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*is study proposes an exotic option that extends the classical European option by requiring option holders to continuously trade
in underlying assets according to a predesignated trading strategy with a general logarithmic position.*e pricing formula for the
exotic option with a general logarithmic strategy is derived from the Black–Scholes option pricing formula, and its price advantage
is compared (based on simulations) to the classical European option and to the exotic option with a linear position. By varying key
parameters, we found that the exotic option with a general logarithmic position has a significant price advantage (up to 34% under
certain parameter settings) over the classical European option. Moreover, the exotic option with a general logarithmic strategy can
save 5.5% more of the option premium than applying a linear position strategy. Our simulation results indicate that the price
advantage of this proactive hedging option with a general logarithmic strategy depends heavily on the initial amount of capital; in
particular, this exotic option is more suitable for traders with limited initial amounts of capital.

1. Introduction

Options comprise a diverse group of indispensable trading
products in the financial market, which make them effective
tools for hedging risks. *e options currently being traded
includemore than the standardized European and American
options; in fact, a vast number of exotic options (e.g., barrier
options, Asian options, lookback options, step options,
rainbow options, binary options, and basket options, among
others) are being changed, combined, and derived from the
standard options [1–12]. *ese exotic options provide
traders with more choices for outlining their trading
portfolio strategies. In particular, they have the opportunity
to finely match the nuances of traders’ market expectations
and to satisfy their risk-return needs under various market
conditions.

In contrast to other financial instruments, the price of an
option is not the value of the underlying asset, but rather, it is
based on the hedging cost. In particular, the cheaper the
option, the more favorable its price discovery. In addition, a
portfolio strategy with cheaper options is easier to execute
because the option price determines the break-even

threshold. However, few studies have evaluated the price
advantages of various options. *erefore, one of the main
aims of this report is to propose an exotic option that can
satisfy traders’ needs for a cheaper price.

*e pricing of options depends on the risk exposure of
their underlying assets. *e greater the risk exposure of the
underlying asset, the more expensive the option. On this
basis, Wang et al. proposed an exotic option that requires
option holders to buy-in (or sell out) the underlying asset
(stock) and allows them to adjust the holdings of the un-
derlying asset according to its price changes within an option
period [13–15]; this option was later named the proactive
hedging European option by Li et al. [16]. For a given call
option, the option buyer initially holds a certain amount of
capital (A).When the price of the underlying assets exceeds a
designated threshold (usually the exercise price), the option
contract requires the option holder to continuously buy the
underlying asset following the preagreed dynamic invest-
ment strategy. If the option is exercised, the seller of the call
option only needs to bear the expected loss corresponding to
the difference between the purchase price and the exercise
price.*erefore, the pricing of this exotic option depends on
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the amount of residual exposure of the aforementioned
dynamic position strategy. Simulations have indicated that
the price of a proactive hedging European option is sig-
nificantly lower than that of the analogous classical option.
However, Wang et al. assumed that the dynamic position
strategy was a continuous linear function, and this as-
sumption is not perfect. For example, the trading behavior of
traders is discontinuous, and therefore, it does not always
satisfy the assumed continuous function. Li et al. improved
the continuous linear function to establish a discrete linear
dynamic position strategy [17], although a nonlinear dy-
namic position strategy might be more suitable for obtaining
cheaper options. In an extreme case, if a buyer is purchasing
the underlying asset with all of the capital at one time at the
exercise price, then the risk exposure of the underlying asset
would be completely covered, and the theoretical price of the
option will be zero. It is, therefore, clear that for European
call options, the greater the proportion of purchasing that
occurs near the threshold (i.e., the exercise price), the greater
amount of exposure that is covered. *erefore, a nonlinear
dynamic position strategy should be considered.

*is study improves the linear position strategy by de-
veloping a nonlinear function and subjectively setting it as a
general logarithmic function. *e theoretical price of the
option is derived, and its price advantage is evaluated. *e
remainder of this report is organized as follows. Section 2
describes the exotic option with a general logarithmic po-
sition strategy in detail and derives its value function;
Section 3 obtains the theoretical price; Section 4 discusses
two special cases of the exotic option; and Section 5 com-
pares the theoretical prices of the exotic options with those
of the classical European options based on simulations. Since
the derivation processes are very similar for call and put
options, we only present the results for call options herein.

2. Proactive Hedging European Option with a
General Logarithmic Position Strategy

2.1. Assumptions for the Proactive Hedging European Option.
*e proactive hedging European option is proposed based
on the following assumptions:

(1) A call option holder should hold initial capital in the
amount of A � Q × Xe at the beginning of the option
period for each part of the option contract, where Q

is the underlying asset amount of one part of the
option contract, and Xe is the exercise price.

(2) Option holders adjust the underlying asset holdings
according to the price changes, which are subject to
the general logarithmic position constraints of the
option contract. *e detailed dynamic position
strategy will be introduced in Section 2.2.

(3) *e price of the underlying asset follows geometric
Brownian motion (GBM).

(4) *ere are no other cash flows for the underlying
assets during the option contract period. For ex-
ample, stocks do not pay dividends.

(5) *ere are no transaction costs for buying or selling
the underlying assets.

(6) *e risk-free interest rate is constant over time.

2.2. General Logarithmic Position Strategy. When the un-
derlying asset price reaches Xe + δ (where δ ≥ 0), the general
logarithmic position strategy is activated. *en, the option
holder spends β0 · A to buy the underlying asset, where
β00≤ β0 ≤ 1 is the “initial capital utilization coefficient,”
which denotes the proportion of capital spent.

As the underlying asset price rises, the option holder will
continuously increase their capital utilization, i.e., by buying
the underlying asset in accordance with the general loga-
rithmic function, β0 · A, where β0≤ β0 ≤ β≤ 1 is the “highest
capital utilization coefficient.” At this time, the underlying
asset price reaches (1 + α)(Xe + δ), where α is the “in-
vestment strategy index,” which is a positive number. *e
greater the value of α, the larger the price range where
traders can buy the underlying asset. *e value of α is set
within the range [0.5, 1] to encompass the various risk
preferences of traders. Figure 1 illustrates the described
process.

*e capital utilization coefficient function associated
with this process, B(S), can be expressed as follows:

B(S) �

0, S<Xe + δ,

β0 +
β − β0

ln(1 + α)
ln

S

Xe + δ
􏼠 􏼡, Xe + δ ≤ S<(1 + α) Xe + δ( 􏼁,

β, (1 + α) Xe + δ( 􏼁≤ S.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

2.3. 1e Value Function for a Proactive Hedging European
Option with a General Logarithmic Position Strategy. For the
classical European option without a proactive hedging
strategy, the option holder would suffer an expected loss, L,
according to equation (2), for each part of the option

contract as the underlying asset prices rise from Xe to S0, for
S0 >Xe.

Lb S0( 􏼁 � Q S0 − Xe( 􏼁 �
A

Xe

S0 − Xe( 􏼁. (2)
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In an exotic option with a proactive hedging strategy, the
option holder is required to actively buy-in the underlying
assets to hedge the risks. If we assume that the option holder
trades using the general logarithmic position strategy de-
scribed in Section 2.2 and buys the underlying asset of the
contract piece A · β0/Xe + δ when the underlying asset price

S reaches Xe + δ, then, when the underlying asset price S
changes to S+∆S, the option holder increases their capital by
Δq to buy shares, where Δq � ΔBΔA � AΔB′(S)ΔΔS. Fur-
thermore, when the underlying asset price S rises from Xe +

δ to S0, the expected return obtained by the option holder is
given by

R S0( 􏼁 �

0, S(t)<Xe + δ,

􏽚
S0

Xe+δ

A · B′(S)

S
S0 − S( 􏼁dS +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁, Xe + δ ≤ S0 <(1 + α) Xe + δ( 􏼁,

􏽚
(1+α) Xe+δ( )

Xe+δ

A · B′(S)

S
S0 − S( 􏼁dS +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁, S0 ≥ (1 + α) Xe + δ( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Substituting equation (1) into equation (3) gives

R S0( 􏼁 �

0, S(t)<Xe + δ,

A β − β0( 􏼁

ln(1 + α)

S0

Xe + δ
− ln

S0

Xe + δ
􏼠 􏼡 − 1􏼢 􏼣 +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁, Xe + δ ≤ S0 <(1 + α) Xe + δ( 􏼁,

A · α · β − β0( 􏼁 · S0

Xe + δ( 􏼁(1 + α)ln((1 + α))
− A · β − β0( 􏼁 +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁, S0 ≥ (1 + α) Xe + δ( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

If the expected loss born by the option seller is defined by

L S0( 􏼁 � Lb S0( 􏼁 − R S0( 􏼁, (5)

then
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Figure 1: Graphical illustration of the general logarithmic position strategy.
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L S0( 􏼁 �

A

Xe

S0 − Xe( 􏼁， S0 <Xe + δ,

A

Xe

S0 − Xe( 􏼁 −
A · β − β0( 􏼁

ln(1 + α)

S0

Xe + δ
− ln

S0

Xe + δ
􏼠 􏼡 − 1􏼢 􏼣 +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁􏼨 􏼩， Xe + δ ≤ S0 <(1 + α) Xe + δ( 􏼁,

A

Xe

S0 − Xe( 􏼁 −
A · α · β − β0( 􏼁 · S0

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)
− A β − β0( 􏼁 +

A · β0
Xe + δ

S0 − Xe − δ( 􏼁􏼢 􏼣， S0 ≥ (1 + α) Xe + δ( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

*us, the option contract value VT(S(t), t) corre-
sponding to a unit of the underlying asset is given by

VT(S(t), t) �
L(S(t))

A/Xe( 􏼁
�

VT1(S(t), t), S(t)<Xe,

VT2(S(t), t), Xe ≤ S(t)<Xe + δ,

VT3(S(t), t), Xe + δ ≤ S(t)<(1 + α) Xe + δ( 􏼁,

VT4(S(t), t), S(t)≥ (1 + α) Xe + δ( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where

VT1(S(t), t) � 0,

VT2(S(t), t) � S(t) − Xe,

VT3(S(t), t) � S(t) − Xe( 􏼁 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α)

S(t)

Xe + δ
− ln

S(t)

Xe + δ
􏼠 􏼡􏼢 􏼣 +

β − β0( 􏼁 · Xe

ln(1 + α)
+
β0 · Xe · δ

Xe + δ
,

VT4(S(t), t) � S(t) − Xe( 􏼁 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

α · β − β0( 􏼁 · Xe · S(t)

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)
+ Xe · β − β0( 􏼁 +

β0 · Xe · δ
Xe + δ

.

(8)

Corollary 1. 1e proactive hedging European option with a
general logarithmic position strategy will cover more risk
exposure of the underlying assets than the same option with a
general linear position strategy.

Proof. To simplify the proof process, the dynamic position
strategy was reduced to the case where δ � 0 and β0 � 0.

*en, the capital utilization coefficient function of the
general logarithmic position strategy and the linear position
strategy is denoted as BLG(S) and BLN(S), which is expressed
by equations (9) and (10), respectively, and depicted in
Figure 2:

BLG(S) �

0, S(t)<Xe,

β
ln(1 + α)

ln
S(t)

Xe

􏼠 􏼡, Xe ≤ S(t)<Xe(1 + α),

β, Xe(1 + α)≤ S(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

BLN(S) �

0, S(t)<Xe,

β
α · Xe

S(t) − Xe( 􏼁, Xe ≤ S(t)<Xe(1 + α),

β, Xe(1 + α)≤ S(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)
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In the same way, the expected returns of the general
logarithmic and linear position strategies can be obtained
based on RLG(S(t)) and RLN(S(t)), respectively, where
RLG(S(t)) (equation (11)) is derived from the special case

where δ � 0 and β0 � 0 equation (3), andRLG(S(t)) equation
(12) is derived from the special case where δ � 0 and β0 � 0,
as in the study conducted by Wang et al. [13].

RLG(S(t)) �

0， S(t)<Xe,

A · β
ln(1 + α)

S(t)

Xe

− ln
S(t)

Xe

􏼠 􏼡 − 1􏼢 􏼣， Xe ≤ S(t)<(1 + α)Xe,

A · β
α · S(t)

Xe(1 + α)ln(1 + α)
− 1􏼢 􏼣， S(t)≥ (1 + α)Xe,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

RLN(S(t)) �

0, S(t)<Xe,

A · β
S(t)

α · Xe

ln
S(t)

Xe

􏼠 􏼡 −
S(t) − Xe

α · Xe

􏼢 􏼣, Xe ≤ S(t)<(1 + α)Xe,

A · β
S(t)

α · Xe

ln(1 + α) − 1􏼢 􏼣, S(t)≥ (1 + α)Xe.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

To verify that RLG(S(t))≥RLN(S(t)) when
S(t)≥ (1 + α)Xe, the following inequality should be satisfied:

α2 − (1 + α)ln2(1 + α)≥ 0, (13)

where α ∈ [0.5, 1] (according to the aforementioned defi-
nition of the general logarithmic position strategy) is always
true. *e inequality in equation (13) is proved as follows.

Set x � 1 + α, then x ∈ [3/2, 2], and inequality (13) can
be rewritten as (x − 1)2 − x ln2 x> 0. Set f(x) � (x − 1)2

− x ln2 x, then f′(x) � 2x − 2 − 2 ln x − ln2 x, and
f″(x) � 2x − 2 − 2 ln x/x.

It is known that under the condition x ∈ [3/2, 2], we can
define x − 1> ln x, and f″(x)> 0 holds on [3/2, 2], while
f′(x) is a monotonically increasing function.

*erefore,

fmax′(x) � f′(2) � 3 − (ln 2 + 1)
2 > 0,

fmin′(x) � f′
3
2

􏼒 􏼓 � 2 − ln
3
2

+ 1􏼒 􏼓
2
> 0.

(14)

and f′(x)> 0 is always true on [3/2, 2], while f(x)> 0
monotonically increases on [3/2, 2].

As a result,

fmin(x) � f
3
2

􏼒 􏼓 �
1
4

−
3
2
ln2

3
2
> 0, (15)

is sufficient.
When Xe ≤ S(t)< (1 + α)Xe, a similar procedure can be

applied; therefore, a detailed verification process is omitted
here. □
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Figure 2: Capital utilization coefficients of the logarithmic strategy vs. the linear strategy.
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3. Proactive Hedging Option Pricing Formula
Based on GBM

3.1. Asset Price Behavior Based onGBM. Let S(t) be the asset
price at the time t. If S(t) follows GBM, then it satisfies the
following equation:

dS(t)

S(t)
� μdt + σdBt, (16)

where S(0), the draft μ, and the volatility σ of the asset price
are all positive constants for t≥ 0.

By applying the fractional Wick–Itô formula, Hu and
Øksendal [18] proved that equation (16) can be rewritten as
follows:

S(t) � S(0)exp σB(t) + μt −
1
2
σ2t􏼒 􏼓. (17)

Assuming risk-neutral conditions, i.e., μ � r, then, for
any two time points t1 andt2 where 0≤ t1 ≤ t2 ≤T, the re-
lationship between S(t1) and S(t2) can be obtained from
equation (17) such that

S t2( 􏼁 � S t1( 􏼁exp r t2 − t1( 􏼁 −
1
2
σ2 t2 − t1( 􏼁 + σ B t2( 􏼁 − B t1( 􏼁( 􏼁􏼔 􏼕.

(18)

3.2. European Option Pricing Formula. Black and Scholes
(1973) derived the famous B-S partial differential function
for determining the theoretical price of a classical European
option by applying Ito’s Lemma, as follows:

zV

zt
+ rS

zV

zS
+
1
2
σ2S2

z
2
V

zS
2 � rf,

V(S, T) � f(S, T),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

where f is the option price, t is the time, r is the risk-free
return rate, σ is the volatility of the stock return, and S is the
stock price.

Theorem 1 (also Theorem 1 in ref. [19]). Let f be a
function, such that E(f(Bt))<∞. 1en, for every 0≤ t≤T,

􏽢E f Bt( 􏼁( 􏼁 � 􏽚
+∞

− ∞

1
��������
2π(T − t)

􏽰 exp −
x − Bt( 􏼁

2

2(T − t)
􏼠 􏼡 · f(x)dx.

(20)

Proposition 1. 1e analytical solution to the B-S formula
(19) under GBM is given by.

V(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
+∞

− ∞
f S(t)e

σ
���
T− t

√
·Z+(T− t) r− σ2/2( )􏼒 􏼓 · e

− Z2/2( )dZ. (21)

where T is the option period, and f(·) is the intrinsic value
function of the option. 1e intrinsic value of an option is the
value of the option at a maturity date. t � T.

Proof. According to the Feynman–Kac formula, we can
define the function as follows:

V(S, t) � E
S

e
− 􏽚

T

t
rdt

f(S(T))
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

*en, the V(S, T) satisfies the following partial differ-
ential equation:

zV

zt
+ rS

zV

zS
+
1
2
σ2S2

z
2
V

zS
2 � rf, (23)

with the terminal condition:

V(S, T) � f(S(T)) � max(S(T) − K, 0). (24)

To obtain the analytical solution of the option pricing
formula in equation (22) under the GBM assumption, we
apply *eorem 1 and combine equations (18) and (22), such
that

V(S, t) � e
− r(T− t)

E
S
[f(S(T))]

� e
− r(T− t) 􏽢E f S · exp r(T − t) −

1
2
σ2(T − t) + σ BT − Bt( 􏼁􏼔 􏼓􏼒 􏼕􏼔

�
e

− r(T− t)

��������
2π(T − t)

􏽰 􏽚
+∞

− ∞
exp −

x − Bt( 􏼁
2

2(T − t)
􏼠 􏼡f S · exp r(T − t) −

1
2
σ2(T − t) + σ x − Bt( 􏼁􏼔 􏼕􏼒 􏼓dx.

(25)

By setting Z � (x − Bt)/
������
(T − t)

􏽰
, we can obtain the

integral equation (20), and the proof is complete. □
3.3. Pricing Formula of a ProactiveHedgingCall Optionwith a
General Logarithmic Position. *e function in equation (7)
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is a stepwise function, and therefore, the pricing formula
VC(S(t), t) includes four components, as follows:

VC(S(t), t) � V1(S(t), t) + V2(S(t), t)

+ V3(S(t), t) + V4(S(t), t),
(26)

where

V1(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
S<Xe

VT1 S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( ), t􏼒 􏼓e

− Z2/2( )dZ,

V2(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
Xe ≤ S<Xe+δ

VT2 S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( ), t􏼒 􏼓e

− Z2/2( )dZ,

V3(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
Xe+δ ≤ S<(1+α) Xe+δ( )

VT3 S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( ), t􏼒 􏼓e

− Z2/2( )dZ,

V4(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
S≥(1+α) Xe+δ( )

VT4 S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( ), t􏼒 􏼓e

− Z2/2( )dZ.

(27)

*erefore, V1(S(t), t) � 0.
For simplicity of identification, let

U � S · eσ
���
T− t

√
·Z+(T− t)(r− (σ2/2)).

When Xe ≤U<Xe + δ, then

lnXe/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ≤Z<
lnXe + δ/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ . (28)

When Xe + δ ≤U< (1 + α)(Xe + δ), then

lnXe + δ/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ≤Z<
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ . (29)

When U≥ (1 + α)(Xe + δ), then

Z≥
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ . (30)

To simplify these expressions, let
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d1 �
lnXe/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d2 �
lnXe + δ/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d3 �
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d4 � d1 − σ
�����
T − t

√
�
lnXe/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d5 � d2 − σ
�����
T − t

√
�
lnXe + δ/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d6 � d3 − σ
�����
T − t

√
�
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ .

(31)

*en,

V2(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
Xe ≤ S<Xe+δ

S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( ) − Xe􏼒 􏼓e

− Z2/2( )dZ

�
e

− r(T− t)

���
2π

√ 􏽚
d2

d1

S(t) · e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( )􏼒 􏼓 · e

− Z2/2( )dZ −
Xe · e

− r(T− t)

���
2π

√ 􏽚
d2

d1

e
− Z2/2( )dZ

�
S(t)

���
2π

√ 􏽚
d2

d1

e
σ

���
T− t

√
·Z+(T− t) r− σ2/2( )( )− r(T− t)− Z2/2( )dZ −

Xe · e
− r(T− t)

���
2π

√ 􏽚
d2

d1

e
− Z2/2( )dZ

�
S(t)

���
2π

√ 􏽚
d2

d1

e
− (1/2) Z2− 2σ

���
T− t

√
·Z+σ2(T− t)( )dZ −

Xe · e
− r(T− t)

���
2π

√ 􏽚
d2

d1

e
− Z2/2( )dZ

�
S(t)

���
2π

√ 􏽚
d2

d1

e
− (1/2)(Z− σ

���
T− t

√
)2dZ −

Xe · e
− r(T− t)

���
2π

√ 􏽚
d2

d1

e
− Z2/2( )dZ

�
S(t)

���
2π

√ 􏽚
d5

d4

e
− (1/2)(Z− σ

���
T− t

√
)2

d(Z − σ
�����
T − t

√
) − Xe · e

− r(T− t)
N d2( 􏼁 − N d1( 􏼁( 􏼁

� S(t) · N d5( 􏼁 − N d4( 􏼁( 􏼁 − Xe · e
− r(T− t)

N d2( 􏼁 − N d1( 􏼁( 􏼁.

(32)

*e expression of VT3(·) must be simplified for the sake
of feasibility; therefore, let

Σ � σ
�����
T − t

√
· Z +(T − t) r −

σ2

2
􏼠 􏼡. (33)

*en,
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VT3(·) � S(t) · e
Σ

− Xe􏼐 􏼑 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α)

S(t) · e
Σ

Xe + δ
− ln

S(t) · e
Σ

Xe + δ
􏼠 􏼡􏼢 􏼣 +

β − β0( 􏼁 · Xe

ln(1 + α)
+
β0 · Xe · δ

Xe + δ

� 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α) · Xe + δ( 􏼁
􏼢 􏼣 · S(t) · e

Σ
+

β − β0( 􏼁 · Xe

ln(1 + α)
σ

�����
T − t

√
· Z

+
β − β0( 􏼁 · Xe

ln(1 + α)
ln S(t) +(T − t) r −

σ2

2
􏼠 􏼡􏼢 􏼣

− Xe 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α)
ln Xe + δ( 􏼁 +

β − β0( 􏼁 · Xe

ln(1 + α)
+
β0 · Xe · δ

Xe + δ

� 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α) · Xe + δ( 􏼁
􏼢 􏼣 · S(t) · e

Σ
+

β − β0( 􏼁 · Xe

ln(1 + α)
σ

�����
T − t

√
· Z

+
β0 · Xe · δ + Xe( 􏼁

Xe + δ
− Xe +

β − β0( 􏼁 · Xe

ln(1 + α)
1 + ln S(t) +(T − t) r −

σ2

2
􏼠 􏼡 − ln Xe + δ( 􏼁􏼢 􏼣

� 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

β − β0( 􏼁 · Xe

ln(1 + α) · Xe + δ( 􏼁
􏼢 􏼣 · S(t) · e

Σ
+

β − β0( 􏼁 · Xe

ln(1 + α)
σ

�����
T − t

√
· Z

+ β0 − 1( 􏼁 · Xe +
β − β0( 􏼁 · Xe

ln(1 + α)
1 + ln

S(t)

Xe + δ
􏼠 􏼡 +(T − t) r −

σ2

2
􏼠 􏼡􏼢 􏼣.

(34)

If

M � S(t) · 1 −
β0 · Xe

Xe + δ
−

β − β0( 􏼁 · Xe

Xe + δ( 􏼁 · ln(1 + α)
􏼢 􏼣

H �
β − β0( 􏼁 · Xe

ln(1 + α)
· σ

�����
T − t

√

I � β0 − 1( 􏼁 · Xe +
β − β0( 􏼁 · Xe

ln(1 + α)
1 +(T − t) r −

σ2

2
􏼠 􏼡 + ln

S(t)

Xe + δ
􏼠 􏼡􏼢 􏼣,

(35)

then VT3(·) can be further simplified into

VT3(·) � M · e
Σ

+ H · Z + I. (36)

*erefore,

V3(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
Xe+δ ≤ S(t)<(1+α) Xe+δ( )

M · e
Σ

+ H · Z + I􏼐 􏼑 · e
− Z2/2( )dZ

�
e

− r(T− t)

���
2π

√ 􏽚
d3

d2

M · e
Σ

· e
− Z2/2( )dZ +

e
− r(T− t)

���
2π

√ 􏽚
d3

d2

H · Z · e
− Z2/2( )dZ +

e
− r(T− t)

���
2π

√ 􏽚
d3

d2

I · e
− Z2/2( )dZ

�
M
���
2π

√ 􏽚
d3

d2

e
− 1/2(Z−

���
T− t

√
)2dZ −

e
− r(T− t)

· H
���
2π

√ e
− d2

3/2( ) − e
− d2

2/2( )􏼒 􏼓 + e
− r(T− t)

· I · N d3( 􏼁 − N d2( 􏼁( 􏼁
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� M · N d6( 􏼁 − N d5( 􏼁( 􏼁 −
e

− r(T− t)
· H

���
2π

√ e
− d2

3/2( ) − e
− d2

2/2( )􏼒 􏼓 + e
− r(T− t)

· I · N d3( 􏼁 − N d2( 􏼁( 􏼁

VT4(·) � S(t) · e
Σ

− Xe􏼐 􏼑 1 −
β0 · Xe

Xe + δ
􏼠 􏼡 −

α · β − β0( 􏼁 · Xe · S(t) · e
Σ

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)
+ Xe · β − β0( 􏼁 +

β0 · Xe · δ
Xe + δ

� 1 −
β0 · Xe

Xe + δ
−

α · β − β0( 􏼁 · Xe

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)
􏼠 􏼡 · S(t) · e

Σ
− (1 − β) · Xe.

(37)

If

Q � 1 −
β0 · Xe

Xe + δ
−

α · β − β0( 􏼁 · Xe

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)

G � (1 − β) · Xe,

(38)

then VT4(·) can be further simplified into

VT4(·) � Q · S(t) · e
Σ

− G. (39)

*erefore,

V4(S(t), t) �
e

− r(T− t)

���
2π

√ 􏽚
+∞

S(t)≥ (1+α) Xe+δ( )
Q · S(t) · e

Σ
− G􏼐 􏼑 · e

− Z2/2( ) · dZ

�
e

− r(T− t)

���
2π

√ 􏽚
+∞

d3

Q · S(t) · e
Σ

􏼐 􏼑 · e
− Z2/2( ) · dZ −

e
− r(T− t)

���
2π

√ 􏽚
+∞

d3

G · e
− Z2/2( ) · dZ

�
Q · S(t)

���
2π

√ 􏽚
+∞

d3− σ
���
T− t

√ e
− (Z− σ

���
T− t

√
)2/2( ) · d(Z − σ

�����
T − t

√
) −

G · e
− r(T− t)

���
2π

√ 􏽚
+∞

d3

e
− Z2/2( ) · dZ

� Q · S(t) · 1 − N d6( 􏼁( 􏼁 − G · e
− r(T− t) 1 − N d3( 􏼁( 􏼁.

(40)

Consequently, the final pricing formula for the proactive
hedging call option is

V S(t), t, α, β0, β, δ( 􏼁 � VC(S(t), t)

� V1(S(t), t) + V2(S(t), t) + V3(S(t), t) + V4(S(t), t)

� S(t) · N d5( 􏼁 − N d4( 􏼁( 􏼁 − Xe · e
− r(T− t)

N d2( 􏼁 − N d1( 􏼁( 􏼁 + M · N d6( 􏼁 − N d5( 􏼁( 􏼁

−
e

− r(T− t)
· H

���
2π

√ e
− d2

3/2( ) − e
− d2

2/2( )􏼒 􏼓 + e
− r(T− t)

· I · N d3( 􏼁 − N d2( 􏼁( 􏼁 + Q · S(t) · 1 − N d6( 􏼁( 􏼁

− G · e
− r(T− t) 1 − N d3( 􏼁( 􏼁,

(41)

where
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d1 �
lnXe/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d2 �
lnXe + δ/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d3 �
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r − σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d4 � d1 − σ
�����
T − t

√
�
lnXe/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d5 � d2 − σ
�����
T − t

√
�
lnXe + δ/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

d6 � d3 − σ
�����
T − t

√
�
ln(1 + α) Xe + δ( 􏼁/S − (T − t) r + σ2/2􏼐 􏼑

σ
�����
T − t

√ ,

M � S(t) · 1 −
β0 · Xe

Xe + δ
−

β − β0( 􏼁 · Xe

Xe + δ( 􏼁 · ln(1 + α)
􏼢 􏼣,

H �
β − β0( 􏼁 · Xe

ln(1 + α)
· σ

�����
T − t

√
,

I � β0 − 1( 􏼁 · Xe +
β − β0( 􏼁 · Xe

ln(1 + α)
1 +(T − t) r −

σ2

2
􏼠 􏼡 + ln

S(t)

Xe + δ
􏼠 􏼡􏼢 􏼣,

Q � 1 −
β0 · Xe

Xe + δ
−

α · β − β0( 􏼁 · Xe

Xe + δ( 􏼁 · (1 + α) · ln(1 + α)
,

G � (1 − β) · Xe.

(42)

At this point, the pricing formula for a proactive hedging
call option with a linear position strategy is obtained.

4. Pricing Formula Discussion for Selected
Special Cases

*is section presents and discusses several special cases
involving exotic options. *e pricing formula in equation
(41) has two sets of parameters. *e first set includes
β, β0, δ, and α, which describe the general logarithmic po-
sition strategy.*e second set includes r, T, σ, and Xe, which
are the basic parameters for the pricing of a classical

European option. Herein, we focus on two special cases
based on the first set of parameters:

Special Case 1: when β � β0 � 0, δ � 0, and α> 0, this
means that the option holder does not trade the un-
derlying asset during the entire holding period. *e-
oretically, this exotic option pricing should be
consistent with the classical European option pricing.
Under this condition, we can define the following:
M � S(t), H � 0, I � − Xe, Q � 1, G � Xe

*en,

V(S(t), t, α, 0, 0, 0) � VC(S(t), t)

� V1(S(t), t) + V2(S(t), t) + V3(S(t), t) + V4(S(t), t)

� S(t) N d5( 􏼁 − N d4( 􏼁( 􏼁 − Xe · e
− r(T− t)

N d2( 􏼁 − N d1( 􏼁( 􏼁 + S(t) · N d6( 􏼁 − N d5( 􏼁( 􏼁

− Xe · e
− r(T− t)

· N d3( 􏼁 − N d2( 􏼁( 􏼁 + S(t) · 1 − N d6( 􏼁( 􏼁 − Xe · e
− r(T− t) 1 − N d3( 􏼁( 􏼁

� S(t) N d5( 􏼁 − N d4( 􏼁 + N d6( 􏼁 − N d5( 􏼁 + 1 − N d6( 􏼁( 􏼁

− Xe · e
− r(T− t)

N d2( 􏼁 − N d1( 􏼁 + N d3( 􏼁 − N d2( 􏼁 + 1 − N d3( 􏼁( 􏼁

� S(t) N − d4( 􏼁( 􏼁 − Xe · e
− r(T− t)

N − d1( 􏼁( 􏼁.

(43)
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It is clear that equation (43) is consistent with the
results obtained using the Black–Scholes formula.
Special Case 2: when β � β0 � 1, δ � 0, α � ε, and ε> 0
(where ε is a very small number), this means that
traders use all of their money to buy underlying assets
when the underlying asset price is above but very close
to Xe. *en, theoretically, this position strategy almost
completely covers the risk exposure of the underlying
asset, which means that the value of this exotic option is
close to 0.
Under this condition, we can define the following:M � 0,
H � 0, I � 0, Q � 0, G � 0, d0 � d1 � d2, d � d3 � d4

*en,

V(S(t), t, α, 1, 1, 0) � VC(S(t), t)

� S(t) · N d5( 􏼁 − N d4( 􏼁( 􏼁

− Xe · e
− r(T− t)

N d2( 􏼁 − N d1( 􏼁( 􏼁

� S(t) N d5( 􏼁 − N d4( 􏼁 + N d6( 􏼁(

− N d5( 􏼁 + 1 − N d6( 􏼁􏼁

� 0.

(44)

5. Comparing Theoretical Prices of Proactive
Hedging Call Options with General
Logarithmic vs. General Linear
Position Strategies

To verify that the exotic option proposed in this study has a
price advantage, a simulation method was applied to
compare the difference in the theoretical price of the
European option with a general logarithmic position
strategy, the European option with a linear strategy, and the
classical European option. *e pricing formula for the
European option with the linear position strategy was
described in a report by Wang et al. [15]. To facilitate this
comparison, the parameter symbols used in this study are
consistent with those used by Wang et al. [15] and in the
classical Black–Scholes pricing formula. *e calculation
parameters used in this study are shown in Table 1. For
simplicity, we assume t � 0 across all calculations in this
section.

*e dynamic position strategy parameters and the basic
parameters for the classic European option in Table 1 were
used to generate several potential parameter combinations.
*en, the corresponding pricing formulas were used to cal-
culate the theoretical prices of the European option with a
general logarithmic position strategy, the European option
with a linear position strategy, and the classical European
option. *e theoretical prices of these calculated options are
listed in Table 2. To intuitively observe the price advantages of
the exotic options proposed in this study, Table 2 includes the
price ratios, which are defined by the following relationship:

ratio �
Pexotic option

Pclassical option
. (45)

*e results in Table 2 have several important indications:

(1) *e theoretical prices of the proactive hedging Eu-
ropean option are cheaper than those of the anal-
ogous classical European option under all tested
parameter combinations. Moreover, the greater the
market volatility is (i.e., the greater the value of σ ),
the greater the price advantage of the exotic option is.
As shown in Table 2, when the market volatility is
σ � 30%, the price of the proactive hedging Euro-
pean option with a general logarithmic position
strategy (i.e., α � 0.5, β � 1, β0 � 0.5, δ � 0) is only
34% of the price of the classical European option.

(2) *e theoretical price of the proactive hedging Eu-
ropean option with a general logarithmic position
strategy is lower than that with a general linear
position strategy. *is result indicates that the
general logarithmic position strategy would likely be
more attractive to hedgers. *is price advantage is
especially pronounced when δ � 0. In this case, when
the market volatility is σ � 30% and the other
strategy parameters are α � 0.5, β � 1, and β0 � 0.5,
the European option with a general logarithmic
position strategy can save 5.5% more of the option
premium than the linear position strategy. *is
means that the price advantage of the European
option with the general logarithmic position strategy
mainly depends on δ.

(3) Each of the four strategy parameters (α, β, β0, and δ)
has a remarkable impact on the price advantage. *e
results in Table 2 show that when other variables are
the same, the smaller the values of α and δ (where
0.5≤ α≤ 1), or the larger the values of β and β0
(0≤ β0 ≤ β≤ 1), and the greater the price advantage
of the European option with the general logarithmic
position strategy. *is implies that the price ad-
vantage of these exotic options substantially depends
on the amount of capital that is used to execute the
dynamic position strategy.

To evaluate the effects of changes in the strategy pa-
rameters (α, δ, β0, and β) on the theoretical price of options,
the observed parameters were set as continuous variables,
and all other strategy parameters were set as fixed values.
According to the conclusions described above, the smaller

Table 1: Calculation parameters.

Symbol Values
T 0
α 50%, 70%, 100%
β 60%, 100%
β0 30%, 50%
δ $0, $7, $15 per share
T 0.5 (half of one year)
S0 $20 per share
Xe $20 per share
σ 30%, 20%, 10%
r 6%
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Table 2: Price ratios of exotic options considering the proactive hedging options relative to classical European options in terms of α, β, β0, δ,
and σ parameters.

Strategy parameters
Price ratios of exotic options with classical option

σ � 30% σ � 20% σ � 10%
α β0 β δ Logarithmic Linear Logarithmic Linear Logarithmic Linear

0.5 0.3 0.6 0 0.60 0.61 0.63 0.64 0.66 0.67
0.5 0.3 0.6 7 0.97 0.97 0.99 0.99 1.00 1.00
0.5 0.3 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.5 0.6 0 0.47 0.47 0.48 0.48 0.49 0.49
0.5 0.5 0.6 7 0.96 0.96 0.99 0.99 1.00 1.00
0.5 0.5 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.5 1 0 0.34 0.36 0.39 0.40 0.44 0.45
0.5 0.5 1 7 0.95 0.95 0.99 0.99 1.00 1.00
0.5 0.5 1 15 1.00 1.00 1.00 1.00 1.00 1.00
0.7 0.3 0.6 0 0.63 0.64 0.65 0.66 0.67 0.68
0.7 0.3 0.6 7 0.97 0.97 0.99 0.99 1.00 1.00
0.7 0.3 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
0.7 0.5 0.6 0 0.48 0.48 0.48 0.49 0.49 0.49
0.7 0.5 0.6 7 0.96 0.96 0.99 0.99 1.00 1.00
0.7 0.5 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
0.7 0.5 1 0 0.38 0.40 0.41 0.43 0.45 0.46
0.7 0.5 1 7 0.95 0.95 0.99 0.99 1.00 1.00
0.7 0.5 1 15 1.00 1.00 1.00 1.00 1.00 1.00
1 0.3 0.6 0 0.64 0.66 0.66 0.67 0.68 0.68
1 0.3 0.6 7 0.97 0.97 0.99 0.99 1.00 1.00
1 0.3 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
1 0.5 0.6 0 0.48 0.49 0.49 0.49 0.49 0.50
1 0.5 0.6 7 0.96 0.96 0.99 0.99 1.00 1.00
1 0.5 0.6 15 1.00 1.00 1.00 1.00 1.00 1.00
1 0.5 1 0 0.41 0.43 0.43 0.45 0.46 0.47
1 0.5 1 7 0.95 0.95 0.99 0.99 1.00 1.00
1 0.5 1 15 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 3: Continued.
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Figure 3: *e theoretical price as a function of α when δ � 0, β � 1, and β0 � 0.3, 0.6, or 0.9 (a, b, c), respectively.
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Figure 4: Continued.
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Figure 4: *e theoretical price as a function of δ when α � 0.5, β � 1, and β0 � 0.3, 0.6, or 0.9 (a, b, c), respectively.
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Figure 5: *e theoretical price as a function of β0 when α � 0.5, δ � 0, and β� 0.3, 0.6, or 0.9 (a, b, c), respectively.
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the α and δ values, or the larger the β0 and β values, the
greater the price advantage of this exotic option; therefore,
we set the fixed parameter values to correspond to the
situation with the greatest price advantage (α � 0.5, δ � 0,
β � 1) and compared this exotic option with the classical
European call option.

If the interval of α ∈ [0.5, 1] holds true (Figure 3), the
price advantage of this general logarithmic position strategy
is the largest when α � 0.5. As α increases, the price ad-
vantage of this exotic option decreases. However, the slope
of the curve is not steep, which indicates that α has a rel-
atively small influence on the price of the option.

If the interval of δ ∈ [0, Xe � 20] holds true (Figure 4),
the price advantage of the option is the largest when δ � 0.
As δ increases, the price advantage of this exotic option

decreases. In contrast to the α effect, the δ curve is clearly
convex, which means that the closer δ is to 0, the more
sensitive this exotic option price is to the δ parameter. *is δ
effect becomes extremely weak as δ approaches 1/2Xe � 10.

*e impacts of the β0 and β parameters are presented in
Figures 3–6, and Figures 5 and 6, in particular, illustrate that
the larger the values of β0 and β, the greater the price ad-
vantage of the exotic option. If 0≤ β0 ≤ β≤ 1, Figures 5 and 6
both indicate that β0 and β follow monotonic, linearly de-
creasing functions. If all other parameters are equal, the
linear slope of β0 is steeper than that of β, which means that
the decreasing effect of β0 is more significant. In addition,
the trends in Figures 3–6 demonstrate that the smaller the
value of β0, the more advantageous the general logarithmic
position strategy.
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Figure 6: *e theoretical price as a function of β when α � 0.5, δ � 0, and β0 � 0.3, 0.6, or 0.9 (a, b, c), respectively.
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6. Conclusions

*is study details and discusses the pricing of an exotic
option, which requires the call option buyer to actively cover
the risk exposure by trading the underlying asset according
to a preagreed general logarithmic position strategy. *e
option seller only bears the losses resulting from uncovered
risk exposure. To test the pricing advantage of this exotic
option, its pricing was compared with that of the linear
position strategy proposed byWang et al. [13–15] and that of
the classical European option.

*e comparative analysis presented herein revealed that
both of the described proactive hedging European options
exhibited significant price advantages over the classical
European option. For example, the theoretical price of
applying the general logarithmic position strategy was as low
as 34% of the classical European option price under certain
parameter settings. *e price advantage of this exotic option
mainly depended on the capital utilization coefficients (β,
β0), which were used to actively hedge the exposure risk of
the underlying asset and the prices of the underlying asset
(Xe + δ) when the proactive hedging strategy was initiated.
Both β0 and β are monotonic, linearly decreasing functions
of the exotic option, meaning that the larger the values of β0
and β, the greater the price advantage of this exotic option.
Especially when β0 is very small, the European option with a
general logarithmic position strategy has a considerable
price advantage over that of the linear position strategy, and
its implementation can save up to 5.5% of the option pre-
miums. Additionally, this exotic option price is more sen-
sitive to changes in the δ parameter as δ approaches zero; the
δ effect becomes weaker as δ approaches 1/2Xe � 10. *ese
results indicate that it is more suitable for traders to use the
European option with a general logarithmic position
strategy when the initial amount of capital is limited.

*is study derives the theoretical price of the proactive
hedging European option by applying a general logarithmic
dynamic position strategy as a representative nonlinear
position strategy. *e described analyses indicate that the
extension of this exotic option with the general logarithmic
position strategy has important practical significance. Fur-
ther studies should aim to develop more reasonable dynamic
position strategies in the form of nonlinear functions.
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