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To maintain and increase household wealth, this study studies the optimal allocation ratio of household investment and
consumption. When considering venture capital, it is assumed that the theoretical price of risky asset obeys the CEV model. Our
goal was to maximize the expectation of household cumulative consumption and the discounted utility of terminal wealth and to
solve the optimal consumption and investment ratio using the dynamic programming principle and HJB equation. Using
logarithmic utility and isoelastic power utility function with residual utility, we get the analytical solution of the household
investment-consumption ratio by means of guessing and variable transformation. Finally, the in�uence of general parameters on
the optimal ratio in the market is analyzed by numerical simulation and diagram, which is consistent with the description of actual
situation. �is study not only enriches portfolio theory but also provides investors with investment strategies.

1. Introduction

With the growth of economy, the household income also
increases. How to reasonably invest the family’s remaining
wealth and realize the maintenance and appreciation of
family wealth is the core issue of our research.�e systematic
research on household investment began in the 1960s,
starting from Samuelson [1] and Fama [2]. For a continuous
time, in 1969, Merton [3] studied portfolio selection under
uncertainty in the life cycle, thus opening the prelude to
study the dynamic portfolio optimization under continuous
time. In 1971, Merton [4] proposed the continuous-time
model of the optimal consumption and portfolio rules. It
opens a new milestone in the methodology of dynamic
portfolio selection. However, the classical Mertonmodel and
its extension [5–7] usually assume that its risk assets obey the
geometric Brownian motion (GBM) model. �e volatility of
the price of a risky asset described by the GBM model is
constant and cannot re�ect the actual market situation. �e
CEVmodel, £rst proposed by Cox and Ross, canmake up for
these shortcomings. It is a natural extension of the geometric
Brownian motion model [8]. For a complete £nancial

market, the CEV model considers the relationship between
the price of risky assets and the volatility, which is more in
line with the requirements of the £nancial market [9]. �e
price �uctuation of risk assets described by the CEVmodel is
stochastic, which is more suitable for practical problems.
Xiao et al. [10], for the £rst time, will be introduced to the
CEVmodel to determine the payment type pension (de£ned
contribution pension) portfolio optimization problem in the
study, and the optimal strategy is given under the expo-
nential utility function. In recent years, there are a lot of
literature studies on pension problems based on the CEV
model [11–14] and very few literature studies on investment
optimization based on the CEV model. In 2013, Chang et al.
[15] pointed out that the relevant literature on the issue of
investment and consumption based on the CEV model has
not been widely discussed. When the CEV model is in-
troduced into the portfolio optimization problem, it is often
di¦cult to obtain the explicit solution of these problems. By
maximizing discounted expected utility of consumption and
£nal value wealth, Chang et al. studied the CEV model of
individual optimal investment strategy. Although Yuan et al.
[16] studied the family optimal investment strategy under
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the CEV model, they think of it in terms of mean-variance.
Later, Jia et al. [17] obtained the analytic solution of in-
vestment strategy using power function utility and expo-
nential function utility. However, they used only an
asymptotic analysis. For the portfolio optimization problem
in continuous time, Pliska [18] gave the analytical solution of
the optimal portfolio problem, Sundaresan and Zapatero
[19] gave the optimal asset ratio, and Liu [20] derived the
analytical solution of the portfolio problem in a random
case. Stochastic optimal control theory is one of the effective
methods to solve the problem of optimal portfolio in
continuous time [21]. Summing up the above literature
studies, there are not many research studies on household
investment-consumption problem using the CEV model.

*is research mainly focuses on the investment and
consumption problems based on the CEV model. In
household wealth investment, this study considers a risk-free
asset and a risky asset. Assuming that the price of an asset at
risk is subject to the CEV model, we aim at maximizing
consumption and the expected utility of the final value of
wealth with discount to acquire the optimal ratio. *e in-
novations of this study are as follows: (1) considering both
the CEV model and consumption factor in this section, the
HJB equation of the corresponding value function is more
difficult to solve than the equation in Gao [22]. (2) Inspired
by Gao [22] and Liu [23], when a second-order nonlinear
partial differential equation is transformed into a linear
equation that is easy to handle, an important innovation is to
assume that the structural expression of the solution of
equation (25) is in the form of equation (26). It is also proved
that equation (25) is equivalent to equation (29). (3) Using
the method of variable transformation, the optimal con-
sumption-consumption strategy under the exponential
utility function and the equal elastic power utility function
with giveaway utility function is solved. *e analytic ex-
pressions of the optimal investment-consumption strategy
under the two utility functions are obtained by the method
of guessing.

2. Household Wealth Investment Model

We propose an investment model based on the investment
and consumption decision problem under the CEV process.
Assume that households have two continuously tradable
financial assets in financial risk markets during an invest-
ment period [0, T]. Now, let us consider a specific risk asset
based on the CEVmodel and amarket composed of risk-free
assets. At time t, the price of the risk-free asset satisfies the
following random process:

dBt � rBtdt, (1)

where r is the fixed interest rate.
At time t, let the price of the risky asset (stock) be S(t),

abbreviated as St, following the CEV model as follows:

dSt

St

� μdt + kS
β
t dWt, (2)

where μ represents the instantaneous return rate of the stock,
which generally satisfies μ> β. kS

β
t represents the instanta-

neous volatility, and generally, β< 0 represents the elasticity
coefficient of constant variance. When β � 0, it is a general
geometric Brownian motion process. Wt(t≥ 0) is a one-
dimensional standard Brownian motion, which is defined in
the complete probability space (Ω, F, P) where P is the risk-
neutral probability, and F � F{ }t is a right continuous
σ-algebra generated by BM Wt.

At the time of t ∈ [0, T], let V(t) denote the total ad-
ditional disposable wealth of the household, and the initial
household wealth is assumed to be V0 � V(0), and πt and
1 − πt, respectively, represent the proportion of investment
in risky assets and risk-free assets. *e differential equation
of household wealth investment can be expressed as follows:

dVt � πtVt μ dt + kS
β
t dWt􏼐 􏼑 + 1 − πt( 􏼁Vtr dt − Ctdt

� πt(μ − r) + r( 􏼁Vt − Ct􏼂 􏼃dt + πtVtkS
β
t dWt.

(3)

Let Γ � (πt, Ct): 0≤ t≤T􏼈 􏼉 be the set of all feasible in-
vestment-consumption proportions. For any combination
(πt, Ct), the stochastic differential (3) has a special solution.
*eoretically, investors want the ultimate wealth to have the
greatest expected effect, namely, maxut

E U(VT)􏼈 􏼉, where
U(·) is a concave and increasing utility function.

*e target expected utility function is as follows:

max
πt ,Ct( )∈Γ

E 􏽚
T

0
e

− δt
U1 Ct( 􏼁dt + e

− δt
U2 VT( 􏼁􏼢 􏼣. (4)

*e utility functions U1(·)U2(·) are continuously dif-
ferentiable and strictly concave utility functions on
(− ∞, +∞), and δ is the discount rate. Since U(·) is strictly
concave, there is a unique strategy (πt, Ct) that makes (4)
valid.

For a particular feedback function π, the value function
can be defined as the Markov property.

Value function is as follows:

H(t, s, v) � sup
πt ,Ct( )∈Γ

E 􏽚
T

0
e

− δt
U Ct( 􏼁dt + e

− δt
U2 VT( 􏼁|St � s, Vt � v􏼨 􏼩. (5)
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Boundary condition is as follows:
H(T, s, v) � e− δTU(v).

*e value function defined by equation (5) is the upper
definite bound of the expected utility, so it reaches the
optimal value under the stochastic constraint. Let us write
πt � π and Ct � c; according to the dynamic programming
principle and It�o′s lemma, we obtain the following HJB
equation:

0 � Ht +(rv − c)Hv + μsHs +
1
2
k
2
s
2β+2

Hss

+ sup
πt ,Ct( )

1
2
π2

v
2
k
2
s
2β

Hvv + π (μ − r)vHv􏼂 + vk
2
s
2β+1

Hvs􏼚 􏼛

+ e
− δt

U1(c).

(6)

Boundary condition is as follows: H(T, s, v) � U(v)

whereHt, Hv, Hs, Hvv, Hss, andHvs represent the first-order
and second-order partial differentials about time t, wealth v,
and stock price s, respectively.

For the optimal strategy π∗, the first-order conditions
lead to the following formula:

π∗t � −
(μ − r)Hv + k

2
s
2β+1

Hvs

vk
2
s
2β

Hvv

. (7)

Similarly, for the optimal consumption strategy c∗, the
first-order conditions lead to the following formula:

U1′ c
∗

( 􏼁 � e
δt

Hv. (8)

Equation (7) is substituted into equation (6) of HJB to get
the following formula:

Ht + μsHs + rvHv +
1
2
k
2
s
2β+2

Hss

−
(μ − r)Hv + k

2
s
2β+1

Hvs􏽨 􏽩
2

2k
2
s
2β

Hvv

− cHv + e
− δt

U1(c) � 0.

(9)

Boundary condition is as follows: H(T, s, v) � U(v).
It can be seen that we turn the stochastic control problem

into a problem of solving a nonlinear second-order partial
differential equation. If H is solved from (9) and then
substituted into equations (7) and (8), the optimal strategy
π∗ and optimal consumption strategy c∗ can be obtained. In
the following, we use the specific utility function. Here, we
first select the logarithmic utility function and then the
power utility function. Closed-form solutions of equation
(9) are obtained by guessing solutions and variable sepa-
ration methods.

3. Optimal Household Investment Strategy
Based on Logarithmic Utility Function

*e utility function is set as U1(x) � U2(x) � ln x; suppose
the solution of HJB equation (9) has the following form:

H(t, s, v) � m(t)e
− δt ln v + n(t, s). (10)

Boundary conditions are as follows: m(T) � 1 and
n(T, s) � 0.

For simplicity, m � m(t), mt � m′(t), n � n(t, s), and
nt � n′(t, s) are written. *e first-order and second-order
partial differentials of t, s, and v, respectively, are solved, and
the solution results are as follows:

Ht � mte
− δt ln v − δme

− δt ln v + nt;

Hv � me
− δt1

v
,

Hs � ns;

Hvv � − me
− δt 1

v
2;

Hss � nss;

Hvs � 0.

(11)

Because U(c) � ln c, and U1′(c) � eδtHv, with Hv in
equation (10), we can get the following equation:
1/c � eδtme− δt(1/v). So, there is equation: c � (v/m).

*e expressions of equation (11) and c are substituted
into equation (9) to get the following equation:

nt + μsns +
1
2
k
2
s
2β+2

nss + r +
(μ − r)

2

2k
2
s
2β􏼢 􏼣me

− δt

− e
− δt

(ln m + 1) + e
− δt ln v mt − δm + 1( 􏼁 � 0.

(12)

We divide (12) into the following two equations:

mt − δm + 1 � 0;

m(T) � 1,

nt + μsns +
1
2
k
2
s
2β+2

nss + r +
(μ − r)

2

2k
2
s
2β􏼢 􏼣me

− δt

− e
− δt

(ln m + 1) � 0,

n(T, s) � 0.

(13)

*e first-order ordinary differential equation (12) is
solved to get the following equation:

m(t) � m �
1
δ

+ 1 −
1
δ

􏼒 􏼓e
− δ(T− t)

. (14)

Suppose (13) has a solution of the following form:

n(t, s) � A(t) + B(t)y, y � s
− 2β

. (15)

Boundary conditions are as follows: A(T) � 0 and
B(T) � 0.

For simplicity, A � A(t), At � A′(t), B � B(t), and Bt �

B′(t) are written. *e first and second partial derivatives of
t, s, respectively, are solved for (15), and the results are as
follows:
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nt � At + Bty,

ns � − 2βBs
− 2β− 1

,

nss � 2β(2β + 1)Bs
− 2β− 2

.

(16)

*e above equation is substituted into (13) to get the
following equation:

y Bt − 2βμB +
(μ − r)

2

2k
2 e

− δt
m􏼢 􏼣 + At + 2β(2β + 1)k

2
B

+ re
− δt

− e
− δt

(ln m + 1) � 0.

(17)

(17) is decomposed into two equations as follows:

Bt − 2βμB +
(μ − r)

2

2k
2 e

− δt
m � 0;

B(T) � 0,

At + 2β(2β + 1)k
2
B + re

− δt
− e

− δt
(ln m + 1) � 0,

(T) � 0.

(18)

(17) is solved to get the following equation:

B(t) �
m(μ − r)

2

2k
2
(δ + 2μβ)

e
− δT

e
δ(T− t)

− e
− 2μβ(T− t)

􏽨 􏽩. (19)

B(t) is substituted into (18), and it is solved to get the
following equation:

A(t) �
r − ln m − 1

2β(2β + 1)k
2
B(t) − δ

e
2β(2β+1)k2B(t)− δ[ ](T�t)

− e
− δt

􏼔 􏼕.

(20)

*e following conclusion is obtained from the above
solution process.

Theorem 1. If the utility function U1(x) � U2(x) � ln x,
then the solution of HJB equation (9) has the following
form:

H(t, s, v) �
1
δ

1 − e
− δ(T− t)

􏽨 􏽩e
− δt ln v + A(t) + B(t)s

− 2β
,

(21)

where A(t) � r − ln(m − 1/2β(2β + 1)k2B(t) − δ)

[e[2β(2β+1)k2B(t)− δ](T�t) − e− δt], and

B(t) �
m(μ − r)

2

2k
2
(δ + 2μβ)

e
− δT

e
δ(T− t)

− e
− 2μβ(T− t)

􏽨 􏽩. (22)

Theorem 2. Under the logarithmic utility function, the
optimal investment ratio and optimal consumption ratio in
the stocks of risky assets are listed as follows:

π∗t � M σt( 􏼁,

C
∗
t �

v

m
�

v

m(t)
.

(23)

M(σt) � (μ − r)/σ2t , σt � kS
β
t , and m(t) � (1/δ) + (1 −

(1/δ))e− δ(T− t) are written.

Proof. From equation (10), we can get the following:

Hv

Hvv

�
me

− δt
(1/v)

− me
− δt 1/v2􏼐 􏼑

� − v,
Hvs

Hvv

� 0. (24)

Substituting the above equation into equations (7) and
(8), we can get the optimal investment ratio π∗t and the
optimal consumption ratio C∗t .

π∗t � −
μ − r

vk
2
s
2β

Hv

Hvv

−
s

v

Hvs

Hvv

�
μ − r

k
2
s
2β

C
∗
t �

v

m

�
v

m(t)
.

(25)

□

4. Optimal Household Investment Strategy
BasedonEqual ElasticPowerUtility Function

For the objective function (4), where U2(VT) has retention
utility, isoelastic power utility function is defined as follows:

U(v) � ϕc v
1− c

1 − c
,

U(c) �
c
1− c

1 − c
, where c> 0 alsoU VT( 􏼁 � ϕc V

1− c

T

1 − c
,

(26)

where ϕ � ϕ(v) is a weighting adjustment factor for the
bequest value function. Its coefficient is the utility function
of constant relative risk aversion (CRRA). Now, it is as-
sumed that the solution form of the objective function
H(t, s, v) is as follows:

H(t, s, v) � e
− δt

g(t, s)
v
1− c

1 − c
. (27)

Boundary condition is as follows: g(T, s) � ϕc.
For simplicity, g(t, s) � g is written. *e first-order and

second-order partial differentials of t, s, and v are solved,
respectively. *e results are as follows:

4 Discrete Dynamics in Nature and Society



Ht � e
− δt

gt

v
1− c

1 − c
− δe

− δt
g

v
1− c

1 − c
;

Hv � ge
− δt

v
− c

;

Hs � e
− δt

gs

v
1− c

1 − c
;

Hvv � − ce
− δt

gv
− c− 1

;

Hss � e
− δt

gss

v
1− c

1 − c
;

Hsv � e
− δt

gsv
− c

.

(28)

Because U(c) � c1− c/(1 − c) and U1′(c) � c− c, with the
equation (8) U1′(c) � eδtHv and the equation in Hv, we have
the equation eδtHv � eδte− δtgv− c � c− c. So, c � g− (1/c)v.

*e expressions of (28) and c are substituted into (9) and
arranged as follows:

gt − δg + μsgs + r(1 − c)g +
1
2
k
2
s
2β+2

gss +
(1 − c)(μ − r)

2

2ck
2
s
2β g +

k
2
s
2β

(1 − c)

2c

g
2
s

g
+
1
c

(μ − r)(1 − c)sgs + cg
(c− 1)/c⎧⎨

⎩

⎫⎬

⎭
v
1− c

1 − c
e

− δt
� 0.

(29)

*e dependence on v is removed, and you get the fol-
lowing equation:

gt − δg + μsgs + r(1 − c)g +
1
2
k
2
s
2β+2

gss

+
(1 − c)(μ − r)

2

2ck
2
s
2β g +

k
2
s
2β

(1 − c)

2c

g
2
s

g

+
1
c

(μ − r)(1 − c)sgs + cg
(c− 1)/c

� 0.

(30)

Based on the inspiration of the method in Gao [21], we
will use the following power transformation and variable
transformation methods.

Let g(t, s) � h(t, y), and y � s− 2β.
For simplicity, g(t, s) � g is written, and the first and

second partial derivatives of t and s are solved, respectively.
*e results are as follows:

gt � ht,

gs � − 2βs
− 2β− 1

hy,

gss � 2β(2β + 1)s
− 2β− 2

hy + 4β2s− 4β− 2
hyy.

(31)

Substituting the expression in equation (31) into (30),
the following equation is obtained:

ht +[r(1 − c) − δ]h − 2βμyhy + β(2β + 1)k
2
hy +

(μ − r)
2

2k
2

1 − c

c
yh

+ 2β2k2
yhyy + 2β2k21 − c

c
y

h
2
y

h
− 2β(μ − r)

1 − c

c
yhy + ch

1− (1/c)
� 0.

(32)

Boundary condition is as follows： h(T, y) � ϕc.
Let h(t, y) � [f(t, y)]c, using the method of variable

transformation, and then, h(T, y) � [f(T, y)]c � ϕc. So,
f(T, y) � ϕ. For simplicity, f(t, s) � f is written. *e first
and second partial derivatives of t andy are solved, re-
spectively. *e results are as follows:

ht � cf
c− 1

ft,

hy � cf
c− 1

fy,

hyy � c(c − 1)f
c− 2

f
2
y + cf

c− 1
fyy.

(33)

Substituting the expression in equation (33) into
equation (32), we get the following equation:
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cf
c− 1

ft +
r(1 − c) − δ

c
f − 2βμyfy + β(2β + 1)k

2
fy + 2β2k2

yfyy

+
(μ − r)

2

2k
2

1 − c

c
2 yf − 2β(μ − r)

1 − c

c
yfy + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (34)

which simplifies to the following partial differential
equation:

ft +
1
c

[r(1 − c) − δ]f − 2βμyfy + β(2β + 1)k
2
fy + 2β2k2

yfyy

+
(μ − r)

2

2k
2

1 − c

c
2 yf − 2β(μ − r)

1 − c

c
yfy + 1 � 0.

(35)

Boundary condition is as follows: f(T, y) � ϕ.
Notice that equation (35) has changed into a linear

second-order partial differential equation, which is still
difficult to deal. Based on the inspiration of the method in
Liu [22], we solve the solution of (35).

Theorem 3. Assume that f(t, y) � 􏽒
T

t
f(u,

y)du + ϕf(u, y) is a solution to (25), and it can be proved
that f(u, y) satisfies the following equation:

ft +
1
c

(r(1 − c) − δ) +
(μ − r)

2

2k
2

1 − c

c
2 y􏼢 􏼣f

− 2βμ + 2β(μ − r)
1 − c

c
􏼢 􏼣yf + β(2β + 1)k

2
fy

+ 2β2k2
yfyy � 0.

(36)

Boundary condition is as follows: f(t, y) � 1.

Proof. *e following differential operator is defined:

∇f(t, y) � 2β2k2
yfyy + β(2β + 1)k

2
fy

+
1
c

(r(1 − c) − δ) +
(μ − r)

2

2k
2

1 − c

c
2 y􏼢 􏼣f

− 2βμ + 2β(μ − r)
1 − c

c
􏼢 􏼣yfy.

(37)

Equation (35) can then be rewritten in the form as
follows:

zf(t, y)

zt
+ ∇f(t, y) + 1 � 0, f(T, y) � ϕ

zf(t, y)

zt
� − f(t, y) + ϕ

zf(t, y)

zt

� 􏽚

T

t

zf(t, y)

zu
du − f(T, y)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ + ϕ

zf(t, y)

zt
.

(38)

*e operator of equation (26) is obtained as follows:

∇f(t, y) � 􏽚
T

t
∇f(u, y)du + ϕ∇f(t, y). (39)

(30) and (31) are substituted into equation (29) to obtain
the following equation:

6 Discrete Dynamics in Nature and Society



􏽚
T

t

zf(t, y)

zu
+ ∇f(u, y)􏼠 􏼡du􏼢 􏼣 + ϕ

zf(t, y)

zt
+ ∇f(u, y)􏼢 􏼣

− f(T, y) + 1 � 0.

(40)

Since f(T, y) � 1, the above equation can be written in
the following form:

zf(t, y)

zt
+ ∇f(u, y) � 0, f(T, y) � 1. (41)

*eorem 3 is proved. For equation (27), the form of the
guessing solution is as follows:

f(t, y) � e
A(t)+B(t)y

, A(T) � 0, B(T) � 0. (42)

(42) is substituted into (36), and the following equation
is obtained:

y Bt + 2β2k2
B
2

− 2βμ + 2β(μ − r)
1 − c

c
􏼠 􏼡B +

(μ − r)
2
(1 − c)

2k
2
c
2􏼢 􏼣

+ At + β(2β + 1)k
2
B +

1
c

(r(1 − c) − δ) � 0.

(43)

To eliminate the dependence on y, (43) is decomposed
into two equations as follows:

Bt + 2β2k2
B
2

− 2βμ + 2β(μ − r)
1 − c

c
􏼠 􏼡B +

(μ − r)
2
(1 − c)

2k
2
c
2 � 0, B(T) � 0,

At + β(2β + 1)k
2
B +

1
c

(r(1 − c) − δ) � 0, A(T) � 0.

(44)

*e method of solving equations (35) and (36) is the
same as that of Gao [22]. First, (35) is solved. *e process is
as follows.

a � 2β2, b � 2β[μ + (μ − r)1 − c/c], and c � − ((μ − r)2

(1 − c)/2c2) are set. *en, equation (35) can be changed into
the following form:

dB(t)

dt
� ak

2
B
2
(t) + bB(t) +

c

k
2, B(T) � 0. (45)

Both sides of (45) are integrated with respect to t to get
the following equation:

1
ak

2
m1 − m2( 􏼁

􏽚
1

B(t) − m1
−

1
B(t) − m2

dB(t) � t + c1,

(46)

where c1 is a constant and m1 and m2 are the solutions of the
quadratic equation.

ak
2
m

2
+ bm +

c

k
2 � 0, (47)

where m1,2 � [cμ + (μ − r)(1 − c)] ±

(

��������������������������������

[cμ + (μ − r)(1 − c)]2 − (μ − r)2(1 − c)

􏽱

/2βck2).
Considering the boundary condition B(T) � 0, the so-

lution of (45) is as follows:

B(t) �
m1 − m1e

ak2 m1− m2( )(t− T)

1 − m1/m2e
ak2 m1− m2( )(t− T)

. (48)

λ1,2 � [cμ + (μ − r)(1 − c)] ±
(

��������������������������������

[cμ + (μ − r)(1 − c)]2 − (μ − r)2(1 − c)

􏽱

/2βc) is defined.
*en, (48) can be rewritten, so the solution of equation

(35) is listed as follows:

B(t) � k
− 2

I(t), (49)

where I(t) � λ1λ2(1 − e2β
2(λ1− λ2)(T− t))/(λ2 − λ1

e2β
2(λ1− λ2)(T− t)).

(44) is solved, which can be obtained directly from (44).

dA(t) � − β(2β + 1)I(t) +
r(1 − c) − δ

c
􏼢 􏼣dt. (50)

Both sides of I(t) are differentiated to get the following
equation:

􏽚 I(t)dt � λ1t +
1
2β2

ln λ2 − λ1e
2β2 λ1− λ2( )(T− t)

􏼒 􏼓 + c2. (51)

On differentiating both sides of (51), the solution of (44)
can be obtained from (42) and the boundary condition
A(T) � 0 as follows:

A(t) � λ1β(2β + 1)k
2

+
1
c

(r(1 − c) − δ)􏼢 􏼣(T − t)

+
2β + 1
2β

ln
λ2 − λ1

λ2 − λ1e
2β2 λ1− λ2( )(T− t)

⎛⎝ ⎞⎠.

(52)

□

Theorem 4. If the utility function is
u(v) � ϕc(v1− c/1 − c), v(c) � (c1− c/1 − c), c> 0, c≠ 1, then
the optimal investment and consumption strategy of problem
(5) are listed as follows:

π∗t �
μ − r

ck
2
s
2β −

2β
s
2β

fy

f
,

c
∗
t �

v

f
,

(53)
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Figure 2: Influence of μ on optimal investment ratio π∗t .
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Figure 3: Influence of S on optimal investment ratio π∗t .
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Figure 4: Influence of k on optimal investment ratio π∗t .
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Figure 1: Effect of r on optimal investment ratio π∗t .
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Figure 6: Influence of c on optimal investment ratio π∗t .
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Figure 7: Influence of r on optimal consumption ratio C∗t .
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Figure 5: Influence of β on optimal investment ratio π∗t .
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Figure 8: Influence of μ on optimal consumption ratio C∗t .
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where f � f(t, y) � 􏽒
T

t
eA(u)+B(u)ydu + ϕeA(t)+B(t)y, and

y � s− 2β, A(t) and B(t) are given by equations (49) and (52).

Proof. Following equations can be obtained from equation
(7):

π∗t � −
μ − r

vk
2
s
2β

Hv

Hvv

−
s

v

Hvs

Hvv

�
μ − r

ck
2
s
2β −

sgs

cg
(According to Equation(20))

�
μ − r

ck
2
s
2β −

2βs
− 2β

hy

ch
(According to Equation(22))

�
μ − r

ck
2
s
2β −

2β
cs

2β

cf
c− 1

fy

f
c (According to Equation(24))

�
μ − r

ck
2
s
2β −

2β
s
2β

fy

f
.

(54)

Because U(c) � c1− c/(1 − c) and U1′(c) � c− c, according
to (8): U1′(c) � eδtHv and the equation in Hv, we have the
equationeδtHv � eδte− δtgv− c � c− c. *erefore, c � g− 1/cv.
*en, by g � h(t, y) and h(t, y) � [f(t, y)]1/c, the optimal
ratio is obtained as follows:

c
∗
t �

v

f
. (55)

So far, *eorem 4 is proved.
Special cases are discussed as follows.

(1) When c⟶ 1, the optimal investment and con-
sumption problem (5) of the optimal strategy are as
follows:

π∗t �
μ − r

k
2
s
2β, (56)

c
∗
t

�
v

f

�
v

ϕe
− δ(T− t)

+ 1/δ 1 − e
− δ(T− t)

􏼐 􏼑􏼐 􏼑
.

(57)

It shows that when ϕ � 1, U1(x) � U2(x) is power
utility function, and c⟶ 1 power utility function
degenerates into an exponential utility function. We
know from (56) and (57) that the result is exactly the
optimal ratio under the exponential utility function.

(2) If β⟶ 0, the CEV model degenerates to GBM
model.
Equations (35) and (36) are simplified as follows:

Bt +
(μ − r)

2
(1 − c)

2k
2
c
2 � 0, B(T) � 0, (58)

At +
1
c

(r(1 − c) − δ) � 0, A(T) � 0. (59)

(58) and (59), respectively, are solved to get the
following results:

A(t) �
r(1 − c) − δ

c
(T − t),

B(t) �
(μ − r)

2
(1 − c)

2c
2
k
2 (T − t).

(60)

Assume D � ((μ − r)2(1 − c)/2c2k2) + r(1 − c)−

δ/c. *en,

f(t, y) � f(t) �
1
D

e
D(T− t)

− 1􏼐 􏼑 + ϕe
D(T− t)

. (61)

It can be known from (61) that fy/f � 0, and then,
(44) and (45) degenerate into π∗t � μ − r/ck2 and
c∗

t
� v/f, where f is given by equation (50).

It shows that if the CEV model degenerates into the
GBM model, the optimal investment ratio is only
affected by the risk aversion coefficient.

(3) When ϕ � 0, it means there is no retention utility.
Assuming that the general form of the residual
function is B(V(T), T) � G(T) (V(T))1− c/ (1 − c),
in this study G(t) � ϕc.So, when there is no be-
quest, there is B(V(T), T) � 0⇔ϕ � 0.

When ϕ � 1, B(V(t), t) � (V(t))1− c/(1 − c); that is, it is
the ordinary power utility function. In this case, (44) and
(45) are the optimal investment-consumption ratio under
the general power utility function. □

5. The Numerical Simulation Analysis

Suppose there are two forms of assets in the financial market.
One is bank deposits or bonds, and the other is stocks.
Referring to the estimation of Hong Kong stock option
market by Yuen et al. [24], the parameter values are set as
follows: r � 0.03, μ � 0.12, k � 16.16, β � − 1, and S0 � 67.
With reference to Chang et al. [15], δ � 0.1, c � 3 (c � 5),
and V0 � 100 are set. Without loss of generality, let ϕ � 1,
t ∈ [0, T], and T � 5.

(1) From Figure 1, we can see the influence of risk-free
interest rate r on the optimal ratio π∗t . As can be seen
from Figure 1, the optimal ratio π∗t is negatively
correlated with the risk-free interest rate r; that is,
when the deposit interest rate rises, investors are
more willing to deposit or buy bonds and reduce the
proportion of buying stocks. *is phenomenon
echoes the intuition.

(2) From Figure 2, we can see the effect of the expected
instantaneous rate μ of return of a risky asset on the
optimal ratio π∗t . *e optimal investment strategy π∗t
is positively correlated with the expected instanta-
neous rate μ. *at is, when stocks have a high yield,
people are always willing to put more money into
stocks in order to get more yield.

10 Discrete Dynamics in Nature and Society



(3) From Figure 3, we can see the influence of stock price
S on the optimal investment ratio π∗t . As can be seen
from Figure 3, π∗t is positively correlated with the
price S of risky assets. Under the CEV model, when
the stock price increases, the instantaneous volatility
of the stock price ks

β
t becomes smaller, and the in-

vestment risk accordingly decreases. Household
investors are more likely to invest in stocks with high
returns and relatively low risk in order to earn more
wealth.

(4) From Figure 4, we can see the influence of k on the
optimal investment ratio π∗t . As can be seen from
Figure 4, the optimal investment strategy π∗t is
negatively correlated with k. Under the CEV model,
the higher the value of k, the higher the instanta-
neous volatility ks

β
t of the stock price will be, and the

higher the investment risk will be. As a result, in-
vestors will reduce their exposure to stocks.

(5) From Figure 5, we can see the influence of β on the
optimal ratio π∗t . As can be seen from Figure 5, the
optimal investment ratio π∗t is negatively correlated
with the constant elasticity coefficient β. Under the
CEV model, generally β< 0, when the constant
elastic coefficient β increases slightly, the instanta-
neous volatility ks

β
t of the stock price becomes larger

and larger, which leads to higher investment risks.
We can also draw the conclusion that the amount of
assets that household investors invest in stocks under
the CEV model is more than that under the GBM
model.

(6) From Figure 6, we can see the influence of the risk
aversion coefficient c on π∗t . Figure 6 also shows that
the optimal ratio π∗t is negatively correlated with the
risk aversion coefficient c. In fact, under the power
utility function, the greater the risk aversion coef-
ficient c is, the more risk aversion household in-
vestors will have, so they are unwilling to invest more
in stocks with high risks. *is situation is consistent
with the reality.

(7) Figure 7 shows the effect of risk-free interest rate r on
C∗t . As can be seen from Figure 7, optimal con-
sumption C∗t is positively correlated with risk-free
interest rate r. In other words, when the deposit
interest rate rises, investors are more willing to
deposit or buy bonds and less to buy stocks, but the
overall expectation of wealth increases, so investors
are willing to spend more.

(7) Figure 8 shows the effect of the expected instanta-
neous rate μ on C∗t . Intuitively, there is a positive
correlation between optimal consumption and μ.
*at is, when the return rate of stocks is high, the
share of wealth invested in stocks will increase, so
will the overall expected return, and people will
increase consumption. *is phenomenon is verified
by Figure 8.

As for the factors that affect the consumption strategy,
we draw a conclusion that all the factors that can cause the

increase in the total expected income can cause the increase
in consumption.

6. Summary

*e research of this study makes rational investment of
household wealth to achieve the maximization of invest-
ment-consumption utility. We assume that there are two
types of assets in the household financial market, namely,
risk-free assets and risky assets, in which it is assumed that
the price of risky assets obeys the CEV model. Firstly, we
obtain the HJB equation by dynamic programming method.
Secondly, we select specific utility functions, such as loga-
rithmic utility function and power utility function, and apply
variable transformation method to obtain the display so-
lution, that is, optimal ratio. Finally, the effects of market
general parameters on optimal ratio are analyzed by nu-
merical simulation and graphical results, and the results are
consistent with the actual situation. In further research, we
will consider more factors, such as transaction costs and
borrowing.
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