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�e coalescence and interaction of two in-line two-dimensional bubbles rising in viscous ambient liquids were studied using two-
dimensional simulations. A mass-conserving lattice Boltzmann model that was combined by the phase-�eld lattice Boltzmann
equation (LBE) and the pressure-evolution lattice Boltzmann method (LBM) with a multiple-relaxation-time (MRT) collision
operator was used to solve the Navier–Stokes equations for multiphase �ow. Starting from the circle shape, the interfaces of
bubbles during the rising processes are captured by the calculation of the conservative phase-�eld LBE. �e in�uence of liquid
viscosity and interface tension on the coalescence and interaction of bubbles was studied by varying the Archimedes numbers (Ar)
from 1 to 300 and several Bond numbers (Bo) from 5 to 200. It was found that the bubble–bubble interaction is enhanced with the
decrease of the liquid viscosity, and the outcome of the coalescence is promoted by the two vortex rings (liquid circulations)
around the two bubbles. A comprehensive map of the coalescence regime was obtained. Four distinct coalescence regimes
(namely, Central I, Central II, Edge, and Hug) were identi�ed, and three critical Ar that can distinguish the above four regimes
were de�ned. Moreover, the e�ects of Ar and Bo on the coalescence time and the relative velocity between the two bubbles were
also investigated. �e current work enhances the understanding of the coalescence and interaction of bubbles.

1. Introduction

�e phenomenon of bubbles rising in a quiescent ambient
liquid is common both in nature and industrial processes,
such as bubble column reactors, and heat exchangers in
many chemical and petrochemical applications [1, 2]. An in-
depth understanding of bubbles rising in quiescent ambient
liquid not only helps to grasp or predict the industrial
processes but also has a relatively high scienti�c signi�cance
in the �eld of multiphase �ow.

�e research on a single bubble rising in ambient liquids
originated in the work of Leonardo Da Vinci as early as the
sixteenth century [3]. As the phenomenon is increasingly
important in industry, the mechanism of a single bubble
rising in ambient liquids has been extensively studied. Bhaga
and Weber [4] systematically studied the shapes, wakes, and
velocities of a single rising bubble under Morton numbers

(Mo) greater than 4×10−3 and several Reynolds numbers
(Re). It was found that the bubbles trailed and closed, and
laminar toroidal wakes appeared under Re< 110, but the
wakes became open and unsteady under Re> 110. Mário [5]
reported that a set of bubbles raise velocity experiments in a
liquid column using water or glycerol and found that the
bubble’s terminal velocity is strongly dependent on the
dynamic viscosity e�ect. Lalanne et al. [6] focused on shape-
oscillations of a gas bubble rising in another liquid. A linear
theory was proposed to distinguish the oscillation modes of
lower and higher frequencies. Yan et al. [7] investigated the
drag coe£cient of a single bubble rising in deionized water,
and a new correlation combined with nondimensional
numbers was proposed to calculate the �uctuation of the
drag coe£cient. Because it was challenging to generate initial
spherical bubbles in liquids, and there are some uncon-
trollable factors in experiments, many of the essential works
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in this topic were carried out by numerical simulations. ,e
numerical methods used in the simulation of a single bubble
rising in ambient liquids are the immersed-boundary
method of Peskin [8], the front-tracking (FT) method of
Tryggvason and collaborators [9, 10], the volume-of-fluid
(VOF) method of Scardovelli and Zaleski [11] and Tripathi
et al. [12], the level-set (LS) method of Sussman et al. [13],
the lattice Boltzmann method (LBM) of Chen and Doolen
[14], and themoving particle semi-implicit (MPS) method of
Koshizuka and Oka [15]. According to Sahu’s review on
rising bubble dynamics in viscosity-stratified fluids [16], we
consider that the understanding of a single bubble rising in
ambient liquids is relatively rich based on the existing ex-
perimental investigation and numerical simulations.

By contrast, the understanding of two bubbles rising in a
quiescent ambient liquid is highly limited since studies
regarding this phenomenon are relatively rare; fewer works
on this topic have been reported. Chen et al. [17] studied the
coalescence of two identical bubbles rising in a stationary
liquid pool.,ey found that interface tension and horizontal
expansion of the bubble caused the bridge between the
bubbles to reduce with the bubble size during the beginning
of the coalescence. Islam et al. [18] focused on the effects of
the initial horizontal bubble interval, oblique alignment, and
rheological properties of non-Newtonian fluids on two side-
by-side bubbles rising in a xanthan gum solution. Feng et al.
[19] investigated the detailed coalescence and conjunction of
two in-line bubbles rising in high-viscosity liquids. ,ey
discovered two coalescence modes, that is, conjunct coa-
lescence and coalescence, without a conjunction. In addi-
tion, they proposed a hydrodynamic stability theory to
predict the conjunct time. Tripathi et al. [20] systemically
studied the three-dimensional motion of two bubbles side by
side and revealed the destabilizing nature of the interaction
between the wakes of the two bubbles. Zhang et al. [21]
systemically studied the effects of the Galilei number (Ga)
and Eötvös number (Eo) on two in-line bubbles rising in
viscous ambient liquids. ,ey identified four distinct coa-
lescence regimes and defined three critical Ga, which dis-
tinguish the four regimes. It is necessary to note that most of
the existing studies focused on the two bubbles rising under
the axial-symmetric computer domain. Balla et al. [22] fo-
cused on the dynamics of a pair of initially three-dimen-
sional spherical drops rising side by side in a surrounding
liquid, and revealed the difference between the liquid–liquid
system and gas–liquid system. However, the works on two
bubbles rising in ambient liquids under two-dimensional
conditions are still lacking, and the relevant mechanism of
the coalescence and interaction of two bubbles is not fully
understood.

In this paper, a computational study on two in-line, two-
dimensional bubbles rising in a two-dimensional quiescent
ambient liquid is carried out. A numerical technique
combining the conservative phase-field lattice Boltzmann
equation (LBE) [23] and the pressure-evolution LBM with a
multiple-relaxation-time (MRT) collision operator [24, 25]
is used to address the complex interface topologies and the
flow field during the two bubbles rising in ambient liquids.
,e effects of liquid viscosity and interface tension on bubble

coalescence are systematically investigated by varying Ar
from 1 to 300 and Bo from 5 to 200. Compared to the
literature, the ranges of Ar and Bo are significantly extended.
In particular, the bubble shape evolution, flow field, coa-
lescence time, and relative velocity are explored for bubbles
rising in ambient liquids.

2. Numerical Methods

2.1. Conservative Phase-Field Lattice Boltzmann Equation
(LBE) [23]. ,e governing equation used for tracking the
interface of bubbles rising in a two-dimensional quiescent
ambient liquid can be written as follows:

zϕ
zt

+ ∇ · ϕu � ∇ · M ∇ϕ −
1 − 4 ϕ − ϕm( 􏼁

2

ξ
n􏼠 􏼡􏼢 􏼣, (1)

where ϕ is the phase-field variable that indicates each phase
such that it is zero in one phase (light fluid ϕl) and one in the
other (heavy fluid ϕh), ϕm � (ϕl + ϕh)/2 indicates the in-
terface location, t stands for time,M is the mobility, u stands
for the macroscopic velocity vector, ξ is the interface
thickness, and n is the unit vector normal to the interface:

n �
∇ϕ

|∇ϕ|
. (2)

Under the equilibrium condition, for an interface located
at r0 � 0, the phase-field distribution at r assuming a hy-
perbolic tangent profile is required:

ϕ(r) � ϕm +
ϕh − ϕl

2
tan h

2 r − r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ξ
􏼠 􏼡. (3)

Equation (1) can be solved by an inherently conservative
LBE as follows:

zhi

zt
+ Ci · ∇hi � −

hi − h
(eq)
i

λϕ
, (4)

where hi is the phase-field distribution function, λϕ is the
phase-field relaxation rate, andCi is the microscopic velocity
sets. For the 2D nine-velocity lattice (D2Q9), as i � 0,
Ci � (0, 0); as i � 1 − 4, Ci � c(cos θi, sin θi), where
θi � (i − 1/2)π; and as i � 5 − 8, Ci �

�
2

√
c(cos θi, sin θi),

where θi � (i − 5/2)π + (π/4), c � δx/δt is the lattice speed,
while δx and δt are, respectively, the lattice length and time
scale.

,e phase-field distribution function can be written as
follows:

h
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i � ϕΓi + φwiCi · n→, (5)
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(6)
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where wi is the weight coefficient set for the D2Q9 lattice, as
i � 0, wi � 4/9; as i � 1 − 4, wi � 1/9; and as i � 5 − 8,
wi � 1/36. cs � δx/

�
3

√
δt is the lattice speed of sound.

Referring to themethod proposed in [26], the phase-field
LBE equation (4) can be solved in two steps:

(1) Collision:

h
∗
i � hi −

hi − h
(eq)
i

τϕ′ + 1/2
. (7a)

(2) Advection:

zh
∗
i

zt
+ Ci · ∇h∗i � 0, (7b)

where τϕ′ � λϕ/δt is the dimensionless relaxation
time and the relationship between mobility and
relaxation time is M � τϕ′c2sδt.

To retain the second-order accuracy of the LBM in time
and space, a Lax–Wendroff finite difference scheme [27] is
used to solve the advection equation (7b):

hi(x, t + δt) � hi ∗ (x, t) − α hi ∗ (x, t) − hi ∗ x − Ci

Δx
c

, t􏼒 􏼓􏼢 􏼣

−
1
2
α(1 − α) hi ∗ x + Ci
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c

, t􏼒 􏼓 − 2hi ∗ (x, t)􏼢

+ hi ∗ x − Ci

Δx
c

, t􏼒 􏼓􏼣,

(8)

where α is the Courant–Friedrichs–Lewy (CFL) number.
Here, the Lax–Wendroff finite difference scheme is solved by
an adaptive grid refinement method [26], and the value of α
is equal to 0.25.

,e next step is to update the phase field. We take the
zeroth moment of the distribution function to calculate it,
and the equation is the following:

ϕ � 􏽘
8

i�0
hi. (9)

Correspondingly, the density ρ is updated by

ρ � ρl +
ϕ − ϕl

ϕh − ϕl

ρh − ρl( 􏼁, (10)

where ρh and ρl are the densities of the heavy and light fluids,
respectively.

,e gradient of the phase-field, namely the vector
normal to the interface in equation (2) can be calculated
by

∇ϕ �
3

2cΔx
􏽘

8

i�1
Ciwi ϕ x + Ci

Δx
c

􏼒 􏼓 − ϕ x − Ci

Δx
c

􏼒 􏼓􏼢 􏼣. (11)

2.2. Pressure-EvolutionLBMwith anMRTCollisionOperator.
To solve the Navier–Stokes equations for multiphase flow,
the phase-field LBE, and the pressure-evolution LBM with
an MRTcollision operator are combined to propose a mass-
conserving lattice Boltzmann model [24, 25].

,e general form of the discrete Boltzmann equation for
nonideal fluids can be written as follows:

zfi

zt
+ Ci · ∇fi � −Λ fi − f

(eq)

i􏼐 􏼑 +
Ci − u( 􏼁 · F

c
2
s

Γi, (12)

where fi is the particle distribution function, f
eq
i � ρΓi is the

equilibrium distribution function, and Λ is the generalized
collision operator.

,e general forcing term F can be written as follows:

F � −∇ p − ρc
2
s􏼐 􏼑 + Fb + Fs, (13)

where p is the pressure, Fb is the body force, Fs � μϕ∇ϕ is the
interface tension force, μϕ � 4ψ(ϕ − ϕl)(ϕ − ϕh)(ϕ − ϕm) −

κ∇2ϕ is the chemical potential, while ψ and κ are related to
the interface tension σ and interface width ξ by ψ � 12σ/ξ
and κ � 3σξ/2, respectively.

A new particle distribution function, gi � fic
2
s + wi(p −

ρc2s ) is induced to replace the previous function, fi, and
substituted into equation (12). Considering the incom-
pressible limit, the Mach number (Ma) of the flow is much
smaller (Ma≪ 1). ,e term (Γi − wi)∇p ∼ Ο(M3

a) is neg-
ligible, leading to

zgi
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(eq)
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2
s􏽨
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(14)

where g
(eq)
i � f

(eq)
i c2s + wi(p − ρc2s ), ∇ρ � (zρ/zϕ)∇ϕ �

(ρh − ρl)∇ϕ.
Correspondingly, equation (14) can be further trans-

ferred to

zgi

zt
+ Ci · ∇gi � −Λ gi − g

(eq)
i􏼐 􏼑 + Γi − wi( 􏼁 ρh − ρl( 􏼁c

2
s􏽨

+ Γiμϕ􏽩 Ci − u( 􏼁 · ∇ϕ. + Γi Ci − u( 􏼁 · Fb.

(15)

Based on the method proposed in the previous section,
equation (15) can be solved by splitting, and the resulting
algorithm consists of collision and advection steps.,e form
of the collision step can be written as follows:

gi ∗ (x, t) � gi(x, t) − M−1􏽢SM gi − g
(eq)
i􏼐 􏼑

+ δt Γi − wi( 􏼁 ρh − ρl( 􏼁c
2
s + Γiμϕ􏽨 􏽩

· Ci − u( 􏼁 · ∇Mϕ + δtΓi Ci − u( 􏼁 · Fb,

(16)

Discrete Dynamics in Nature and Society 3



where M is the orthogonal transformation matrix, M− 1 is M’s
inverse, 􏽢S is the diagonal matrix, 􏽢S � diag(1, 1, 1, 1, 1, 1, 1,

sυ, sυ), where sυ � 1/(τ′ + 0.5), the kinematic viscosity
υ � τ′c

2
sδt, and τ′ is the relaxation time explained by Lee and

Lin [28].
To maintain an explicit scheme, gi can be written as

follows:
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1
2
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in which the modified equilibrium distribution function,
g

(eq)
i , can be written as
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,e superscripts C and M in equation (16)–(18) repre-
sent central and mixed finite differences, respectively, which
can be written as follows:

1
c
Ci · ∇Cϕ �

ϕ x + CiΔx/c, t( 􏼁 − ϕ x − CiΔx/c, t( 􏼁

2Δx
,

1
c
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4Δx
.

(19)

After the collision step, the advection step is carried out
by the Lax–Wendroff scheme as follows:

gi∗(x,t+δt) � gi∗(x, t)−α gi∗(x, t)−gi∗ x−CiΔx/c,t( 􏼁􏼂 􏼃

−
1
2
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(20)

Finally, the flow variables are calculated by
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s
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2
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2.3. Numerical Validation. ,e benchmark study of a single
bubble rising in ambient liquids is used to validate the reliability
and accuracy of the proposed mass-conserving lattice Boltz-
mann model. A comparison between the present work and the
MooNMD method [29] is made, and the results are shown in
Figure 1. Two numerical simulations are conducted at different
nondimensional parameters, which are Ar � 35, Bo � 10, and
Ar � 35, Bo � 125, respectively. Here, Ar and Bo represent
Archimedes number and Bond number, respectively. As
shown in Figure 1(a), at the bubble diameter D � 0.5 and the
characteristic time t∗ � 3 (t∗ � t

�����
gy/D

􏽱
), the interface to-

pology of bubbles in present work is almost the same as the
MooNMD results. ,en, we compared the rising velocities, the
definition of which is that the velocity of the bubble center of
mass when the bubble rises, between the present work and the
MooNMD method for t∗ ≤ 3, as shown in Figure 1(b). ,e

rising velocities of bubbles in the present work are also in
satisfactory agreement with the MooNMD results.

3. Problem Statement

Figure 2 shows the schematic of the two in-line, two-dimensional
bubbles rising in a quiescent ambient liquid problem. Simula-
tions were conducted in a two-dimensional computational
domain. ,e bounce back conditions [30] are imposed both on
the top and bottom boundaries, and the periodic boundary
conditions are both imposed on the left and right boundaries.
Two initially identical circular bubbles are released at the cen-
terline of the domain.,e constant initial separation of S� 2.36R
is considered, where R is the bubble radius. ,e initial velocity
and pressure field of the domain are set to zero. In addition, an
adaptive grid refinement method as mentioned above was used,
and the grid setting are specified as themaximumandminimum
cell sizes were Δmax � L/16 and Δmin � L/256, where L is the
horizontal scale of the computational domain, respectively. ,e
maximum refinement level was set to 8.

,e bubble rising can be strongly affected by four
nondimensional parameters [3], that is, Archimedes number
(Ar), (Ar � (ρl − ρb)g1/2

y D3/2/μl, where ρl and ρb are the
densities of ambient liquid and bubble, respectively. gy is the
magnitude of the gravitational acceleration in the y-direc-
tion, D is the bubble diameter, μl is the liquid viscosity),
Bond number (Bo), (Bo � (ρl − ρb)gyD2/σ, where σ is the
interface tension between the bubble and ambient liquid),
density ratio ρr (ρr � ρl/ρb) and viscosity ratio μr

(μr � μl/μb). ,e Ar and Bo represent the ratio of external
force to internal viscous force and gravitational force to
interface tension force, respectively. ,e density ratio and
viscosity ratio mainly represent the inertia effect and shear
effect on the bubbles, respectively. Considering the common
phenomenon of air bubbles rising in water, the density and
viscosity ratios of ambient liquid to bubbles are fixed to 1000
and 100 in this paper, respectively. It is necessary to note that
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both ρr and μr remain constant except when stated
otherwise.

4. Results and Discussions

4.1. Evolution of Shape and Flow Field Analysis. First, we
conducted the simulations under a fixed Bo number
(Bo� 50) to investigate the influence of the ambient liquid
viscosity (Ar) on the rising behaviors of two in-line two-
dimensional bubbles. Considering that the complexities of
the bubbles rising in ambient liquids, the liquid viscosity
condition (Ar) is separated into three regions: low Ar,
medium Ar, and high Ar.

4.1.1. At Low Ar. ,e rising behaviors (mainly, the coales-
cence process) of bubbles in quiescent ambient liquid are
shown in Figure 3 at Bo� 50 and Ar� 1. We know that, at
Bo� 50 and Ar� 1, the viscous force and interface tension
both play important roles in the rising behaviors of bubbles.
,erefore, the inertial force is relatively negligible, and the
drag force induced by the relatively high-viscosity causes the
bubbles to rise slowly. ,e interface tension constrains the
bubble deformation. As shown in the first frame of Figure 3,
the generated jet is rather weak, and only slight deformation
is observed. Moreover, from the streamline distribution, it is
found that the vortex cores are relatively far from the two
bubbles, which causes the liquid circulations to be weak as
well. Consequently, the upper interface of the following
bubble alters slightly, and the lower interface of the following
bubble is slightly elongated. As time increases, because of the
shielding effect of the wake flow behind the leading bubble
[31, 32], the upper interface of the following bubble is flat-
tened by the dimple formed in the leading bubble. During the
coalescence process, the following bubble remains elongated,
and while the lower interface of the following bubble be-
comes slimmer; a smooth tail even appears at t∗ � 7.2.

On the other hand, the deformation of the leading
bubble shows a reverse evolution during the rising. From left
to right of Figure 3, the hat shape of the leading bubble
becomes more oblate. During the coalescence process, the
leading bubble shows a slight deceleration before the coa-
lescence. Consequently, the following bubble continuously
approaches the leading bubble. Finally, the coalescence
between two bubbles occurs at tc � 7.541, which represents
the characteristic coalescence time. As shown in the third
frame of Figure 3, the coalescence starts from a single contact
point of the two bubbles, which is located almost at the
symmetry axis of the two bubbles.

Figure 4 shows the rising behaviors of two bubbles at
Bo� 50 andAr� 10. As Ar increases to 10, the liquid viscosity
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Figure 1: Numerical results of a single bubble rising in ambient liquid for different nondimensional parameters at D � 0.5, ρl/ρb � 1000,
μl/μb � 100. (a) Interface topologies at t∗ � 3; (b) rising velocities for t∗ ≤ 3.
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decreases significantly. Compared to the case of Ar� 1, the
influence of inertia increases a little based on the reduction of
drag. Correspondingly, the generated jet becomes stronger,
and thedeformationof the followingbubble increases slightly.
Because the vortex cores are relatively near the two bubbles,
the liquid circulations become stronger as well. Moreover,
because the wake speed becomes faster, the shielding effect of
the wake flow behind the leading bubble is strengthened. As
shown in the second frame of Figure 4, the deformation of the
following bubble becomes more significant, while the lower
interface of the following bubble flattens rapidly. On the other
hand, the leading bubble shows a similar deformation to the
case of Ar� 1. As time increases, the following bubble ap-
proaches and contacts the leading bubble. ,e coalescence
occurs at tc � 1.973, which is much earlier than the case of
Ar� 1.After bubble coalescenceoccurs, the liquid circulations
accelerate the lower face of themerged bubble, and a larger hat
shaped bubble is formed at t∗ � 2.47.

It is worth mentioning that the detailed coalescence
process of Ar� 10 is different from the case of Ar� 1.

Although the coalescence region is located at the central part
of both bubbles in the two cases, the contact area is different.
In the case of Ar� 1, because of the weak liquid circulations,
the impact between the two bubbles is very slight, and the
contact area is small enough to be considered a single point.
,e liquid circulations become stronger in the case of
Ar� 10. Under such conditions, there is a slightly stronger
impact between the two bubbles during the coalescence
process. Consequently, the contact area is enlarged, and the
coalescence no longer starts from a contact point but from
several points at the same time. It is necessary to note that
the contact points are still located at the central part of the
two bubbles.

4.1.2. At Medium Ar. As Ar increases to 80, the rising
behaviors of the two bubbles are shown in Figure 5.
According to References [3, 33], at Bo� 50 and Ar� 10, the
inertial force and interface tension are of the same order.
Namely, they both play significant roles in bubble dynamics.

t* = 1.2 t* = 4.2 t* = 7.2 t* = 10.2

Velocity Magnitude:
0.0005 0.00225 0.004 0.00575 0.0075

Figure 3: Coalescence process between two bubbles and corresponding flow field at Bo� 50, Ar� 1, ρr � 1000, μr � 100 and S/R� 2.36.

t* = 0.97 t* = 1.47 t* = 1.97 t* = 2.47

Velocity Magnitude:
0.005 0.01 0.015 0.02 0.025 0.03

Figure 4: Coalescence process between two bubbles and corresponding flow field at Bo� 50, Ar� 10, ρr � 1000, μr � 100 and S/R� 2.36.
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Because liquid viscosity decreases, the drag force has less
influence on the rising behaviors of bubbles, and the gen-
erated jets are rather strong.,erefore, both the interfaces of
the two bubbles are easier to deform. As shown in the first
frame of Figure 5, an obvious deformation of the following
bubble is observed. ,e lower interface of the following
bubble is pushed upward, and an upward dimple is formed.
Because the distance between the vortex cores to the lower
interface of the following bubble is significantly smaller than
the upper interface, the lower interface receives shearing
forces induced by the strengthened liquid circulations.
Consequently, the lower interface ascends much more
rapidly than the upper interface. ,en, the following bubble
decelerates suddenly due to the obvious oblate deformation.
On the other hand, the leading bubble shows a similar
deformation as the smaller Ar cases. Namely, the two
bubbles both experience an oblate deformation situation,
but the deformation degree of the leading bubble is always
greater than that of the following bubble. As shown in the
second frame of Figure 5, the topology of the two bubbles
seems to be a “hat” being put on a “head,” where the leading
bubble is the “hat,” and the following bubble is the “head.” It
is necessary to note that, compared to the above two smaller
Ar cases, the degree of the “putting on” between the two
bubbles is strengthened by the decreased liquid viscosity
(increased Ar).

As time increases, under the continuous action of the
two vortex rings (liquid circulations), the oblate deformation
of the two bubbles becomes more significant. ,at is, the
dimple of the lower interface of the following bubble
gradually expands and squeezes most of the bubble to both
sides.,en, with the horizontal development of two bubbles,
the probability of potential collision on the central part of the
two bubbles is decreased. Moreover, as shown in the third
frame of Figure 5, as the vortex cores are gradually closed to
the edge of the bubbles, the shearing effect increases the
probability of bubble coalescence in peripherals. Conse-
quently, the coalescence between the two bubbles starts from
the peripheral part instead of the central part. Interestingly,

the coalescence time is tc � 2.097, which is slightly larger than
the case of Ar� 10. As shown in the fourth frame of Figure 5,
after the contact area first appears in the peripheral part of
the two bubbles, the coalescence subsequently expands to the
central part.

4.1.3. At High Ar. Figure 6 gives the results of the rising
behaviors of the bubbles at Bo� 50 and Ar� 300. Under such
a condition, with the liquid viscosity reduced significantly,
the bubble dynamics are almost unaffected by the drag force.
Instead, the bubbles mostly face inertia and gravity. Because
the scale of the interface tension is much smaller than the
inertia, the interface tension plays a relatively unimportant
role in this case. ,erefore, the liquid circulations and the
generated jets become quite strong. As shown in the first
frame of Figure 6, during the approach of the two bubbles,
because of the strengthened liquid jet behind the leading
bubble, the following bubble significantly deforms and
elongates in the vertical direction. Meanwhile, the lower
interface of the following bubble is driven by the liquid jet,
and an upward dimple is formed. At this time, the shape of
the lower interface resembles a skirt. Compared to the first
frame of Figure 5, compared to the previous case (Ar� 80),
the skirt topology is more significant. Subsequently, the
following bubble rising behaviors are pushed by the con-
tinuous action of the two vortex rings. As shown in the
second frame of Figure 6, most of the gas inside the following
bubble moves upward rapidly. Correspondingly, the gas in
the tail of the following bubble decreases, and the “neck” of
the skirt becomes thinner. Ultimately, because the pressure
induced by the ambient liquid flow is rather strong, the
interface tension is unable to maintain the existing equi-
librium. As shown in the third frame of Figure 6 (t∗ �1.78),
two satellite bubbles are shed from the tail of the following
bubble.,e phenomenon can be captured for a single bubble
under the condition of a rather large Eo [3, 33].

On the other hand, for the leading bubble, with the
continuous action of the two strengthened vortex rings, its

t* = 1.35 t* = 1.73 t* = 2.10 t* = 2.47

Velocity Magnitude:
0.005 0.02375 0.0425 0.06125 0.08

Figure 5: Coalescence process between two bubbles and corresponding flow field at Bo� 50, Ar� 80, ρr � 1000, μr � 100 and S/R� 2.36.
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axial symmetry thickness decreases continuously until
central breakup occurs. As shown in the second frame of
Figure 6, the leading bubble is divided into two parts. It is
necessary to note that the thinning and central breakup of
the leading bubble is promoted by the inertia effect induced
by the rather fast approach of the following bubble. After the
breakup of the leading bubble, the following bubble con-
tinues to rise through the hollow space of the leading bubble.
Meanwhile, the two parts of the leading bubble spread out on
both sides. ,en, as shown in the third frame of Figure 6,
similar to the previous case (Ar� 80), coalescence occurs in
the peripheral part of the two bubbles. However, we consider
that the coalescence processes are different between the two
cases (Ar� 80 and Ar� 300). ,e following two aspects can
explain the difference. First, the leading bubble is divided
into two parts in the case of Ar� 300, which does not occur
in the case of Ar� 80. ,e rising behaviors in the two cases
are different. Second, in the case of Ar� 300, coalescence
occurs after the breakup of the leading bubble. Although the
coalescence area is located at the peripheral part of two
bubbles, the coalescence process looks more like the leading
bubble’s two arms, giving the following bubble a “hug.” To
better interpret this type of coalescence, Figure 7 gives
detailed results of the coalescence process at Bo� 200 and
Ar� 200. As shown in the third frame of Figure 7, coales-
cence occurs when the inner interface of the leading bubble
is in contact with the lower interface of the following bubble,
namely, the contact area is located on the backside of the
following bubble, rather than its peripheral part. Conse-
quently, we consider that the coalescence process at Bo� 50
and Ar� 300 is more appropriately described by using the
word “hug.”

4.2. Ar-Bo Map for the Coalescence Regime and Critical Ar.
In the previous section, we established that distinct rising
behaviors and coalescence processes occurred under varying
Ar and fixed Bo values. To fully understand the relationship
between the coalescence regime and the condition parameters,

a full picture of the effect of Ar-Bo on the coalescence regime
should be plotted.

Above all, we classify the coalescence regime into three
categories: Central, Edge, and Hug regimes based on the
bubble shape topologies. ,e Central regime is the most
common regime in our simulations. In this regime, the
coalescence starts from single or several contact points at the
central part of the two bubbles (e.g., the third frames of
Figures 3 and 4). ,e Edge regime refers to the coalescence
that starts from the peripheral parts of the two bubbles (e.g.,
the third frames of Figure 5). In the Hug regime, the leading
bubble breaks into two parts and gives the following bubble a
“hug” before the coalescence (e.g., the third frames of
Figures 6 and 7). Moreover, the Central coalescence regime
was subdivided into two regimes, that is, Central I and
Central II. In the Central I regime, the coalescence starts
from a single point, which is located at the symmetry axis of
the two bubbles. While in the Central II regime, the coa-
lescence starts from several contact points, which are located
in the central part near the symmetry axis.

Correspondingly, an Ar-Bo map of coalescence regimes
is plotted, as shown in Figure 8. Obviously, the Central I
regime generally occurs at low Ar or low Bo, and the Hug
regime always occurs under high-condition parameters
(Bo≥ 50 and Ar≥ 150). ,e Central II regime occurs under
most of the condition parameters. Interestingly, when Bo is
rather small (Bo≤ 10), even if Ar is as large as 500, the Hug
regime is still not observed. Accordingly, we consider that
the Edge regime may not translate to the Hug regime even if
the liquid viscosity is small enough to be ignored. Moreover,
the Edge regime only exists under certain condition pa-
rameters (Bo≤ 75 and Ar≥ 60) in our simulations. ,is
means that the interface tension and the liquid viscosity are
both essential for the Edge regime. However, when the
interface tension is rather small (Bo≥ 100), the Edge regime
might not always occur.

To distinguish the four regimes, three critical Ar values
(namely, Ar1, Ar2, and Ar3) are defined as the boundaries
among them. As shown in Figure 8, several relationships

t* = 1.36 t* = 1.57 t* = 1.78 t* = 1.98

Velocity Magnitude:
0.01 0.035 0.06 0.085 0.11

Figure 6: Coalescence process between two bubbles and corresponding flow field at Bo� 50, Ar� 300, ρr � 1000, μr � 100 and S/R� 2.36.
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between the critical Ar and Bo are obtained. First, with the
increase of Bo, Ar1 decreases continuously and Ar2 decreases
first and then increases, which is different from the results
under the axisymmetric computational domain in Reference
[21]. ,e changes in Ar1 or Ar2 suggest that the reduction in
interface tension promotes the gas in bubbles to transfer
faster in the vertical direction, which makes the contact area
between the two bubbles larger. Second, because the leading
bubble is more likely to break up into two parts under such
conditions, Ar3 decreases with increasing Bo. We consider
that the Hug regime always occurs under relatively low-
interface tension.

4.3. Effect of Ar on Coalescence Time at Different Bo Values.
Interface tension is an important factor in the coalescence
time of two rising bubbles [34–36]. However, in the two-
dimensional domain, the influence of liquid viscosity on the
coalescence time under a single interface tension condition
has not yet been systematically studied. To obtain a com-
prehensive understanding, we investigated the changes in

coalescence time with varying Ar at several Bo values
(Bo� 5, 10, 25, 50, 100, 200) in this section, where Ar
corresponds to the liquid viscosity and several Bo values
corresponds to different degrees of interface tension.

Figure 9 gives the results of coalescence time tc versus Ar
at different Bo values. In general, with the increase in Ar, tc
decreases basically under all Bo values, suggesting that

t* = 2.83t* = 2.34t* = 1.64t* = 1.05

Figure 7: Coalescence process between two bubbles at Bo� 200, Ar� 200, ρr � 1000, μr � 100 and S/R� 2.36.
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Figure 8: Ar-Bomap of coalescence regimes plotted as Bo versus Ar.
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Figure 9: Effect of Ar on coalescence time at different Bo.
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irrespective of Bo, Ar shows a significant effect on tc. With
the increase in Bo, tc shows a certain extent of decline,
suggesting that the decreasing interface tension promotes
coalescence. When the liquid viscosity is rather high
(Ar≤ 3), bubbles coalescence occurs much later. As Ar in-
creases (Ar≤ 20), according to the comparative interpreta-
tion of Figures 3 and 4, the coalescence is considerably
promoted by the strengthened inertia effect. However, when
Ar≥ 30, tc shows little change and basically appears to
stabilize. According to the interpretation of Figure 5, this
implies that the influence of liquid viscosity on tc can be
negligible under such conditions. It is necessary to note that,
under Bo≥ 100 and Ar≥ 125, tc suddenly increases slightly,

which is caused by the transition of the Edge to the Hug
coalescence regime. According to the interpretation of
Figures 3, 5, and 6, compared to the Edge regime, tc in the
Hug regime is always considerably larger.

4.4. Effect of Ar and Bo on Relative Rising Velocity. ,e in-
fluence of interface tension (Bo) and liquid viscosity (Ar) on
bubble relative rising velocity Ur are illustrated in Figures 10
and 11, respectively. In Figure 10, the effect of Ar on Ur is
investigated by using three representative Ar values at
Bo� 50. In Figure 11, the effect of Bo on Ur is investigated by
using three representative Bo values at Ar� 25. In these
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Figure 10: ,e effect of Ar on the instantaneous relative velocity at Bo� 50. (a) Relative velocity versus time; (b) relative velocity versus
bubble center distance.
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Figure 11: ,e effect of Bo on the instantaneous relative velocity at Ar� 25. (a) Relative velocity versus time; (b) relative velocity versus
bubble center distance.
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figures, the ends of the curves all correspond to the be-
ginning of bubble coalescence. ,e relative rising velocity is
specifically analyzed from two views, namely, versus time
history (Figures 10(a) and 11(a)) and dependence on in-
stantaneous distance (S/R) between the two bubbles
(Figures 10(b) and 11(b)). In general, the time evolution of
Ur depends significantly on Ar, Bo, and the instantaneous
distance, S/R, between the two bubbles.

,e relationship among the relative velocity Ur, Ar, and
instantaneous distance, S/R, can be included as follows: first,
as time increases and S/R decreases, Ur first increases and
then decreases, which is a result of gas transfers inside the
leading and following bubbles. Second, the slopes of the Ur
curves are enlarged by increasing Ar, which indicates that
low-liquid viscosity promotes gas transfer, increasing the
relative velocity. It is necessary to note that, the relationships
among the relative velocity Ur, Bo, and instantaneous dis-
tance, S/R, in Figure 11 are similar to the results in Figure 10.

5. Concluding Remarks

,e detailed coalescence and interaction of two in-line, two-
dimensional bubbles rising in a two-dimensional quiescent
ambient liquid have been studied by using a numerical
technique, which combines the conservative phase-field
lattice Boltzmann equation (LBE) and the pressure-evolu-
tion LBM with a multiple-relaxation-time (MRT) collision
operator. Bubble shape evolution, flow field, coalescence
time, and relative rising velocity have been analyzed in detail.
In particular, we have studied the effect of liquid viscosity
and interface tension on the coalescence and interaction of
the two bubbles by varying Ar (1≤Ar≤ 300) for several Bo
values (5≤Bo≤ 200).

Four distinct coalescence regimes, that is, Central I,
Central II, Edge, and Hug, were revealed by the numerical
simulations under the conditions of Ar increasing while
other parameters remain constant. ,e coalescence regimes
are the results of a combination of vertical elongation of the
following bubble and horizontal expansion of the leading
bubble. In particular, with increasing Ar, the bubble shape
showed a further complexity, and the possibility for bubble
coalescence in the central part was obviously reduced.

,e relationships between coalescence dynamics, Ar,
and Bo are illustrated. ,ree critical Ar values (namely, Ar1,
Ar2, Ar3), which distinguish the boundaries between dif-
ferent regimes, are marked clearly. ,e changes in the three
critical Ar all dependent on Bo. In particular, the Edge
regime only exists under certain conditions, and the Hug
regime is absent for low Bo and Ar. ,e coalescence time
significantly depends on both Ar and Bo, and the coales-
cence is promoted by the decreasing interface tension.

,e motions of bubbles under different condition pa-
rameters were studied. With time and a decrease in the
instantaneous distance between the two bubble centers, the
relative velocity curves first increase and then decrease, and
the slope of the Ur curves is enlarged by increasing Ar or
increasing Bo.

In general, the interaction between the two bubbles is
determined by two vortex rings around the two bubbles,

which is strengthened by the reduction of liquid viscosity.
Coalescence is an outcome of the interaction between the
two rising bubbles, and the effects of Ar and Bo on coa-
lescence are revealed as follows. First, in the range of
1≤Ar<Ar1, the increase in interface tension results in very
late coalescence. Second, the interaction between the two
bubbles is mainly dominated by the interface tension and
shearing forces induced by the two vortex rings (liquid
circulations) around the two bubbles. ,e bubbles collide
and coalesce in the central part in most cases. ,ird, under
Ar>Ar3, the decrease in Bo postpones the occurrence of
bubble coalescence. Under low Bo conditions, the leading
bubble shows drastic deformation and breaks into two parts.
,e coalescence of bubbles is delayed by the transfer of gas in
the leading bubble.

In the current work, the initial distance between two
bubbles was restricted to a relatively constant small value.
We consider that a larger initial distance may cause more
drastic interactions. ,us, the effect of the initial distance on
the coalescence and interaction between the two bubbles is
the next step to be explored. Moreover, the initial setup of
the two bubbles exhibits mirror symmetry with respect to
the central axis, how the features change if this assumption is
lifted? Obviously, the bubble rising dynamics in non-
Newtonian liquids is a problem worthy of investigation. ,e
above scientific issues have a high probability of becoming
our next research projects.
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