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In this study, bipartite containment control for multiagent systems (MASs) with quantitative information is investigated.
Communication topology is structurally balanced, and the follower’s trajectory is within the area surrounded by the leader by
designing distributed error terms.�e leader is an external system, and the matrix information of the leader cannot be accessed by
followers. Based on an adaptive quantization information distributed observer, the authors introduce an output feedback protocol
to study bipartite containment control. Finally, simulations demonstrate the e�ectiveness of proposed control algorithms.

1. Introduction

In recent years, collaborative control has attracted a lot of
attention. It is widely used in vehicle formation [1–3],
complex dynamic networks [4, 5], and sensor networks
[6–8]. With the development of MASs, many interesting
results have been obtained, which makes many control
problems become hot issues, including consensus of mul-
tiagent problem [9], the output regulation problem [10, 11],
contains the problem [12, 13], and an adaptive parameter
problem [14]. In the �eld of control, the MASs are a topical
research object. It is composed of a group of single multi-
agent, and the information transmission between them
constitutes the communication topology. �e consensus of
MASs can be divided into two types by whether there is a
leader or not, that is, the MASs without leaders who cannot
accept the information of other agents and the leader
tracking systems with leaders. In [15], the leaderless con-
tinuous and discrete time consistency problem of the �rst-
order MASs is studied by the frequency domain method.
Based on the leaderless �xed communication topology [16],
the �nite-time consensus for MASs with external distur-
bance is studied. In addition, it is also important to consider
the existence of leaders in multiagent research. Tang et al.
[17] studied the tracking consistency problem, Hong et al.

designed a distributed observer for leading tracking MASs
[18], and Ni and Cheng solved leader-following consensus of
the MASs through switching topology [19]. �is study
considers multiple leaders, and the leaders are considered to
be the exogenous systems, and the leaders’ information
cannot be received by the followers.

Inspired by the biological behavior of nature, con-
tainment control is adopted for systems with multiple
leaders in most cases, and the containment control problem
is widely used in practice. In containment control, there is
more than one leader. �e area surrounded by the leader is
called the convex shell, and followers will only move within
the boundaries de�ned by the leader. For example, several
robots carry equipment through a dangerous stretch of
road. Robots without equipment act as leaders. Other
robots transmit a safe travel route range to them through
sensors or arti�cial information, while robots with
equipment act as followers to enter the movement area
surrounded by the leaders so as to avoid dangerous areas in
the path. In [20], authors studied the necessary and suf-
�cient conditions to achieve containment control. �is
paper studies bipartite output containment; that is, some
follower curves converge to the region surrounded by the
leader and others converge to the region of symmetry. In
[21], the authors solved containment control with an
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output feedback method. In real life, the state is proba-
bilistically unmeasurable, and external disturbance also
affects the stability of the system. In [22, 23], by using the
output feedback method, containment control of the MASs
with exogenous disturbance is solved. %is study also
considers the influence of quantitative information on
information transmission between agents to meet the
practical challenges.

In the existing distributed controller, the information
exchange between agent and neighbor is very accurate, but
the accurate information exchange is a simplification, which
is unreasonable. In practical applications, agents exchange
information through digital communication channels. Due
to the limitation of their own information storage capacity
and communication width, the quantization effect must be
considered [24–26], which is also meaningful and interesting
for the study of consensus problems. %erefore, many ar-
ticles on the consensus issue take into account the quanti-
tative impact. In [27], the problem of quantization
information consistency with Markov chains for the first-
order MASs is solved. Control input problem: in [28], the
author uses the distributed variable adjacency matrix
method to deal with the quantized second-order consensus
problem. In addition, the problem of the digital digraph of
MASs is solved by designing an observer, and the consensus
of the system in [29] is realized by using the probabilistic
quantization method.

Each follower can get the leader’s information, which is
not realistic in practical application. %erefore, researchers
introduced an adaptive algorithm. In [30], the asymptotic
output regulation problem was studied by using the
Luenberger observer and introducing an adaptive regulation
method. In [31], an adaptive controller was proposed to cope
with finite-time bipartite consensus for output feedback in
the unknown state information. In [21], containment con-
trol for the linear MASs was solved. In addition, multiagent
networks with competition and cooperation among agents
are more common. Such problems can be called bipartite
control problems [32, 33]. In topology graphs, the collar
matrix has positive and negative weights. A special example
of bipartite control is the control that is only cooperative
between agents. %e bipartite consensus of the MASs is
restudied in [34] by means of output feedback and state
feedback. In [35], the leader matrix information is obtained
by using an adaptive observer, the solution of the mediation
equation is obtained by designing an algorithm, and the
consensus of the MASs is solved by output feedback. %e
bipartite containment problem of the MASs is studied in
[36]. To solve some problems in actual life, an adaptive
quantization information distributed observer is designed to
estimate the leader’s state, and then, a feedback controller is
used to reach output bipartite containment.

%e remaining four sections are as follows. Section 2 is
the formulation and preliminary work of the problem.
Section 3 is the main theoretical results. Numerical simu-
lation results are shown in Section 4 to verify the effec-
tiveness of theoretical results. In the end, Section 5 gives the
conclusion.

2. Preliminaries and Model Statement

2.1. Algebraic Graph%eory. To achieve the bipartite output
containment, communication topology is described in a
topology diagram [37]. Let G(V, E, A) be weighted directed
graph and consist of node set V � V1, V2, . . . , VN􏼈 􏼉 which
denotes finite nonempty set of N nodes and edge set E⊆V ×

V describing transfer of information between nodes. We
define A � (aij) ∈ RN×N as weighted adjacency matrix. Let
di � 􏽐

N
j�1 aij be in-degree of vertex i and

D � diag d1, d2, . . . , dN􏼈 􏼉 be in-degree matrix of G. Laplace
matrix L � [lij] of weighted directed graph G is defined as
L � D − A. %e point set is divided into two subgroups, v1
and v2, and v1 ∪ v2 � V and v1 ∩ v2 � ∅, which is different
from the general graph theory. Define
Ni � Vj|(Vj, Vi) ∈ E, i≠ j.􏽮 􏽯 to represent neighbor points of
Vi. If there is an edge (Vi, Vj) ∈ E and Vi and Vj are in the
same subgroup, it represents cooperative relationship; then,
there is aij > 0; if Vi and Vj are in different subgroups, it
represents antagonistic relationship; then, there is aij < 0,
otherwise, aij � 0. Define τi as a symbolic parameter, where
τi � 1 is used if Vi ∈ v1 and τi � − 1 is used if Vi ∈ v2.

2.2.Quantizer. Quantizer has been added to many literature
studies on multiagent research. In this study, we use the
quantizer q: R⟶ R as

q(x) �

μi, if
1

1 + c
μi < x≤

1
1 − c

μi, x> 0,

0, if x � 0,

− q(− x), if x< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where μi is the quantization level and c ∈ (0, 1) is the
quantization accuracy parameter. For the quantization level,
one has a set μ � ± μi: μi � (1 − c/􏼈 1 + c)iμ0, i � 0, ± 1,

± 2, . . . , ± n}∪ 0{ }, where μ0 > 0 is the initial quantization
level. |q(m) − m|≤ c|m|, ∀m ∈ Rcan be obtained through
the definition of quantizer. It is worth noting that, for any set
of vectorsy � [y1, y2, . . . , yN]T ∈ Rn, we can writeq(y) �

[q(y1), q(y2), . . . , q(yN)]T ∈ Rn. So, obviously there is
q(y) − y � Γy, where Γ � diag Γ1, Γ2, . . . , ΓN􏼈 􏼉 and
Γi ∈ [− c, +c].

2.3. Problem Formulation. In this study, we study the bi-
partite containment control for a group of MASs composed
of Z leaders and N followers. In addition,
Z � N + 1, N + 2, . . . , N + Z{ } and N � 1, 2, . . . , N{ } are
defined as leaders’ set and followers’ set, respectively. %e
kinetic equation for N followers is as follows:

_xi � Aixi + Biui + 􏽘

N+Z

k�N+1
QikVk,

yi � Cixi, i � 1, 2, . . . , N,

⎧⎪⎪⎨

⎪⎪⎩
(2)
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where xi ∈ Rl, ui ∈ Rl, andyi ∈ Rl are state quantity of i th
agent, control input quantity of the system, and the control
output quantity of the system, respectively.Ai, Bi,Ci, and Qik

are parameter matrix with suitable dimensions. %en, the
kinetic equation of leaders is in the following form:

_Vk � A0Vk,

yk � FVk, k ∈ Z,

⎧⎨

⎩ (3)

where Vk ∈ Rl represents the state of the exogenous system,
that is, disturbance quantity or reference input of the system.

Definition 1. In this study, a reasonable controller is
designed to solve the problem of bipartite containment
control, which makes the followers converge to the positive
and negative region defined by the leader, namely, the
convex hull. So, for follower systems and leader systems (1)
and (2), the following features can be used to solve their
bipartite containment problem.

(1) Define the convex hull co(X) belonging to set X �

x1, x2, . . . , xN􏼈 􏼉 of the form

co(X) � 􏽘
N

i�1
βixixi ∈ R, βi ≥ 0, 􏽘

N

i�1
βi � 1

⎧⎨

⎩

⎫⎬

⎭. (4)

(2) For followers and leaders with any initial value, the
follower can only enter the positive and negative
convex hull defined by the leader:

lim
t⟶∞

dist xi, co Vk, k ∈ Z( 􏼁( 􏼁 � 0, i ∈ N1,

lim
t⟶∞

dist xj, − co Vk, k ∈ Z( 􏼁􏼐 􏼑 � 0, j ∈ N2,
(5)

in which N1 ∪N2 � N and N1 ∩N2 � ∅.

When ei � 0 is used, (2) can be displayed by the fol-
lowing containment error:

ei � 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 yi − sgn aij􏼐 􏼑yj􏼐 􏼑

+ 􏽘
N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 yi − τiyk( 􏼁, i ∈ N.

(6)

Let e � col(e1, e2, . . . , eN) and x � col(x1, x2, . . . , xN);
then,

e � H⊗ IN( 􏼁Cx − 􏽘
N+Z

k�N+1
A0k ⊗F( 􏼁 􏽥Vk, (7)

where 􏽥Vk � G1N ⊗VkN with G � diag τ1, τ2, . . . , τN􏼈 􏼉 and
1N is an N-dimensional column vector,
H � 􏽐

N+Z
k�N+1(1/Z)L + A0k, and A0k � diag |a1k|, |a2k|, . . . ,􏼈

|aNk|}. %en, if limt⟶∞ei � 0, we can get the following
formula:

lim
t⟶∞

Cixi � lim
t⟶∞

􏽘

N+Z

k�N+1
ζ ikFτiVk, i ∈ N, (8)

where ζ ik ∈ Rl is ith row vector of H− 1A0k1N.

Assumption 1. Graph G is a signed graph with a balanced
structure and a spanning tree.

Assumption 2. Eigenvalues of A0 are in the right half plane.

Assumption 3. (Ci, Ai) is observable and (Ai, Bi) is
stabilizable.

3. Main Results

In this section, an adaptive quantitative information ob-
server is designed to observe the information of the leader
matrix A0 so as to solve the problem that followers are
unknowable of the information of the leader matrix. %e
Sylvester equation is presented, and an algorithm for solving
it is presented. %e bipartite containment control is realized
by designing an observer and by using the output feedback
method.

3.1. Bipartite Adaptive Quantization Information Observer.
%e adaptive quantization information distributed observer
of the bipartite containment control is as follows:

_A0i � χ1 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 A0i − sgn aij􏼐 􏼑A0j􏼐 􏼑 + 􏽘
N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 A0i − τiA0( 􏼁⎛⎝ ⎞⎠,

(9)

_ηi �τiA0iηi + c1χ2 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − sgn aij􏼐 􏼑ηj􏼐 􏼑􏼐 􏼑⎛⎝

+ 􏽘
N+Z

k�N+1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − τiVk( 􏼁( 􏼁⎞⎠,

(10)

where ηi ∈ Rn, i ∈ N, and χ1, χ2 < 0. c1 > 0 is the compensator
parameter.

Lemma 1. Consider external systems (2) and adaptive
quantized information distributed observer (6) and (7). Let
􏽥A0i � A0i − τiA0 and 􏽥ηi � ηi − 􏽐

N+Z
k�N+1ζ ikτiVk. %en, for

χ1, χ2 < 0 and i ∈ N, limt⟶∞
􏽥A0i(t) � 0 and

limt⟶∞􏽥ηi(t) � 0.

Proof. According to (6), the derivative of 􏽥A0i(t) can be
obtained as follows:

Discrete Dynamics in Nature and Society 3



_􏽥A0i � _A0i − τi
_A0

� χ1 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 A0i − sgn aij􏼐 􏼑A0j􏼐 􏼑 + 􏽘
N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 A0i − τiA0( 􏼁⎛⎝ ⎞⎠

� χ1 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 A0i − τiA0 + τiA0 − sgn aij􏼐 􏼑 A0j − τjA0 + τjA0􏼐 􏼑􏼐 􏼑 + 􏽘

N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 A0i − τiA0( 􏼁⎛⎝ ⎞⎠

� χ1 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽥A0i − sgn aij􏼐 􏼑􏽥A0j􏼐 􏼑 + 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 τiA0 − sgn aij􏼐 􏼑τiA0􏼐 􏼑 + 􏽘
N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A0i

⎛⎝ ⎞⎠.

(11)

Notice if i and j are in the same subset i, j ∈ N1 or
i, j ∈ N2, there are aij > 0, τi � τj. So, it is easy to get
τi � sgn(aij)τj. In another case, i and j in different sub-
groups, we can get aij < 0, τi � − τj τi � sgn(aij)τj. %rough
the above discussion, τiA0 − sgn(aij)τjA0 � 0 can be ob-
tained. %en, (8) can be written as

_􏽥A0i � χ1 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽥A0i − sgn aij􏼐 􏼑􏽥A0j􏼐 􏼑 + 􏽘
N+Z

k�N+1
aik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A0i

⎛⎝ ⎞⎠.

(12)

Let 􏽥A0I � block diag(􏽥A01,
􏽥A02, . . . , 􏽥A0N); (9) can be

written in concise form:

_􏽥A0I � χ1 H⊗ In( 􏼁􏽥A0I, (13)

where H � 􏽐
N+Z
k�N+11/ZL + A0k. By assumption 1 and Lemma

2of[29], eigenvalues of matrix L have only positive real part
and 1/ZL + A0k is nonsingular. Since A0k has no negative
eigenvalues, H � 􏽐

N+Z
k�N+1(1/Z)L + A0k also has only nonzero

positive eigenvalues. %at is to say, λ(H)> 0. χ1(H⊗ In)< 0
can be obtained by setting the parameter χ1 < 0, and
λ(χ1(H⊗ In))< 0 with all negative eigenvalues can be ob-
tained. And then, we get limt⟶∞

􏽥A0I(t) � 0, which means
we get limt⟶∞

􏽥A0i(t) � 0. %us, the following formula can
be obtained:

_􏽥ηi � _ηi − 􏽘
N+Z

k�N+1
ζ ikτi

_Vk � τiA0iηi

+ c1χ2 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − sgn aij􏼐 􏼑ηj􏼐 􏼑􏼐 􏼑 + 􏽘
N+

k�N+1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − τiVk( 􏼁( 􏼁⎛⎝ ⎞⎠

− 􏽘
N+Z

k�N+1
ζ ikτiA0Vk.

(14)

Since the signature parameter τi � 1 or τi � − 1, multiply
both sides of 􏽥A0i � A0i − τiA0 by τi to obtain
τi

􏽥A0i � τiA0i − A0. %en, formula can be written as

_􏽥ηi � τi
􏽥A0i + A0􏼐 􏼑ηi

+ c1χ2 􏽘
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − sgn aij􏼐 􏼑ηj􏼐 􏼑􏼐 􏼑 + 􏽘
N+Z

k�N+1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌q ηi − τiVk( 􏼁( 􏼁⎛⎝ ⎞⎠

− 􏽘
N+Z

k�N+1
ζ ikτiA0Vk,

(15)

and (11); from Section 2.2, quantizer definition can be
written in the following concise form as

_􏽥η � G⊗ In( 􏼁 􏽥A0I + IN ⊗A0􏼐 􏼑η

+ c1(1 − c)χ2 H⊗ In( 􏼁 η − 􏽘

N+Z

k�N+1
H

− 1
A0k ⊗ In􏼐 􏼑􏽥Vk

⎛⎝ ⎞⎠

− 􏽘
N+Z

k�N+1
H

− 1
A0k ⊗ In􏼐 􏼑 IN ⊗A0( 􏼁 􏽥Vk

� G⊗ In( 􏼁􏽥A0Iη + IN ⊗A0( 􏼁􏽥η

� G⊗ In( 􏼁􏽥A0I 􏽥η + 􏽘

N+Z

k�N+1
H

− 1
A0k ⊗ In􏼐 􏼑􏽥Vk

⎛⎝ ⎞⎠

+ IN ⊗A0( 􏼁􏽥η + c1(1 − c)χ2 H⊗ In( 􏼁􏽥η

� IN ⊗A0 + c1(1 − c)χ2 H⊗ In( 􏼁( 􏼁􏽥η

+ G⊗ In( 􏼁 􏽥A0I􏽥η + G⊗ In( 􏼁􏽥A0I 􏽘

N+Z

k�N+1
H

− 1
A0k ⊗ In􏼐 􏼑􏽥Vk.

(16)

Under the condition of assumption 3, χ2 is negative and
small enough; that is, χ2≪ 0. So, IN ⊗A0 + χ2(H⊗ In) is
Hurwitz. We can get limt⟶∞􏽥η(t) � 0 and limt⟶∞􏽥ηi(t) � 0
through Lemma 1of[30]. %e proof is completed. □

3.2. Solution of Sylvester Equations. In this study, some
followers cannot get information from the leader’s matrix
A0. A0 is estimated by A0i, and the generalized Lyapunov
equation of the Sylvester equation is used to prove the
stability of MASs. %erefore, in this section, the Sylvester
equations in this paper are solved by the method in [30]. %e
Sylvester equations are as follows
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Xk IN ⊗A0( 􏼁 � 􏽢AXk + 􏽢Bk, (17)

0 � 􏽢CXk + 􏽢D, (18)

where Xk is solution to the above equation and 􏽢A, 􏽢Bk, 􏽢C, and
􏽢D are given in the simulation examples in Section 4.

Lemma 2. By Lemma 3in[30], we give a matrix P(t);
limt⟶∞(P(t) − p) � 0 can be obtained. For any ε> 0,

_X � − εPT
(t)P(t)X, (19)

has and only has a unique solution X(t). %ere are several X∗

that make pX∗ � 0 and limt⟶∞(X(t) − X∗) � 0.

Proof. %eorthogonal matrix M guarantees pM � (p0) and

M
T
p

T
pM �

p
T
p 0

0 0
⎛⎝ ⎞⎠, (20)

M
T
p

T
�

p

0
􏼠 􏼡. (21)

Let X∗ � M
X
∗
1

X
∗
2

􏼠 􏼡 and pX
∗
1 � 0. %en, the formula is

established as follows:

pX
∗

� pMM
T
X
∗

� (p0)
X
∗
1

X
∗
2

⎛⎝ ⎞⎠ � 0. (22)

Let X � MTX; it yields
_X � − M

TεPT
(t)P(t)X

� − εMT
p

T
pX + εMT

p
T
pX − εMT

P
T
(t)P(t)X

� − εMT
p

T
pX + εMT

p
T
p − P

T
(t)P(t)􏼐 􏼑X

� − εMT
p

T
pMX + f(t),

(23)

in which f(t) � εMT(pTp − PT(t)P(t))MX. Let

X �
X1
X2

􏼠 􏼡 and f(t) �
f1(t)

f2(t)
􏼠 􏼡. By Lemma 3 and Remark

2 in [30], limt⟶∞f(t) � 0 and limt⟶∞f1(t) � 0. %en,
from (18), we can get the following formula:

_X1

_X2

⎛⎝ ⎞⎠ � − ε
p

T
p 0

0 0
⎛⎝ ⎞⎠

X1

X2

⎛⎝ ⎞⎠ +
f1(t)

f2(t)
􏼠 􏼡, (24)

and it is concluded that
_X1 � − εpT

pX1 + f1(t),

_X2 � f2(t),
(25)

and there is X
∗
2 to make limt⟶∞(X2 − X

∗
2 ) � 0. Let

􏽥X2 � X1 − X
∗
1 ; derivative of 􏽥X2 is

_X1 � f1(t) − εpT
pX1

� f1(t) − εpT
pX
∗
1 − εpT

p 􏽥X1

� f1(t) − εpT
p 􏽥X1.

(26)

By Lemma 1in[30], limt⟶∞
􏽥X1 � 0 because X � MTX

has

limt⟶∞ X(t) − X
∗

( 􏼁 � limt⟶∞ MX − M
X
∗
1

X
∗
2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� limt⟶∞M
X1 − X

∗
1

X2 − X
∗
2

⎛⎝ ⎞⎠ � 0.

(27)

Proof is done.
Now, the feedback protocol is designed:

_ξi � Aiξi + Biui + 􏽘
N+Z

k�N+1
EikVk + Li Ciξi − yi( 􏼁

ui � K1iξi + ηi

, (28)

in which K1i is gain matrix. (1), (2), and (19) give us the
following formula:

_xi � Aixi + BiK1iξi + Biηi + 􏽘
N+Z

k�N+1
EikVk,

_ξi � Aiξi + BiK1iξi + Biηi + 􏽘
N+Z

k�N+1
EikVk + Li Ciξi − Cixi( 􏼁,

(29)

Let X �
x

ξ􏼠 􏼡 and Vk �
Vk

η􏼠 􏼡, where

x � col x1, x2, . . . , xN( 􏼁,

ξ � col ξ1, ξ2, . . . , ξN( 􏼁,

Vk � col Vk, Vk, . . . , Vk( 􏼁 ∈ R
Nn

,

η � col η1, η2, . . . , ηN( 􏼁.

(30)

So, (20) can be changed as

_X � 􏽢AX + 􏽘
N+Z

k�N+1

􏽢BkVk, (31)

where

􏽢A �

A BK1

− LC A + BK1 + LC

⎛⎝ ⎞⎠,

􏽢Bk �

Ek

1
Z

B

Ek

1
Z

B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(32)

and
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A � block diag A1, A2, . . . , AN􏼈 􏼉,

B � block diag B1, B2, . . . , BN􏼈 􏼉,

C � block diag C1, C2, . . . , BN􏼈 􏼉,

Ek � block diag E1k, E2k, . . . , E3k􏼈 􏼉,

K1 � block diag K11, K12, . . . , K1N􏼈 􏼉,

K2 � block diag K21, K22, . . . , K2N􏼈 􏼉.

(33)

%rough (13) and (14), where 􏽢D � (0 − IN ⊗ 1/ZF) and
􏽢C � (C 0). And then, we solve (13) and (14) through the
lemma derived from [30]. □

Lemma 3. Consider equation as

_Y � − εψT
(t)ψ(t)Y, (34)

where ε> 0 is large enough and ψ(t) � (I2N ⊗A0i(t))T ⊗
I2Nn 0
0 0􏼠 􏼡 − I2Nn ⊗

􏽢A 􏽢Bk
􏽢C 􏽢D

􏼠 􏼡. Let Ξ(t) � m2Nn
3Nn(Y) �

Xk(t)

I2Nn

􏼠 􏼡. %en, X∗k is the solution of (13) and (14):

lim
t⟶∞
Ξ(t) −

X
∗
k

I2Nn

􏼠 􏼡􏼠 􏼡 � 0, (35)

which goes to zero no slower than 􏽥A0I.

Proof. (13) and (14) can be written as follows:

I2Nn 0

0 0
􏼠 􏼡

Xk

I2Nn

􏼠 􏼡 I2N ⊗A0( 􏼁 −
􏽢A 􏽢Bk

􏽢C 􏽢D
⎛⎝ ⎞⎠

X
∗
k

I2Nn

􏼠 􏼡 � 0.

(36)

%en, we have

ψΘ � 0, (37)

in which

ψ � I2N ⊗A0( 􏼁
T ⊗

I2Nn 0

0 0
􏼠 􏼡 − I2Nn ⊗

􏽢A 􏽢Bk

􏽢C 􏽢D

⎛⎝ ⎞⎠

Θ �
X
∗
k

I2Nn

􏼠 􏼡

. (38)

limt⟶∞(ψ(t) − ψ) � 0 goes to zero no slower than 􏽥A0I.
Based on Lemma 2, limt⟶∞(Ξ(t) − Θ) � 0 can be obtained,
where there is a X∗k satisfying (21). %e proof is
completed. □

3.3. Collaborative Analysis. By the above lemma and proof,
we prove (4) and solve the problem of the bipartite con-

tainment control. In addition, X∗k �
X
∗
k11 X

∗
k12

X
∗
k21 X

∗
k22

􏼠 􏼡 is the

solution of equations (13) and (14), where
X∗k11, X∗k12, X∗k21, X∗k22 ∈ RNn×Nn.

Theorem 1. For (1) and (2), the MASs composed of the
follower and the leader are described, respectively. Under
assumption two, the existence of K1i and Li makes Ai + BiK1i

and Ai + LiCi are Hurwitz. %en, a matrix

T �
INn 0

− INn INn

􏼠 􏼡 controller (20) can be used to achieve the

bipartite containment and the distributed error (4) converges
to zero.

Proof. Let A � T􏽢AT− 1; we obtain

A �
Ai + BK1 BK1

0 A + LC
􏼠 􏼡. (39)

In assumption 2, we can see that A is Hurwitz. %en, we
know 􏽢A is Hurwitz. If 􏽥X � X − 􏽐

N+Z
k�N+1X

∗
k Vk is set, the

derivative of 􏽥X can be obtained:

_􏽥X � _X − 􏽘

N+Z

k�N+1
X
∗
k

_Vk � 􏽢AX + 􏽘

N+Z

k�N+1

􏽢BkVk − 􏽘

N+Z

k�N+1
X
∗
k

_Vk

_η
􏼠 􏼡

� 􏽢AX + 􏽘
N+Z

k�N+1

􏽢BkVk

− 􏽘
N+Z

k�N+1
X
∗
k

IN ⊗A0( 􏼁Vk

IN ⊗A0( 􏼁η
􏼠 􏼡 + 􏽘

N+Z

k�N+1
X
∗
k

0
G⊗ IN( 􏼁􏽥A0I

η􏼠 􏼡 + 􏽘
N+Z

k�N+1
X
∗
k

0
c1(1 − c)χ2 H⊗ IN( 􏼁

􏼠 􏼡􏽥η⎛⎝

� 􏽢AX + 􏽘
N+Z

k�N+1

􏽢BkVk − 􏽘
N+Z

k�N+1
X
∗
k I2N ⊗A0( 􏼁Vk

− 􏽘
N+Z

k�N+1
X
∗
k

0
G⊗ IN( 􏼁􏽥A0I

η􏼠 􏼡 + 􏽘
N+Z

k�N+1
X
∗
k

0
c1(1 − c)χ2 H⊗ IN( 􏼁

􏼠 􏼡􏽥η⎛⎝ ⎞⎠.

(40)

%en, formula (13) is used to rewrite (23) into the fol-
lowing form:
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_􏽥X � 􏽢AX − 􏽘

N+Z

k�N+1

􏽢AX
∗
k Vk − 􏽘

N+Z

k�N+1
X
∗
k

0

G⊗ IN( 􏼁􏽥A0Iη
􏼠 􏼡 + 􏽘

N+Z

k�N+1
X
∗
k

0

c1(1 − c)χ2 H⊗ IN( 􏼁
􏼠 􏼡􏽥η⎛⎝ ⎞⎠ � 􏽢A 􏽥X + Λ1􏽥η + Λ2, (41)

in which

Λ1 � − 􏽘
N+Z

k�N+1
X
∗
k

0

c1((1 − c))χ2 H⊗ IN( 􏼁
􏼠 􏼡,

Λ2 � − 􏽘
N+Z

k�N+1
X
∗
k

0

G⊗ IN( 􏼁􏽥A0Iη
􏼠 􏼡,

(42)

and limt⟶∞Λ2 � 0 exponentially at least as fast as
limt⟶∞

􏽥A0I � 0. %erefore, through Lemma 1in[30] and
Lemma 1 of this paper, we get limt⟶∞

􏽥X � 0. Now, consider
distributed error (4), which has the following form:

e � H⊗ IN( 􏼁Cx − H⊗ IN( 􏼁 IN ⊗F( 􏼁η

+ H⊗ IN( 􏼁 IN ⊗F( 􏼁η − 􏽘
N+Z

k�N+1
A0k ⊗F( 􏼁 􏽥Vk

� H⊗ In( 􏼁σ +(H⊗F)􏽥η,

(43)

where σ � Cx − (IN ⊗F)η, and σ has this

σ � Cx − IN ⊗F( 􏼁η

� (C 0)X + 􏽘
N+Z

k�N+1
0 − IN ⊗

1
Z

F􏼒 􏼓
Vk

η
⎛⎜⎝ ⎞⎟⎠

� 􏽢CX + 􏽘
N+Z

k�N+1

􏽢DVk

� 􏽢CX + 􏽘
N+Z

k�N+1

􏽢CXVk + 􏽘
N+Z

k�N+1

􏽢DVk.

(44)

%rough (14), we have

σ � 􏽢C 􏽥X. (45)

Because of limt⟶∞
􏽥X � 0, we can get limt⟶∞σ � 0.

Under Lemma 1, limt⟶∞􏽥η � 0. So, bipartite containment
error converges to zero, that is, limt⟶∞e � 0.

%e proof is completed. □

4. Numerical Simulations

In this section, a numerical example is used to illustrate the
effectiveness of the bipartite containment control. Figure 1
can be viewed as a topology of (1) and (2), showing the
communication relationship between six agents. Since the
symbolic graph is considered in this study, we select 5 and 6
as the leader and the other agents as the followers and then
divide 1 and 3, 2, and 4 into two different subgroups N1, N2,

including N1 ∪N2 � N and N1 ∩N2 � ∅. It can be con-
cluded from Figure 1 that the Laplace matrix L and matrix A

have the following forms:

A �

0 0 0 − 1

0 0 0 1

1 0 0 0

0 0 − 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L �

1 0 0 1

0 1 0 − 1

− 1 0 1 0

0 0 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(46)

In addition, A0k � diag |a1k|, |a2k|, . . . , |aNk|􏼈 􏼉 and H �

􏽐
N+Z
k�N+1(1/Z)L + A0k have the following forms:

A05 �

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A06 �

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (47)

H � L + A05 + A06 �

2 0 0 1
0 2 0 − 1

− 1 0 2 0
0 0 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (48)

Considering the follower and leader systems (1) and (2),
the correlation matrix is given as follows:

A0 �
1 − 2

1.5 − 1
􏼠 􏼡, F �

4 0

0 0
􏼠 􏼡,

Ai �
0 0.5 ∗ i

0 0
􏼠 􏼡, Bi �

0 1

0.5∗ i 0
􏼠 􏼡,

C1 �
8 − 10.5

2 − 7
􏼠 􏼡, C2 �

2 − 6

− 3 − 5.5
􏼠 􏼡

C3 �
1.5 − 8

− 3 − 3.8
􏼠 􏼡, C4 �

− 4 − 15

− 4 − 2
􏼠 􏼡,

Ei5 �
0 0

0 0.1
􏼠 􏼡, Ei6 �

0 0

0.0 50
􏼠 􏼡.

, (49)

Based on Section 3.3, it can be known thatAi + BiK1i and
Ai + LiCi are Hurwitz, and then, K1i and Li can be calculated
according to the above matrix. c1 � 3.6 is also given:
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K11 �
− 0.1604 − 1.1036

− 0.9871 − 0.3207
􏼠 􏼡,

K12 �
− 0.4142 − 1.2872

− 0.9102 − 0.4142
􏼠 􏼡,

K13 �
− 0.6074 − 1.4321

− 0.7944 − 0.4049
􏼠 􏼡,

K14 �
− 0.7310 − 1.5259

− 0.6824 − 0.3655
􏼠 􏼡,

L1 �
− 0.9321 0.5586

0.4413 0.8974
􏼠 􏼡,

L2 �
− 0.5706 0.8181

0.7434 0.6689
􏼠 􏼡,

L3 �
− 0.3307 0.9681

0.8798 0.4754
􏼠 􏼡,

L4 �
0.1999 0.8685

0.9989 − 0.0451
􏼠 􏼡.

(50)

Based on the above matrix, Figures 2–5 show the bi-
lateral output curve of the agent. %e red line represents
leader 5, the yellow line represents leader 6, and the
remaining colors are followers. Figures 2 and 5 show the first
row contained in the leader bilateral output with 5 and 6.
Specifically, y51 is the first line of y5 � FV5 and y61 is the first
line of y6 � FV6. y11 is the first line of y1 � C1x1, y21 is the
first line of y2 � C2x2, y31 is the first line of y3 � C3x3, and
y41 is the first line of y4 � C4x4. Similarly, Figures 3 and 4
show the output containing the second row, the second
component. To sum up, it can be observed that some fol-
lowers converge to the region bounded by leaders 5 and 6,
while the rest converge to the opposite region. Moreover,
follower information transmission takes into account the

1

1

1

-1

-1
4

3

5

2

6

Figure 1: Communication topology of 2 leaders and 4 followers.
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Figure 2: Output curves of leader 51 and 61 and follower 11 and 31.
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Figure 3: Output curves of leader 52 and 62 and follower 22 and 42.
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Figure 4: Output curves of leader 52 and 62 and follower 12 and 32.
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influence of quantification, which is more interesting and
challenging.

5. Conclusions

In this study, bipartite containment control is discussed. %e
matrix A0 of the external leader system is observed by using
an adaptive quantization observer, and the adaptive quan-
tization information observer is proved to be effective by the
eigenvalue analysis method without M-matrix. A controller
with only one gain matrix and an appropriate protocol for
the control evolution algorithm is designed. At the same
time, considering the influence of quantization on follower
information transmission, a quantizer is added. Finally, the
bipartite containment control is realized by using the
feedback method.

In the future, we will further study the bipartite con-
tainment control with adaptive quantization information
distributed observer under switched topology or in finite
time.
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