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In this study, we will look at a new �exible model known as the new double-weighted Weibull distribution. �e new Weibull
double-weighted distribution model is highly versatile because numerous submodels are included. �e proposed model is very
�exible because its density function has many shapes; it can be right skewness, decreasing, and unimodal. Also, the hazard rate
function can be increasing, decreasing, up-side-down, and J-shaped. Diverse features of the novel are computed. �ese qualities
include moments, incomplete moments, and Lorenz and Bonferroni curves and quantiles, as well as entropy and order statistics.
�e maximum likelihood approach is used to estimate the model’s parameters. In order to evaluate the accuracy and performance
of maximum likelihood estimators, simulation data are presented. �e utility and adaptability of the proposed model are
demonstrated by utilizing three signi�cant datasets: daily fatalities con�rmed cases of COVID-19 in Egypt and Georgia and relief
times of twenty patients using an analgesic.

1. Introduction

In 1951, Swedish scientist Walled Weibull created the
Weibull (Wei) distribution. �e Wei distribution is a fre-
quently used distribution for modelling lifetime data in
dependability where the hazard rate function is monotone.
However, when the true hazard shape is unimodal or
bathtub, the two-parameter Wei distribution is inadequate
in many applications, such as lifetime analysis. To deal with
bathtub-shaped failure rates, many generalizations of the
Wei distribution have been proposed in the statistical
literature.

�e probability density function (pdf) and cumulative
distribution function (cdf) have the following shape:

g(x) � αβxβ− 1e− αx
β
, x> 0, α, β> 0, (1)

G(x) � 1 − e− αx
β
, x> 0, (2)

where β is a positive shape parameter and α is a positive scale
parameter.

Weighted (W) distributions may be used to increase
comprehension of standard distributions as well as provide
techniques for extending distributions for additional �exi-
bility in �tting a dataset. AW distribution can be obtained in
a variety of ways. In 1934, Fisher proposed the concept of W
distribution. Rao [1] and Patil and Rao [2] discuss appli-
cations of a W distribution to biased samples in many
disciplines such as medicine, ecology, dependability, and
branching processes (1978). Patil and Rao [2] suggested a
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double-weighted (DW) family of distributions, which has
the following characteristics:

fw(x) �
w1(x)g(x)w2(x)

WD

, (3)

where w1(x), w2(x)> 0 and WD � 􏽒
∞
0 w1(x)g(x)w2(x)dx

is a normalizing constant that forces fw(x) to integrate to 1.
Table 1 shows the literature for authors who use the double-
weighted family.

(e motivation and limitations of our study to introduce
a new double-weightedWeibull (NDWW) is a novel double-
weighted distribution. (e mathematical features of the
proposed model are described in detail in the expectation
that it may find wider applications in dependability, engi-
neering, and other study areas. It includes a number of
interesting features and allows for greater flexibility in in-
corporating filtered and uncensored survival data into real-
world applications. To illustrate our point, we use three real-
life datasets, which correspond to the daily death toll from
COVID-19 in Egypt and Georgia and the relief times of
twenty patients taking analgesics. NDWW offers a better fit
than other statistical distributions, according to a study.
Also, our new model serves the data which are positive data.

(e remainder of this study can be divided into the
following categories. Section 2 defines the NDWW. Section 3
derives some of the distribution’s broad statistical features.
(e maximum likelihood method is used to estimate the
distribution’s parameters in Section 4. Section 5 conducts a
simulation analysis to determine the model parameters of
one distribution. Section 6 delves into an illustrated goal
based on real-world facts. (e study closes with some last
thoughts.

2. The New Double-Weighted Weibull

In this section, we introduce a new four-parameter model
which is called the NDWW model by using new two
transformations w1(x) � xθ andw2(x) � G(cx), and by
inserting (1) and (2) in (3), then the pdf and cdf of the
NDWW are given by

fw(x) �
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
x
θ+β− 1

e
− α cβ+1( )xβ

,

x> 0, α, β, θ, c> 0,

(4)

and

F(x) �
c θ/β + 1, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

Γ(θ/β + 1)
, x> 0, α, β, θ, c> 0, (5)

respectively; where the gamma function is defined by

Γ(a) � 􏽚
∞

0
t
a− 1

e
− tdt, a> 0. (6)

and incomplete gamma function is defined by

c(a, x) � 􏽚
x

0
t
a− 1

e
− tdt, a> 0, x> 0. (7)

On the basis of X, the survival function (S(x)), hazard
function (h(x)), and reversed hazard function (a(x)) are
given

S(x) � 1 −
c θ/β + 1, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

Γ(θ/β + 1)
, x> 0,

h(x) �
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1
x
θ+β− 1

e
− α cβ+1( )xβ

Γ(θ/β + 1) − c θ/β + 1, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑
, x> 0,

(8)

and

a(x) �
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1
x
θ+β− 1

e
− α cβ+1( )xβ

c θ/β + 1, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑
. (9)

Figure 1 shows the pdf and hazard rate function graphs
for the NDWW distribution.

We may deduce from Figure 1 that the pdf of the
NDWW distribution can be unimodal, declining, inverted J
shaped, and right skewed. In addition, as shown in Figure 1,
the hazard rate function of the NDWW distribution might
be rising, decreasing, or J-shaped.

It should be noted that α and c remain scale parameters,
whereas β and θ are shape parameters. In Table 2, certain
distributions appear as special instances of the NDWW
distribution.

3. Structural Properties

(e quantile function, mean residual life function, moment
generating function (MGF), moments, Lorenz and Bon-
ferroni curves, mean, and variance for the NDWW distri-
bution are shown in this section.

3.1. Quantile Function. (e quantile function is

Q(u) �

���������������������������

1
α c

β
+ 1􏼐 􏼑

c
− 1 θ

β
+ 1, uΓ

θ
β

+ 1􏼠 􏼡􏼠 􏼡
β

􏽶
􏽴

. (10)

3.2. Moments. If X has the pdf (4), then rth moment is
obtained as follows:

μr

‘
� 􏽚
∞

0
x

r
f(x)dx

�
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
􏽚
∞

0
x

r+θ+β− 1
e

− α cβ+1( )xβ
dx.

(11)

Table 1: Some literature of double-weighted distributions.

Model Authors
DW exponential distribution Al-khadim and hantoosh [3]
DW Rayleigh distribution Rishwan [4]
DW inverse Wei distribution Al-khadim and hantoosh [5]
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then

μr

‘
� E X

r
( 􏼁

�
Γ(1 + r/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
r/β
Γ(1 + θ/β)

.
(12)

(e first four rth moments can be obtained by putting
r� 1, 2, 3, and 4 as

μ1
‘

�
Γ(1 + 1/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
1/β
Γ(1 + θ/β)

,

μ2
‘

�
Γ(1 + 2/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
2/β
Γ(1 + θ/β)

,

μ3
‘

�
Γ(1 + 3/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
3/β
Γ(1 + θ/β)

,

(13)

and

μ4
‘

�
Γ(1 + 4/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
4/β
Γ(1 + θ/β)

. (14)

(e variance can be calculated as

var(x) � μ2
‘

− μ1
‘

􏼒 􏼓
2

�
Γ(1 + 2/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
2/β
Γ(1 + θ/β)

−
Γ(1 + 1/β + θ/β)

α cβ + 1( 􏼁􏼂 􏼃
1/βΓ(1 + θ/β)

⎡⎣ ⎤⎦
2

.

(15)

By definition of moment generating function of X and
using (4), we have

Μx(t) � 􏽘
∞

r�0

t
r

r!
μr

‘

� 􏽘
∞

r�0

t
r

r!

Γ(1 + r/β + θ/β)

α c
β

+ 1􏼐 􏼑􏽨 􏽩
r/β
Γ(1 + θ/β)

.

(16)

3.3. Conditional Moments. (e sth conditional moment, say
τs(t), is defined by

τs(t) � 􏽚
∞

t
x

s
f(x)dx. (17)
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Figure 1: pdf and hazard rate of the NDWW model.
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Using (3), then τs(t) will be as follows:

τs(t) �
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
􏽚
∞

t
x

s+θ+β− 1
e

− α cβ+1( )xβ
dx. (18)

(en,

τs(t) �
Γ 1 + s + θ/β, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

α c
β

+ 1􏼐 􏼑􏽨 􏽩
s/β
Γ(1 + θ/β)

. (19)

3.4. Incomplete Moments. (e sth incomplete moment, say
φs(t), is defined by

φs(t) � 􏽚
t

0
x

s
f(x)dx. (20)

Using (3), then, φs(t) will be as follows:

φs(t) �
β α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
􏽚

t

0
x

s+θ+β− 1
e

− α cβ+1( )xβ
dx. (21)

(en,

φs(t) �
c 1 + s + θ/β, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

α c
β

+ 1􏼐 􏼑􏽨 􏽩
s/β
Γ(1 + θ/β)

. (22)

3.5. Mean Residual Life Function. (e mean residual life
function may be calculated by using the following formula:

μ(x) � E(X − x|X>x) �
􏽒
∞
x

yf(x)dy

F(x)
− x, (23)

Table 2: Submodels of the NDWW distribution.

Θ β α c Distribution Author
— — — — NDWW NEW
k + λ — — 0 Weighted Weibull distribution (WWW) NEW
k + 3 — — 0 Volume biased weighted Weibull distribution (VBWW) Ahmed et al. [6]
k + 2 — — 0 Area biased weighted Weibull distribution (ABWW) Perveen et al. [7]
k+1 — — 0 Size biased weighted Weibull distribution (SBWW) Ahmad [6]
Kβ — — 0 Weighted Weibull distribution (WW) Dey et al. [8]
— 1 — 0 Weighted exponential distribution (WE) Ahmed et al. [6]
1 1 — 0 Length biased (LB) exponential distribution (LBE) Dara and ahmad [9].
— 2 1/(2k) 0 Weighted Rayleigh distribution (WR) Ajami and jahanshahi [10]
1 2 1/(2k) 0 LB Rayleigh distribution (LBR) NEW
2 2 1/(2k) 0 Area biased Rayleigh distribution (ABR) NEW
0 1 — 0 One parameter exponential distribution (E) Sea ahmed et al. [6]
0 2 — 0 One parameter Rayleigh distribution (R) Sea ajami and jahanshahi [10]
0 — — 0 Weibull distribution (W) Sea dey et al. [8]
— 1 — 0 LB gamma distribution (LBG) Ahmed et al. [6]
— 1 1 0 One-parameter gamma distribution (G) Sea Ahmed et al. [6]
β(k − 1) — λβ 0 Generalized gamma distribution (GG) Khodabin and Ahmadabadi [11]
k-2 2 1 1 Chi distribution
2(k-1) 2 λ2 0 Generalized normal distribution (GN) Saralees [12]
−1 2 σ2 1 Half-normal distribution Cooray and ananda [13]
βk + 1 — λβ 0 LB weighted weibull distribution (LBWW) Kishore and tanusree [14]
k-2 2 — 0 Generalized Rayleigh distribution See das and roy [15]
2 2 — 0 LB Rayleigh distribution (LBR) Bashir and rasul [16]
2(k-1) 2 kc2 — Weighted generalized Rayleigh distribution (WGR) Das and roy [15]
2k-1 2 kc2/c2 + 1 — LB weighted generalized Rayleigh distribution (LBWGR) Das and roy [15]
βk + 1 — 1/λβ 0 LB weighted Weibull distribution (LBWW) Das and roy [17]
1 1 λ − k 0 LB weighted exponential distribution (LBWE) Al-kadim and hussein [18]
2 2 — 1/

�
k

√
− 1 LB weighted Rayleigh distribution (LBWR) Al-kadim and hussein [18]

1 2 λ/2 0 Maxwell distribution (M) See dar et al. [19]
1 2 λ − k/2 0 Weighted Maxwell distribution (WM) Joshi and modi [20]
k + 1 2 λ/2 0 Weighted Maxwell distribution (WM1) Dar et al. [19]
2 2 λ/2 0 LB Maxwell distribution (LBM) NEW
3 2 λ/2 0 Area biased Maxwell distribution (ABM1) NEW
2(λ − 1) 2 λ/k 0 Nakagami distribution (N) See mudasir and ahmed [21]
2λ + σ − 2 2 λ/k 0 Weighted Nakagami distribution (WN) Mudasir and ahmed [21]
2λ 2 λ/k 0 Area biased Nakagami distribution (ABN) NEW
2λ − 1 2 λ/k 0 LB Nakagami distribution (LBN) Mudasir and ahmad [21]
λ + 1 1 — 1 Weighted Ailamujia distribution (WA)
1 1 — 1 Ailamujiadistribution (A) See Jan et al. (2017)
2 1 — 1 LB Ailamujia distribution (LBA) NEW
3 1 — 1 Area biased Ailamujia distribution (ABA) NEW
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In the NDWWdistribution, we obtain theMRL function
as follows:

μ(x) �
Γ 1 + 1 + θ/β, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑/ α c

β
+ 1􏼐 􏼑􏽨 􏽩

1/β
Γ(1 + θ/β)

1 − c θ/β + 1, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑/Γ(θ/β + 1)
− x.

(24)

3.6. Lorenz and Bonferroni Curves. (e Lorenz (Lo(x)) and
Bonferroni (Bo(x)) curves are inequality metrics that are
widely employed in income and wealth distributions [22].
(ey are gained in the following order:

Lo(x) �
􏽒

t

0 xf(x)dx

Ε(X)

�
c 1 + 1 + θ/β, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

Γ(1 + 1 + θ/β)
,

(25)

and

Bo(x) �
Lo(x)

F(x)

�
c 1 + 1 + θ/β, α c

β
+ 1􏼐 􏼑x

β
􏼐 􏼑

Γ(1 + 1 + θ/β)c 1 + θ/β, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑
.

(26)

3.7. Order Statistics. Let X1: n<X2:n< . . .<Xn: n be the
matching ordered random sample from an n-person pop-
ulation. (e sth order statistic’s pdf is defined as

fs:n(x) �
n!

(s − 1)!(n − s)!
f(x)F(x)

s− 1
(1 − F(x))

n− s
. (27)

By entering (4) and (5) into (27), the pdf of the sth order
statistic for the NDWW distribution may be derived:

fs:n(x) �
n!

(s − 1)!(n − s)!

β α c
β

+ 1􏼐 􏼑􏽨 􏽩
θ/β+1

Γ(θ/β + 1)
x
θ+β− 1

e
− α cβ+1( )xβ

⎛⎜⎝ ⎞⎟⎠

c θ/β + 1, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑􏼐 􏼑
s− 1

× 1 − c θ/β + 1, α c
β

+ 1􏼐 􏼑x
β

􏼐 􏼑􏼐 􏼑
n− s

.

(28)

(e smallest pdf of order statistics can be obtained at
s� 1 as

f1:n(x) �
nβ α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
x
θ+β− 1

e
− α cβ+1( )xβ

1 − c
θ
β

+ 1, α c
β

+ 1􏼐 􏼑x
β

􏼠 􏼡􏼠 􏼡

n−1

.

(29)

(e greatest pdf of order statistics can be obtained at
s� n as

fn:n(x) �
nβ α c

β
+ 1􏼐 􏼑􏽨 􏽩

θ/β+1

Γ(θ/β + 1)
x
θ+β− 1

e
− α cβ+1( )xβ

c
θ
β

+ 1, α c
β

+ 1􏼐 􏼑x
β

􏼠 􏼡􏼠 􏼡

n−1

.

(30)

4. Maximum Likelihood Estimation

If n independent items are tested and the lifetime distri-
bution of each component is supplied by (3), then the log
likelihood (LL) function based on the sample that was seen
x� (x1, x2, K, xn) is defined:

Table 3: MLE and MSE of NDWW distribution for set 1and set 2.

n Parameters Init MLE MSE Init MLE MSE

100

α 0.500 0.933 0.340 0.500 0.534 0.262
β 1.500 1.004 0.280 0.500 0.504 0.003
θ 1.000 0.804 0.915 1.500 1.215 0.255
c 0.500 0.386 0.438 0.300 0.469 0.048

500

α 0.500 0.887 0.324 0.500 0.494 0.077
β 1.500 1.336 0.209 0.500 0.514 0.003
θ 1.000 0.855 0.887 1.500 1.367 0.124
c 0.500 0.411 0.266 0.300 0.444 0.037

1000

α 0.500 0.557 0.097 0.500 0.503 0.076
β 1.500 1.457 0.100 0.500 0.517 0.002
θ 1.000 0.920 0.424 1.500 1.537 0.095
c 0.500 0.520 0.142 0.300 0.338 0.032

Table 4: MLE and MSE of NDWW distribution for set 3 and set 4.

n Parameters Init MLE MSE Init MLE MSE

100

α 0.100 0.475 0.191 1.300 1.087 1.346
β 0.700 0.439 0.072 1.100 1.019 0.187
θ 0.700 0.937 0.379 1.100 1.486 0.726
c 0.300 0.360 0.021 2.800 2.683 0.205

500

α 0.100 0.240 0.157 1.300 1.180 0.789
β 0.700 0.542 0.070 1.100 1.071 0.123
θ 0.700 0.846 0.333 1.100 1.444 0.687
c 0.300 0.356 0.019 2.800 2.698 0.136

1000

α 0.100 0.137 0.0606 1.300 1.337 0.597
β 0.700 0.660 0.062 1.100 1.077 0.056
θ 0.700 0.724 0.184 1.100 1.291 0.504
c 0.300 0.310 0.018 2.800 2.753 0.081

Table 5: MLE and MSE of NDWW distribution for set 5 and set 6.

n Parameters Init MLE MSE Init MLE MSE

100

α 1.800 2.119 0.874 0.500 0.534 0.262
β 0.800 0.750 0.124 0.500 0.514 0.003
θ 0.800 1.142 0.9841 1.500 1.215 0.755
c 3.000 3.630 0.948 0.300 0.469 0.048

500

α 1.800 2.018 0.767 0.500 0.494 0.177
β 0.800 0.764 0.056 0.500 0.514 0.003
θ 0.800 1.082 0.591 1.500 1.367 0.524
c 3.000 3.272 0.456 0.300 0.404 0.037

1000

α 1.800 1.8613 0.511 0.500 0.503 0.076
β 0.800 0.774 0.041 0.500 0.507 0.001
θ 0.800 0.853 0.417 1.500 1.537 0.395
c 3.000 3.144 0.394 0.300 0.338 0.032
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ln L � n ln β + n
θ
β

+ 1􏼠 􏼡ln(α) + n
θ
β

+ 1􏼠 􏼡ln c
β

+ 1􏼐 􏼑 − n ln Γ
θ
β

+ 1􏼠 􏼡􏼢 􏼣 +(θ + β − 1) 􏽘
n

i�1
ln xi − α c

β
+ 1􏼐 􏼑 􏽐

n

i�1
x
β
i .

(31)

(e first partial derivatives of the parameters are

z ln L

zθ
�

n

β
ln(α) +

n

β
ln c

β
+ 1􏼐 􏼑 −

n

β
ψ 1 +

θ
β

􏼠 􏼡 + 􏽘
n

i�1
ln xi � 0, (32)

z ln L

zα
�

n

α
θ
β

+ 1􏼠 􏼡 − c
β

+ 1􏼐 􏼑 􏽘

n

i�1
x
β
i � 0, (33)
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(35)

where ψ(x) � Γ(x)/Γ(x) is the digamma function.
Because the LL equations (32-35) do not have analytic

solutions, we will utilize iterative techniques to compute

these equations’ numerical solutions to provide maximum
LL estimators of θ,α, c, and β, say 􏽢θMLE, 􏽢αMLE, 􏽢cMLE, and 􏽢βMLE,
respectively.
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Figure 2: (e fitted pdfs (a) and cdfs (b) for the dataset (1).
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5. Numerical Results

In this section, we evaluate the ML estimators’ performance
in terms of sample size n. A numerical evaluation of the
performance of ML estimators for the NDWW distribution
is performed. Estimates are X1, X2, K, and Xn and are
evaluated using the Mathematica program based on the
following quantities for each sample size: empirical mean

square errors (MSEs). (e following are the numerical
procedures:

(i) A random sample of sizes n� 100, 500, and 1000 is
taken into account; these random samples are
produced from the NDWW distribution using the
inversion approach.

(ii) Six sets of parameters are taken into account.
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Figure 4: (e fitted pdfs (a) and cdfs (b) for the dataset (2).
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(iii) (e NDWW model’s ML estimates (MLEs) are
assessed for each parameter value and sample size.

(iv) Repeat this process 10000 times to obtain the means
and MSEs of the MLE for various parameter values
in both models and for each sample size.

(v) Tables 3–5 present empirical findings. (ese tables
show that the estimates are fairly consistent and
near to the real value of the parameters as sample
sizes grow.

6. Applications

In this section, we apply the NDWW distribution to illus-
trate our point; we use three real-life datasets, which

correspond to the daily death toll from COVID-19 in Egypt
and Georgia and the relief times of twenty patients taking
analgesics. To compare the NDWW distribution to other
fitted distributions, five, four, three, two, and one parameters
are used. (e NDWW distribution is compared to the
(DWE), (LBE), (W), new modified Weibull distribution
(NMW), weighted generalized gamma distribution (WGG),
weighted transmuted Weibull distribution (WTW), trans-
muted Weibull distribution (TW), and weighted Weibull
distribution (WWW).

�e first dataset proposes a concrete application with an
actual dataset to assess the interest in the NDWW distri-
bution. (e considered data, called the daily deaths, con-
firmed cases of COVID-19 in Egypt from 19 March to 15
June 2020. (e dataset was obtained from the following
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Table 6: MLEs and (SErs) for the dataset (1) COVID-19.

Distribution 􏽢α 􏽢β 􏽢θ 􏽢c 􏽢λ

NDWW 1.194 0.69 0.146 2.107 —
(0.966) (0.295) (0.00016) (0.00005) —

WTW 0.000065 0.835 0.114 0.176 —
(0.158) (0.112) (0.863) (0.119) —

NMW 1.195 0.000056 0.028 0.02 1.006
(0.094) (0.0001) (0.009) (5.051) (26.457)

WGG 0.716 0.69 0.524 1.158 1.522
(2789) (0.295) (2079) (4232) (1434)

DWE — — 0.107 61.943 —
— — (0.008) (153.721) —

LBE — — 0.107 — —
— — (0.008) — —

Table 7: Numerical values of Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 for the dataset (1) COVID-19.

Distribution Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
NDWW 700.22 700.696 700.017 704.232 0.62155 0.0947 0.07511 0.69687
WTW 700.507 700.984 700.305 704.52 0.63119 0.09925 0.08151 0.59543
NMW 704.86 705.583 704.607 709.876 1.49564 0.103505 0.09823 0.35689
WGG 702.22 702.943 701.967 707.235 0.62193 0.09481 0.07511 0.69687
DWE 703.964 704.103 703.863 705.97 1.55629 0.261494 0.11959 0.15677
LBE 701.995 702.041 701.945 702.999 1.5351 0.25794 0.11958 0.1568

Table 8: MLEs and (SErs) for the dataset (2).

Distribution 􏽢α 􏽢β 􏽢θ 􏽢c

NDWW 19.994 0.473 5.861 24.27
(18.594) (0.398) (18.786) (136.949)

TW 0.063 3.096 0.711 -
(0.033) (0.47) (0.316) -

WTW 0.018 2.062 0.102 0.451
(7.738) (0.211) (0.632) (0.074)

W - 2.787 0.122 -
- (0.427) (0.056) -

DWE - - 0.0002 1.579
- - (0.573) (0.496)

WWW 5.53 0.745 10.643 6.395
(1.799) (0.448) (16.104) (1.799)
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electronic address: https://www.care.gov.eg/(1, 1, 2, 4, 5, 1, 1,
3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9,
19, 15, 11, 14, 12, 11, 7, 13, 10, 20, 22, 21, 12, 14, 9, 14, 7, 16,
17, 13, 21, 11, 11, 8, 11, 12, 15, 21, 20, 18, 15, 14, 21, 16, 11, 28,
29, 19, 14, 19, 29, 34, 34, 46, 46, 47, 36, 38, 40, 32, 39, 34, 35,
36, 35, 45, 62, 91, 97).

Tables 6 and 7 provide the ML estimates of the distri-
bution parameters together with their standard errors
(SErs). (e analytical measures include the Akaike infor-
mation criterion (Z1), the correct Akaike information cri-
terion (Z2), the Bayesian information criterion (Z3), and the
Hannan-Quinn information criterion (Z4), the Anderson
Darling statistic (Z5), the Cramér-von Mises statistic (Z6),
the Kolmogorov–Smirnov test (Z7), and the p value (Z8).

�e second dataset is taken from the work of Gross and
Clark [23]. (e values of Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8
are given in Tables 8 and 9.

�e third dataset proposes a concrete application with
an actual dataset to assess the interest in the NDWW dis-
tribution. (e considered data, called the daily deaths,
confirmed cases of COVID-19 in Georgia from 1 Jan to 31
March 2021. (e dataset was obtained from the following
electronic address: https://github.com/CSSEGISandData/
COVID-19/(23, 44, 31, 25, 18, 20, 28, 34, 22, 23, 23, 24,
26, 21, 26, 23, 17, 25, 15, 14, 11, 24, 16, 17, 16, 25, 12, 19, 21,

11, 19, 16, 14, 13, 19, 18, 11, 14, 15, 8, 5, 10, 15, 7, 9, 11, 14, 13,
9, 7, 19, 10, 12, 10, 6, 12, 10, 14, 11, 10, 12, 9, 12, 10, 4, 9, 15,
10, 12, 9, 12, 9, 5, 2, 8, 7, 9, 9, 8, 9, 10, 4, 8, 10, 6, 8, 5, 14, 8, 5).
(e values of Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 are given in
Tables 10 and 11. Many studies proposed COVID-19
datasets, such as, the works of Alanazi et al. [24], Abdul Latif
et al. [25], and Kaur et al. [26].

We observe the NDWW distribution gives the best fit
among the other selected models for the three datasets. (e
fitted pdfs and cdfs plots and pp plots of mentioned dis-
tributions for the first, second, and third data are represented
in Figures 2–7 for the purpose visual comparison. According
to these plots, we observe that the NDWW distribution is
better than other distributions.

7. Conclusions

NDWW (new double-weighted Weibull distribution) is a
new four-parameter double-weighted Weibull distribution
that is suggested. As a result, more data may be examined
using the model. Moments, moment generating function
(MGF), and incomplete moments are addressed. Quantile
function, mean residual life, AND Lorenz and Bonferroni
curves are also examined. (e maximum likelihood ap-
proach is used to estimate the parameters of the models. (e

Table 9: Numerical values of Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 for the dataset (2).

Distribution Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
NDWW 42.457 45.123 39.661 43.234 0.51694 0.08775 0.15626 0.71323
TW 45.495 46.995 43.398 46.078 0.94357 0.1572 0.17266 0.59002
WTW 46.646 49.313 43.85 47.423 0.87024 0.14441 0.18335 0.51201
W 45.173 45.879 43.775 45.562 1.06815 0.176 0.21196 0.33003
DWE 49.775 50.48 48.377 50.163 2.55133 0.21707 0.25259 0.15575
WWW 43.054 45.721 40.258 43.832 0.5721 0.09684 0.16494 0.64802

Table 10: MLEs and (SErs) for the dataset (3) COVID-19.

Distribution 􏽢α 􏽢β 􏽢θ 􏽢c 􏽢λ

NDWW 12.76 0.276 6.77 25.318 -
(12.545) (0.267) (21.414) (177.294) -

WTW 2.86 1.793 0.589 0.0062 -
(1.887) (0.252) (0.665) (0.0066) -

NMW 1.889 0.0029 0.0025 0.00009 1.889
(0.283) (0.00288) (0.00229) (0.27) (0.28)

WGG 0.0074 0.686 3.758 1.519 2.86
(18.343) (0.00079) (188.427) (30.49)3 (134.32)

Table 11: Numerical values of Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 for the dataset (3) COVID-19.

Distribution Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
NDWW 600.834 601.305 600.651 604.867 0.4168 0.06454 0.0692 0.78194
WTW 601.129 601.6 600.946 605.161 0.45796 0.08109 0.08356 0.5561
NMW 610.64 611.355 610.412 615.681 1.22455 0.21458 0.10933 0.23224
WGG 603.278 603.993 603.05 608.319 0.4525 0.07863 0.0796 0.61856
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behavior of MLE estimations is examined using simulation.
(e suggested model’s utility is demonstrated by three real-
world datasets: daily fatalities confirmed instances of
COVID-19 in Egypt and Georgia and relief times of twenty
patients getting an analgesic. In the future, we plan to use
Neutrosophic statistics, as many authors use this new
branch, such as, Mahapatra et al. [27] and Mahapatra et al.
[28].
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