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The present paper investigates the problem of capital portfolio selection under uncertain conditions and uses a robust opti-
mization approach for modeling. The model provided in this paper is a three-objective model that aims to maximize returns,
maximize liquidity, and minimize risk. The data extracted from the site of the Tehran Stock Exchange are as follows. These data are
related to twenty shares from July 2020 to July 2021. The robust approach used in this research has been analyzed by the real data of
the Tehran Stock Exchange and then the optimal portfolio for different robust costs has been formed by solving the robust model.
In the following section, the relevant model is solved through real stock market data and using the goal programming approach,

and the results are investigated and analyzed.

1. Introduction

The portfolio selection problem is one of the most significant
problems in the field of financial management. In this
problem, an effort is done to disseminate the investor’s
budget among the assets in a way that increases the return on
the capital portfolio and decreases its risk. The stock market
provides a mechanism through which the small savings of
the society are converted into macroeconomic investments,
the proportional development of the two main sectors of the
economy, i.e., the financial and real sectors, is of special
importance [1]. Developed countries have always had and
have strong money and capital markets. The lack of proper
development of the capital market as an important subset of
the financial sector, in addition to creating double pressure
on the country’s monetary system, has caused production
and service units to be deprived of the benefits of an active
and dynamic capital market [2]. An effective portfolio means
the optimal mixture of assets in a way that the portfolio risk

is decreased for a specified rate of return [3]. In fact, the two
significant elements for investment decisions are the amount
of risk and the return on capital assets [4]. Rational investors
consider returns desirable and avoid risk [5]. Furthermore,
they act rationally in decision making, which maximizes
their desired efficiency [6]. Therefore, the desirability of
investors is a function of expected returns and risk, which
are the two basic parameters of investment decisions [7]. In
other words, in the problem of portfolio optimization, we are
looking for a portfolio that produces less standard deviation
(risk) and more expected value [8, 9].

The portfolio selection problem is one of the most
important problems in the field of finance; various models
and methods have been presented in this regard by various
researchers [10, 11]. This includes creating a stock portfolio
that maximizes investor utility [12]. In these problems, an
attempt is made to distribute the specified budget among the
assets in such a way as to maximize the return on capital and
minimize its risk [13, 14]. However, there are various
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methods to model an investment portfolio problem [15].
These include single-objective and multiobjective models
that can be linear or nonlinear. It should be noted that data
uncertainty and the existence of uncontrollable variables in
the financial markets and the investor decision-making
process are inevitable [16, 17]. In other words, the common
thing in all models of portfolio selection in the real world is
the uncertainty of some of their parameters [18]. Therefore,
it is necessary to consider the data uncertainty with one of
the available methods, depending on the characteristics and
strengths and weaknesses of each method.

Some parameters in the investment portfolio model are
uncertain due to their predictable nature and their ran-
domness, such as the systematic risk parameter. Classical
methods for considering parameter uncertainties include
sensitivity analysis and stochastic optimization. In sensitivity
analysis, first uncertainty is ignored in general, then after
solving the problem through sensitivity analysis, the effect of
data uncertainty on the problem is investigated. Although
sensitivity analysis is a good tool to investigate how good the
solution is, it is not a good way to generate solutions that are
robust against data changes. On the other hand, it is not
possible to use sensitivity analysis in models with high
uncertainty parameters. In stochastic optimization, it is
assumed that a function of the distribution of input pa-
rameters is given. Although the abovementioned model is
mathematically strong, it has fundamental problems. It is
very unlikely that the definitive distribution function of
uncertain parameters can be obtained. Even if the distri-
bution function of these parameters can be obtained, it is
difficult to calculate their probability. Also, changing the
parameters may confuse the convexity property and com-
plicate the computation of the problem. Considering the
abovementioned problems, a useful method for investigat-
ing uncertainties in mathematical models is the use of a
robust optimization methodology. In the robust optimiza-
tion approach, we look for near-optimal solutions that are
likely to be justified, which are called robust solutions. In
addition to maintaining optimality, these solutions also
maintain the feasibility of the problem.

In this research, an attempt has been made to develop an
investment portfolio selection model using this approach.
The investor then specifies the investment objectives in the
form of a multiobjective model and solves the model using
multiobjective planning solution methods such as goal
programming, which is one of the most widely used methods
in this field.

In this paper, after presenting the introduction, the
literature review section has been presented. Then, a mul-
tiobjective model of stock portfolio selection has been de-
fined. Solving the model by real data from the Tehran Stock
Exchange has been presented in section 4. Finally, the
conclusion has been presented in section 5.

2. Literature Review

So far, a lot of research has been conducted in the field of
stock selection criteria, both in the Tehran Stock Exchange
and worldwide. However, studies dedicated to explaining
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risk criteria have rarely been conducted, and most studies
have described risk criteria in addition to stock selection
criteria. Research in the specific field of risk criteria has been
specific to emerging criteria in the financial literature, such
as adverse risk and value at risk, and explaining their sig-
nificance in pricing theories such as CAPM; therefore, in this
research, first, the studies conducted on specific risk criteria
are addressed and then the studies in which the risk criteria
are mentioned along with the stock selection criteria are
considered. In this section, the research conducted in the
field of various types of financial risk measures and their
application in robust optimization of the stock portfolio
selection problem is reviewed, and then, a review of the goal
programming literature through which the model in this
article has been solved is provided.

The robust conditional value-at-risk model was intro-
duced in 2008 by Quaranta and Zaffaroni [19]. In this model,
the objective is to minimize conditional value-at-risk.
Conditional value-at-risk is a comprehensive risk measure,
also called tail risk. Experimental tests of the above model
have been carried out in the Italian financial markets.

The next model to be investigated is the robust opti-
mization model of mean absolute deviations [20]. In this
model, a robust model of mean absolute deviations or
RMAD for short is presented, which leads to linear pro-
gramming that reduces computational complexity. In the
experimental results of this paper, different conditions that
lead to fluctuation and uncertainty of data have been
considered.

A robust integrated model of the share selection problem
has been developed by Baker et al. [21] in which different
uncertainty norms have been used. In their paper, the
problem of stock selection is introduced using an integrated
model approach in robust optimization; this model is a
development based on robust optimization models of un-
certain programming problems. In the integrated model, the
uncertainty area is estimated with a suitable norm body, and
the model, taking into account the parameters considered by
the investor, allows the modeler to produce different ver-
sions of the integrated model according to the problem
conditions. Therefore, the modeler can propose the ap-
propriate model and investment according to the uncertain
parameters and consider the utility of the investor. In this
model, the Ben-Tal and Nemirovski [22] method has been
used for development.

Jarisch et al. [23] presented a robust model for the
forestry-avocado portfolio in South Africa. They presented
dual discounting when considering time preferences for the
market. Considering time preferences for ecosystem services
is one of the contributions of this research. Wu et al. [24]
presented a multiobjective criteria system for portfolio se-
lection. They use Tomada de Decisdo Iterativa Multicritério
algorithm for portfolio selection based on the financial
performance. Finally, a case study on medical stock in-
vestment in the Chinese stock market is examined.

The robust optimization model of the multiperiod fi-
nancial portfolio using conditional value-at-risk was pro-
posed by Lotfi et al. [25]. In their paper, WCVaR, which
stands for the worst-case conditional value-at-risk, is studied
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when there is only partial information on the probability
function of the uncertain parameters. This index, as well as
the value-at-risk (VaR) index, is considered by financial
managers as a new criterion for calculating financial port-
folio risk. The objective is to minimize WCVaR with
combined uncertainty, finite partial uncertainty, and ellip-
tical uncertainty for the distribution of asset returns. Robust
multiperiod financial portfolio optimization using the
WCVaR risk criterion leads to linear and nonlinear pro-
gramming problems of the second degree that are efficiently
solvable. A robust optimization model of the financial
portfolio with the approach of the capital asset pricing model
was presented by Kuehn et al. [26]. In their research, a robust
optimization approach is proposed to solve the problem of
multiperiod financial portfolio selection. Robust optimiza-
tion models consider the future return on assets as uncertain
coeficients in the optimization problem and imagine the
degree of risk acceptance of investors as the degree of tol-
erance to the total error of estimating returns.

Single-objective models seek to maximize or minimize
the objective function regardless of the decision maker. To
solve this problem of single-objective models, thematic
literature of multiobjective models and goal programming
were developed [27]. Goal programming was first proposed
by Charles and Cooper [28]. Goal programming is a special
type of linear programming with multiple and conflicting
goals in terms of their importance in such a way that low-
level goals are considered only when high-level goals are met
[29]. In one-goal programming, the objective function is
maximized or minimized, but in goal programming, the
deviations between the intended goals and the actual results
are minimized [30].

In goal programming models such as one-goal pro-
gramming, the coefficients are assumed to be certain and
fixed [31]. While some coefficients are uncertain in nature.
This uncertainty can be due to computational error or nature
based on coeflicient prediction. In the following of this
section, an attempt is made to investigate the uncertainty of
the input data to the model by a robust approach [32].

Li and Wang [33] proposed a robust model for the
multiobjective stock portfolio selection model. In their
model, the goal programming approach is used to solve the
multiobjective model. Ben-Tal and Nemirovski developed
the asset allocation model using the robust approach pro-
posed by Ben-Tal and Nemirovski, [22]. Their model is a
multistage model that attempts to invest assets in a way that
maximizes returns at the end of the investment period. In
this investment period, there are time periods for the re-
distribution of capital between assets. The return on assets in
these time periods is assumed to be uncertain.

Goldfarb and Iyengar [34] developed the stock portfolio
selection model using the Ben-Tal and Nemirovski ap-
proach. In the model proposed by them, the mean, variance,
and value-at-risk are used. Their model has also become a
quadratic cone optimization model. This approach requires
internal point methods to solve. Kuchta [35] used a robust
optimization approach to model the mean-variance prob-
lem. They used Ben-Tal and Nemirovski’s robust modeling
methods for their modeling.

Kawas and Thiele [36] developed a robust optimization
model of the capital portfolio selection problem in a situ-
ation where asset returns follow a set of interval uncertainty.
This set of uncertainties leads to the Bertsimas and Sim
model. The objective function proposed in their model is the
worst portfolio value that is attempted to be minimized.
Their model is a one-period model and short sale is not
allowed in it. In their model, the log-normal distribution
function is used for the return on assets, and the uncertainty
is determined based on this distribution.

Rotella Junior et al. [37] first provide a model called the
multiperiod mean-semi-variance-skewness stochastic in-
vestment portfolio optimization model considering the
transaction cost. Since it is very difficult to solve the mul-
tiperiod portfolio problem due to the nonlinearity of the
problem, after modeling the problem using a multiobjective
and single-objective particle swarm optimization algo-
rithms, they try to solve the proposed model.

Toumazis and Kwon [38] modeled the worst-case
conditional value-at-risk model using various uncertainty
approaches, which include cubic uncertainty and elliptical
uncertainty. In fact, the above two approaches lead to
modeling using methods of Ben-Tal, Nemirovski, and
Bertsimas and Sim. The models obtained from the above
approaches lead to the linear programming model and the
second-order cone optimization model, which are easily
solvable. Market data in the model presented by them were
generated by simulation.

Huang et al. [39] developed the mean and variance
model using stochastic optimization (chance constraint) and
robust optimization approaches. They assumed the return
on assets to be uncertain and used a set of interval uncer-
tainty to develop robust optimization.

Masmoudi and Abdelaziz [40] provided a robust opti-
mization model for the portfolio selection problem. In the
model provided by them, the focus is on entering trading
authority in the stock portfolio. In this case, the risk is
controlled with the help of stock options and available
strategies. An interesting point in their model is the use of an
elliptical uncertainty set with a common margin.

Huang et al. [41] developed the mean-median absolute
deviation with the help of elliptic uncertainty sets. They
developed their modeling for single-period and multiperiod
problems.

One of the studies on the application of goal program-
ming in the portfolio selection problem is Lee and Olson, [42]
who provided the first GP model in the field of finance. Some
of the most important studied conducted using GP in the
portfolio selection problem include Booth and Dash [43].

Also, some of the studies conducted in the field of
multiobjective models of portfolio selection by considering
the uncertainty in the parameters include those of Abdelaziz
et al. [44].

3. A Multiobjective Model of Stock
Portfolio Selection

As mentioned earlier and considering the materials and
explanations provided on the stock portfolio selection



problem, it is necessary to consider all aspects affecting the
investment in order to form an optimal portfolio. Therefore,
in this section, according to the literature review and con-
sidering the important aspects of investment, three objec-
tives have been selected in this regard, which are as follows:

(1) A return
(2) A conditional value-at-risk (CVaR)
(3) A liquidity

The reason for choosing the first objective is the im-
portance of the return and profitability of a share. The
second objective is presented in order to investigate the
investment risk in the form of an appropriate risk measure
that has the ability to be linear and convex. After the two
objectives of risk and return, which are considered in most
investments, the objective of liquidity is considered. Because
a share may be desirable in terms of return and risk, the
ability to sell and convert it into cash is time-consuming or
even impossible. Finally, according to the mentioned cases, a
multiobjective model of capital portfolio selection with the
objectives of mean-conditional value-at-risk-liquidity is
presented as the following model:

(1) Objective function 1: Return maximization.

n
Maximize ; riX;. (1)

(2) Objective function 2: CVaR minimization.

L 1 \
Minimize  + sA-o Z Ve (2)

i=1

(3) Objective function 3: Liquidity maximization.

n
Maximize Z; ij . (3)
=

(4) Constraints related to the amount of investment.

subject to Zl x;j=1. (4)
=

(5) Constraints related to CVaR

inZ[(“rijxj)_”/]’i:1’2""’5‘ (5)

j-1

(6) Constraints related to the mark.

x;20. (6)
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It should be noted that in the above relations we have
as follows:

(1): Number of periods index
(j): Number of shares index

x ;: Decision variable (percentage of the weight of the
jth share)

n: Value at risk VaR

1-a: Confidence level

s: Number of scenarios (periods)

y;: Decision variable to calculate CVaR
r;: Return of the jth share

L;: Liquidity of the jth share

Robust optimization is one of the newest techniques
introduced in the field of mathematical modeling and op-
timization. The main nature of this method is based on the
principle that uncertain parameters can be controlled in a
mathematical model [45]. The main assumption of math-
ematical modeling and its optimization in the classic mode is
that the values of all parameters are known accurately and
definitively. However, in real conditions, some parameters
may not be certain. For example, in a mathematical model of
production planning, the demand parameter cannot be
measured accurately. Therefore, considering the uncertainty
in the demand parameter is quite reasonable. The use of
methods for dealing with uncertainty helps us to model and
then optimize various problems with uncertain parameters
[46]. The concept of robustization, which has been intro-
duced by many researchers, refers to the fact that due to
changes in uncertain parameter, the value of the objective
function also changes and fluctuates. Now, among the
different values of this uncertain parameter, we must choose
the value that achieves the most appropriate value of the
objective function in terms of the decision maker and also
the least fluctuation in the value of the objective function. In
robust optimization, very simply, an interval for the pa-
rameters is introduced first. The lower limit and the upper
limit of these parameters can be determined based on nu-
merical estimates. In the next step, by performing the cal-
culations specified by Bertsimas and Sim, the mathematical
model is rewritten and a robust model based on Bertsimas
and Sim is presented. However, many other models have
been proposed to deal with uncertainty.

Given that, in this paper, we consider the share return as
an uncertain parameter, using the robust approach of
Bertsimas and Sim, we change the model and so-called make
it robust. We also use the goal programming method to solve
the model. Therefore, the model presented above changes as
follows:
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TaBLE 1: Summary of the problem data.
Period

Share

1 2 3 4 5 6 7 8 9 10 11 12
g;’;fgtzgan 0 00401 -0.040 02029 -0.0478 -0.043 -0.0032 0.0082 0.0300 -0.0133 -0.0193 -0.0398
Darab Cement 0.15147 0.4437 0.226 0.09387 0.0457 -0.1042 0.10099 -0.0075 0.1898 -0.1006 00.1038 -0.0100
Gharb Cement 0.0003  0.3328 0.410 0.3359 0.3500 0.07138 0.09771 -0.0185 -0.070 0.2166 —0.1343  0.025
Ilam Cement 0.01788  0.146 0.461 0.0758 0.0435 -0.0758 0.11442 0.0644 0.1819 -0.0331 -0.0516 -0.0018
Karun Cement 0.5683  0.3007 -0.003 0.2538 0.0247 -0.097 0.02869 0.0176 0.0827 -0.0702 -0.0553 -0.0244
Kerman Cement 0.01981 0.7258 0.2483 0.05047 -0.03 -0.162 0.05532 0.1901 0.3412 0.0686 -0.01693 -0.1275
Khuzestan Cement 0.12572  0.4185 0.5595 0.03365 0.2658 —0.172 0.01867 —0.0051 0.3949 -0.0383 —0.0358 —0.0019
Shargh Cement 0.01795 0.294 0.1484 0.9713 0.0813 -0.0029 -0.0981 0.2146 0.2296 0.02841 -0.0638 —0.0003
Doroud Cement 0.04691 0.0576 0.0584 0.2055 -0.070 -0.1401 0.11341 -0.0624 0.2884 -0.1809 -0.03907 -0.0975
Sepahan Cement 0.40194 0.0529 0.3802 0.13824 -0.023 -0.1363 -0.0209 0.04915 0.5443 -0.1348 -0.03857 -0.0128
Tehran Cement 0.156371 0.3694 0.1206 0.212 -0.048 -0.0257 0.05228 0.1025 0.4123 -0.1819 -0.1483 -0.0848
Hegmatan Cement 0.09024 0.0398 0.0408 0.4595 -0.083 -0.108 0.08073 -0.0435 0.24077 -0.0377 -0.1389 0.00931
Khash Cement 0.1513 0.311 0.3094 0.2587 -0.0132 -0.1324 0.1310 0.3644 0.1784 -0.1034 -0.1064 -0.1270
Sufiyan Cement 0.1207  0.4287 0.0103 0.1107 0.00065 -0.1259 0.2044 0.0333 0.2297 -0.1257 -0.0881 —0.006
Urmia Cement 0.1573  0.2454 0.1714 -0.1176 -0.0294 -0.1217 0.09182 -0.029 -0.0607 -0.1112 -0.1096 -0.0034
Shomal Cement -0.27628 0.1750 0.462 0.1939 0.096¢ -0.1804 0.132 0.2021 0.1761 -0.1982 -0.072 -0.739
Shahroud Cement 0.1069  0.0017 0.0001 0 0 0 0 0 0 0 0 0.0002
Cement of 0.002  —0.2566 04235 03671 -0.160 0203 0.057 -0.108 0.04205 -0.0173 -0.0008
Kurdistan
Qaen Cement 0 0 -0.053 0.1976 0 0 0 0 0.2588 -0.178 -0.1720 -0.1243
Lar Sabzevar 0.0326  0.0253 0.0003 005328 0.0033 00072 0 00044 0 0 00174 0.01446
Cement

TaBLE 2: Forming an optimal stock portfolio considering various robust costs.
Robust cost
Stock
0 1 2 3 4 5 10 15 20

Darab Cement — — — — — — — — —
Gharb Cement — — — — — — — — —
Ilam Cement 0.3522 0.34236 0.33306 0.72377 0.72556 0.72556 0.73435 0.3273 0.73435
Karun Cement — — — 0.00085 0.00052 0.0005 — — —
Kerman Cement — — — — — — — — —
Khuzestan Cement — — — — — — — — —
Shargh Cement — — — — — — — — —
Doroud Cement 0.19211 0.18674 0.18167 0.00425 0.0026 0.00251 — 0.2321 —
Sepahan Cement — — — — — — — — —
Tehran Cement 0.38824 0.40533 0.42149 0.26963 0.26907 0.26924 0.26565 0.4407 0.26565
Hegmatan Cement — — — — — — — — —
Khash Cement — — — — 0.00134 0.0013 — — —
Sufiyan Cement — — — — — — — — —
Urmia Cement — — — — — — — — —
Shomal Cement 0.06744 — 0.06378 0.00149 0.00091 0.00088 — — —
Shahroud Cement — — — — — — — — —
Cement of Kurdistan — — — — — — — — —
Qaen Cement — — — — — — — — —
Lar Sabzevar Cement — — — — — — — — —
Obj — — — — — — — — —
Return . . . . . . . . .
Liquidity 0.0319 0.03231 0.0327 0.0322 0.0322 0.0322 0.03218 0.0322 0.03218
CVaR 0.084189 0.8089 0.8401 0.87115 0.87123 0.87123 0.87237 0.8459 0.87237
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4. Solving the Model by Real Data of Tehran
Stock Exchange

The data extracted from the site of the Tehran Stock Ex-
change are as follows. These data are related to twenty shares
from July 2020 to July 2021. Information is monthly. The
shares are related to the cement industry. The details of the
shares are in Table 1.

Following this section, the optimal stock portfolio is
determined by giving the value of the problem parameters to
the model and assuming different robust costs. The weights
of all three objective functions are considered the same. It
should also be noted that the value of goals is equal to:

The conditional value-at-risk (CVaR) goal =0.1.

The return goal =0.03.

The liquidity goal=0.8.

Table 2 shows the optimal stock portfolio considering
various robust costs. As you can see the robust value for
liquidity are 0.0319, 0.03231, 0.0327, 0.0322, 0.0322, 0.03218,
0.0322, and 0.03218, respectively. Also, the robust values for
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CVaR are 0.084189, 0.8089, 0.8401, 0.87115, 0.87123,
0.87123, 0.87237, 0.8459, and 0.87237.

5. Conclusion

In the past, the models proposed for development were
devoid of any uncertainty, and all problem inputs were
assumed to be certain, which is an incomplete assumption.
Classical approaches to entering this uncertainty into
mathematical models are very difficult and inefficient. These
approaches, like sensitivity analysis, have many problems.
This paper investigates the optimization approach under
conditions of uncertainty. In this research, the robust goal
programming approach has been used for modeling. The
model presented in this paper includes three objective
functions of return, liquidity, and conditional value-at-risk.
The reason for choosing the first objective is the importance
of the return and profitability of a share. The second ob-
jective is presented in order to investigate the investment
risk in the form of an appropriate risk measure that has the
ability to be linear and convex. After the two objectives of
risk and return, which are considered in most investments,
the objective of liquidity is considered. As it is clear from the
results of the tables, the optimal stock portfolio has been
reported and it is clear that the most productive factories can
be selected among the cement factories at the time of the
study. Robust Therefore values for liquidity are 0.0319,
0.03231, 0.0327,0.0322, 0.0322, 0.03218, 0.0322, and 0.03218,
respectively. Also, the robust values for CVaR are 0.084189,
0.8089, 0.8401, 0.87115, 0.87123, 0.87123, 0.87237, 0.8459,
and 0.87237.

The robust approach used in this research has been
analyzed by the real data of the Tehran Stock Exchange and
then the optimal portfolio for different robust costs has been
formed by solving the robust model. Thus, the investor can
easily choose the desired portfolio in the real world, where
many effective factors such as stock returns are uncertain, in
different conditions of uncertainty. Considering a robust
multiobjective mathematical model and optimizing stock
portfolio are the superiority of this study over Meng-Ren
et al. [47]; Liu et al. [48]; and Luo et al. [49]. Also, con-
sidering the objectives such as maximizing returns, maxi-
mizing liquidity, and minimizing risk are the superiorities of
this study over those of Wu et al. [50] and Teng et al. [51].

The results of this research can be useful for organiza-
tions such as stock exchange organizations, and factory
shareholders. Minimizing risks also helps investors and
decision makers choose the best portfolio with more pre-
cision and less risk. This maximizes investor confidence and
can pave the way for attracting more investors. [52].

The future directions as presented as follows:

(i) Considering uncertainty in input parameters as
fuzzy demand or fuzzy costs

(ii) Considering alternative goods in stock exchange

(iii) Considering other objectives such as minimizing
cost
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