( 􏼁 × C2 + 􏽥U
PQ

3 Sk( 􏼁 × C3 Subject to rental policy L . (2)

Using the CIA of PQFN, model (10) may be reformu-
lated as follows:

min R
−
α Sk( 􏼁, R

+
α Sk( 􏼁(􏼂 􏼃 � 􏽘

n

i�1
ai1( 􏼁

−

α , ai1( 􏼁
+

α􏼂 􏼃 × C1 + U
−
2α Sk( 􏼁, U

+
2α Sk( 􏼁􏼂 􏼃 × C2 + U

−
3α Sk( 􏼁, U

+
3α Sk( 􏼁􏼂 􏼃 × C3 Subject to rental policy L .

(3)

Table 2 may be recreated in CIA of PQFN format as
shown in Tables 3 and 4.

4. Proposed Algorithm

In this part, we show our strategy for minimizing the time
and, consequently, the cost of renting a three-stage FSSP

with PQF-based processing time while ignoring the
makespan.

Step 1. Find the associated ordinary number for all tasks.

Step 2. If 􏽢aj2 ≤ 􏽢ai1 or 􏽢aj2 ≤ 􏽢ai3;∀i, j, i.e., max 􏽢ai1􏼈 􏼉≥min 􏽢aj2􏽮 􏽯

or max 􏽢ai3􏼈 􏼉≥min 􏽢aj2􏽮 􏽯;∀i, j, go to next step; otherwise,
break.

1.0

0.5

0

μ W
PQ

u1 u2 u3 u4 u5 x

Figure 1: Graphical representation of a piecewise quadratic fuzzy
number (PQFN).
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Step 3. Define dummy machines H1 and H2, and their
processing times Hi

1 and Hi
2 are as follows: Hi

1 � 􏽢ai1
+􏽢ai2, Hi

2 � 􏽢ai2 + 􏽢ai3;∀i.

Step 4. Use the existing algorithm [1] on Hi and get S1.

Step 5. Put the 2nd,. . ., nth tasks of the S1 in the first position
and all other tasks of S1 in the same order.

Step 6. For all possible sequences Sk, k � 1, n, calculate:
􏽢R(Sk) � 􏽐

n
i�1 􏽢aij × C1 + 􏽢U2(Sk) × C2 + 􏽢U3(Sk) × C3.

Step 7. Set min 􏽢R(Sk)􏽮 􏽯, k � 1, n as the optimal solution.

5. Numerical Example

Consider Table 5 as the problem. Now, we solve this problem
by our model.

At first, in Tables 6 and 7, we compute the related interval
and crisp numbers for each PQFPT.

*en, using Step 3 of our algorithm, the processing times
can be computed as shown in Table 8.

Using procedure [1], S1:2-4-5-1-3.
*e subsequent viable sequences correspond to the

minimal rental cost: S2: 4 − 2 − 5 − 1 − 3; S3: 1 − 2 − 4
− 5 − 3; S4: 3 − 2 − 4 − 5 − 1.

Tables 9 and 10 illustrate the in-out flow for the sequence
S1 in the PQFNs and CIA forms.

For S1, we get the following.
*e completion time for S1 is 􏽦CT

PQ
(S1) � (40, 49,

56, 62, 76), [CT(S1)] � [49, 62], and 􏽣CT(S1) � 55.5.
*e consumption time for machine M2 is

􏽥U
PQ

2 (S1) � (11, 23, 30, 38, 53), [U2(S1)] � [23, 38], and
􏽢U2(S1) � 30.5.

*e consumption time for machine M3 is 􏽥U
PQ

3 (S1)

� (14, 28, 37, 45, 61), [U3(S1)] � [28, 45], and 􏽢U3(S1)

� 36.5.

􏽥R
PQ

S1( 􏼁 � 􏽘
5

i�1
􏽥ai1 × C1 + U2 S1( 􏼁 × C2 + U3 S1( 􏼁 × C3

� (572, 726, 831, 935, 1145), R S1( 􏼁􏼂 􏼃

� [726, 935] and 􏽢R S1( 􏼁 � 830.5.

(4)

Similarly, we have the following.
For S2:

􏽦CT
PQ

S2( 􏼁 � (37, 47, 54, 61, 73),

CT S2( 􏼁􏼂 􏼃 � [47, 61], and 􏽣CT S2( 􏼁 � 54,
(5)

􏽥U
PQ

2 S2( 􏼁 � (12, 23, 30, 38, 52), U2 S2( 􏼁􏼂 􏼃

� [23, 38], and 􏽢U2 S2( 􏼁 � 30.5,
(6)

Table 1: List of symbols.

Abbreviations Descriptions
S Arrangement of jobs, i � 1, n

Sk Sequence obtained through the method [1], k � 1, 2, . . . , n

Mh Machine h, h � 1, 2, 3
M Minimum makespan
􏽥aP

lh PQF processing time (PQFPT) for the l-th task on Mh, h � 1, 2, 3
[a

PQ
ij ] Close interval estimate of the PQFPT of the i-th task in sequence Sk running on Mj

tij(Sk) Time of i-th task for Sk on Mj

Uj(Sk) Consumption time for Mj that is necessary for Sk

CT(Sk) Whole completion time
Iij(Sk) Idle time
􏽢aij Corresponding normal time of the i-th task on Mj

R(Sk) Whole rental payment
C Cost of renting

Table 3: *e problem with CIA matrix.

Tasks M1 M2 M3

i [(ai1)
−
α , (ai1)

+
α] [(ai2)

−
α , (ai2)

+
α] [(ai3)

−
α , (ai3)

+
α]

1 [(a11)
−
α , (a11)

+
α]) [(a12)

−
α , (a12)

+
α] [(a13)

−
α , (a13)

+
α]

2 [(a21)
−
α , (a21)

+
α] [(a22)

−
α , (a22)

+
α] [(a23)

−
α , (a23)

+
α]

. . . . . . . . . . . .

n [(an1)
−
α , (an1)

+
α] [(an2)

−
α , (an2)

+
α] [(an3)

−
α , (an3)

+
α]

Table 2: Description of the problem with the PQFN matrix.

Tasks M1 M2 M3

i 􏽥a
PQ
i1 􏽥a

PQ
i2 􏽥a

PQ
i3

1 􏽥aPQ
11 􏽥aPQ

12 􏽥aPQ
13

2 􏽥a
PQ
21 􏽥a

PQ
22 􏽥a

PQ
23

. . . . . . . . . . . .

n 􏽥a
PQ
n1 􏽥a

PQ
n2 􏽥a

PQ
n3

Table 4: *e problem with the corresponding crisp matrix form.

Tasks M1 M2 M3

i (ai1)
−
α + (ai1)

+
α/2 (ai2)

−
α + (ai2)

+
α/2 (ai3)

−
α + (ai3)

+
α/2

1 (a11)
−
α + (a11)

+
α/2 (a12)

−
α + (a12)

+
α/2 (a13)

−
α + (a13)

+
α/2

2 (a21)
−
α + (a21)

+
α/2 (a22)

−
α + (a22)

+
α/2 (a23)

−
α + (a23)

+
α/2

. . . . . . . . . . . .

n (an1)
−
α + (an1)

+
α/2 (an2)

−
α + (an2)

+
α/2 (an3)

−
α + (an3)

+
α/2
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􏽥U
PQ

3 S2( 􏼁 � (14, 28, 37, 45, 61), U3 S2( 􏼁􏼂 􏼃

� [28, 45], and 􏽢U2 S2( 􏼁 � 36.5,
(7)

􏽥R
PQ

S2( 􏼁 � 􏽘
5

i�1
􏽥a

PQ
i1 × C1 + 􏽥U

PQ

2 S2( 􏼁 × C2 + 􏽥U
PQ

3 S2( 􏼁 × C3

� (582, 718, 769, 927, 1131), R S2( 􏼁􏼂 􏼃

� [718, 927], and 􏽢R S1( 􏼁 � 822.5.

(8)

For S3, we have

􏽦CT
PQ

S3( 􏼁 � (36, 45, 52, 59, 70), CT S3( 􏼁􏼂 􏼃

� [45, 59], and 􏽣CT S3( 􏼁 � 52,
(9)

􏽥U
PQ

2 S3( 􏼁 � (13, 23, 30, 38, 49), U2 S3( 􏼁􏼂 􏼃

� [23, 38], and 􏽢U2 S3( 􏼁 � 30.5,
(10)

􏽥U
PQ

3 S3( 􏼁 � (16, 28, 37, 46, 59), U3 S3( 􏼁􏼂 􏼃

� [28, 46], and 􏽢U2 S3( 􏼁 � 37,
(11)

􏽥R
PQ

S3( 􏼁 � 􏽘
5

i�1
􏽥a

PQ
i1 × C1 + 􏽥U

PQ

2 S3( 􏼁 × C2 + 􏽥U
PQ

3 S3( 􏼁 × C3

� (562, 686, 791, 896, 1075), R S3( 􏼁􏼂 􏼃

� [686, 896], and 􏽢R S3( 􏼁 � 791.

(12)

For S4, we have

􏽦CT
PQ

S4( 􏼁 � (35, 44, 52, 60, 73), CT S4( 􏼁􏼂 􏼃

� [44, 60], and 􏽣CT S4( 􏼁 � 52,
(13)

􏽥U
PQ

2 S4( 􏼁 � (10, 11, 30, 40, 54), U2 S4( 􏼁􏼂 􏼃

� [11, 40], and 􏽢U2 S4( 􏼁 � 25.5,
(14)

􏽥U
PQ

3 S4( 􏼁 � (12, 26, 37, 48, 63), U3 S4( 􏼁􏼂 􏼃

� [26, 48], and 􏽢U2 S4( 􏼁 � 37,
(15)

􏽥R
PQ

S4( 􏼁 � 􏽘
5

i�1
􏽥a

PQ
i1 × C1 + 􏽥U

PQ

2 S4( 􏼁 × C2 + 􏽥U
PQ

3 S4( 􏼁 × C3

� (560, 672, 823, 956, 1161), R S4( 􏼁􏼂 􏼃

� [672, 956], and 􏽢R S4( 􏼁 � 814.

(16)

Table 5: PQFN processing times for machines.

Tasks M1 M2 M3

i 􏽥a
PQ
i1 􏽥aPQ

i2 􏽥aPQ
i3

1 (6,7,8,9,10) (5,6,7,8,10) (2,3,4,5,7)
2 (11,12,13,14,17) (4,5,6,7,9) (3,4,5,6,8)
3 (7,8,10,12,14) (3,4,5,6,9) (5,6,7,8,9)
4 (9,10,11,12,14) (3,5,6,7,9) (10,11,12,13,15)
5 (7,9,10,11,13) (2,5,6,8,10) (5,8,9,10,11)

Table 6: PQFN processing times with interval format.

Tasks M1 M2 M3

i [a
PQ
i1 ] [a

PQ
i2 ] [a

PQ
i3 ]

1 [7,9] [6,8] [3,5]
2 [12,14] [5,7] [4,6]
3 [8,12] [4,6] [6,8]
4 [10,12] [5,7] [11,13]
5 [9,11] [5,8] [8,10]

Table 7: PQFN processing times with crisp format.

Tasks M1 M2 M3

i 􏽢ai1 􏽢ai2 􏽢ai3
1 8 7 4
2 13 6 5
3 10 5 7
4 11 6 12
5 10 6.5 9

Table 8: *e related crisp numbers of the processing times.

Tasks H1 H2

1 15 11
2 19 11
3 15 12
4 17 18
5 16.5 15.5

Table 9: *e in-out flow for S1 in the PQFNs.

Tasks M1 M2 M3

i In- out In- out In- out
2 (11,12,13,14,17) (15,17,19,21,26) (18,21,24,27,34)
4 (19,22,24,26,31) (18,22,25,28,35) (28,32,36,39,49)
5 (26,31,34,37,44) (20,27,31,36,45) (33,40,45,49,60)
1 (32,38,42,46,54) (25,33,38,44,55) (35,43,49,54,67)
3 (39,46,52,58,68) (28,37,43,50,64) (40,49,56,62,76)

Table 10: *e in-out flow for S1 in CIA.

Jobs Machine M1 Machine M2 Machine M3

2 [12,14] [17,21] [21,27]
4 [22,26] [22,28] [32,39]
5 [31,37] [27,36] [40,49]
1 [38,46] [33,44] [43,54]
3 [46,58] [37,50] [49,62]
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For S5, we have
􏽢R S5( 􏼁 � 2066.6257. (17)

*us,

􏽥R
PQ

S3( 􏼁 � 􏽘
5

i�1
􏽥a

PQ
i1 × C1 + 􏽥U

PQ

2 S3( 􏼁 × C2 + 􏽥U
PQ

3 S3( 􏼁 × C3

� (562, 686, 791, 896, 1075),

(18)

R S3( 􏼁􏼂 􏼃 � [686, 896]. (19)

*erefore, S3: 1 − 2 − 4 − 5 − 3 is the optimal sequence
subject to the minimum rental cost, and 􏽢R(S3) � 791 is the
minimum rental cost irrespective of the total time passed.

6. Comparative Study

In this section, the proposed approach is compared with
some existing studies to illustrate the advantages of the
proposed approach. *e results for this analysis are sum-
marized in Table 11. *e symbol “↓” or “↑” shown in the
table represents whether the associated feature satisfies or
not.

7. Conclusions and Future Works

In this paper, the problem of minimizing the cost of
renting machines for flow shop scheduling with a specific
structure is investigated. An innovative approach to solve
it is then proposed in which the processing times are
fragmented as piecewise quadratic fuzzy numbers. *e
result shows that the proposed method has its advantage
in flexible decision making corresponding to favorite
priorities of alternatives. *is study may be extended to
additional fuzzy-like structures, such as interval-valued
fuzzy set, Pythagorean fuzzy set, spherical fuzzy set,
intuitionistic fuzzy set, picture fuzzy set, neutrosophic set,
and so on, in future work.
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