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In the paper, we proposed a Bazykin’s predator-prey system to explore the equilibrium point and Bogdanov-Takens bifurcation
problems. Firstly, we derived some key parameter threshold conditions to ensure that the Bazykin’s predator-prey system had a
multiple focus of multiplicity one, weak focus of order 2, cusps of codimension 2 and a degenerate Bogdanov-Takens singularity
(focus or center case) of codimension 3. Furthermore, the distinction of two types of codimension 2 cusps was also discussed,
which showed that the threshold of the two types of cusps could exhibit a cusp, which was a special case of the mentioned
degenerate Bogdanov-Takens singularity (focus or center case) of codimension 3. Secondly, we systematically calculated that the
Bazykin’s predator-prey system could undergo two types of Bogdanov-Takens bifurcations of codimension 2 and a degenerate
focus type Bogdanov-Takens bifurcation of codimension 3. Finally, some numerical examples were implemented to verify the
correctness and feasibility of mathematical theory derivation, which also directly showed all possible equilibrium points and
Bogdanov-Takens bifurcations of Bazykin’s predator-prey system. In a word, all the research results could play an important
theoretical support role in the study of controlling cyanobacteria bloom.

1. Introduction

At present and in the future, water eutrophication is still one
of the major water environmental problems in the world,
especially the phenomenon of cyanobacteria bloom [1].
Studying the formation mechanism of cyanobacteria bloom
has important ecological and environmental signi�cance for
scienti�cally predicting the occurrence of cyanobacteria
bloom in lakes and taking corresponding measures to reduce
its impact [2]. In order to explore the formation mechanism
of cyanobacteria blooms in eutrophic lakes, it is necessary to
comprehensively understand the dynamic evolution process
of cyanobacteria bloom and systematically analyze the
synergistic in�uence mechanism of major factors (chemis-
try, physics and biology) on cyanobacteria bloom with the
help of mathematical models, especially the Bazykin’s
predator-prey system. �is is because that Bazykin’s pred-
ator-prey system started from the Lotka-Volterra system,

various regulating factors were considered, such as rates of
birth and death, predation and competition, these di�erent
factors can have a stabilizing or a destabilizing e�ect on the
community, and their interplay leads to increasingly com-
plicated behaviors, which can describe the growth dynamic
mechanism of some cyanobacteria populations [3].

Bazykin [4] presented a variation of Volterra’s classical
predator-prey model under the help of Michaelis-Menton
equation, which can be called Bazykin’s predator-prey
model according to Bazykin’s modi�cation. Since then, the
Bazykin’s predator-prey system has received the attention of
a large number of scholars and obtained some excellent
research results [5–10]. �e paper [5] investigated bifurca-
tions of equilibria in Bazykin’s predator-prey model. �e
paper [6] researched stability and bifurcation of Bazykin’s
predator-prey model with memory e�ect, which can reveal
the e�ect of memory based growth on global bifurcation
threshold. �e paper [7] considered Bazykin’s predator-prey
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model to address harvesting induced stability exchanges
through bifurcation analysis, which can be useful to un-
derstand conservation policy and fishery management. -e
paper [8] proposed Bazykin predator-prey model with
Beddington-DeAngelis response function to study persis-
tence and global stability. -e paper [9] inquired into the
critical normal form coefficients and bifurcations of a dis-
crete-time Bazykin’s predator-prey model. -e paper [10]
theoretically and numerically studied stability and bifur-
cation behaviors of the Bazykin’s predator-prey ecosystem
with Holling type II functional response. It is obvious that
the Bazykin’s predator-prey system can more realistically
describe the dynamic relationship between predator pop-
ulation and prey population, and produce relatively rich
bifurcation dynamics, such as transcritical bifurcation,
saddle-node bifurcation, Hopf bifurcation and Bogdanov-
Takens bifurcation, which can in fact be seen as bridging the
gap between mathematical biology and bifurcation theory,
Furthermore, the Bazykin’s predator-prey system can lead to
sudden changes in ecosystem state and parameter space,
which can analyze and predict qualitative changes in dy-
namics. Usually, these sudden changes are a very needed tool
to study the outbreak of cyanobacteria bloom, because of the
increasing adverse load on the cyanobacteria biosphere.

In relation to Michaelis-Menton equation, we will
consider a predator-prey ordinary differential equations
(ODEs) system with prey-dependent Holling type II
functional response and density-dependent death rate for
the predator, which is a variation of Volterra’s classical
predator-prey model and can be referred to Bazykin’s works.

_x � r1x 1 −
x

K1
􏼠 􏼡 −

αxy

a + x
− m1x,

_y �
αexy
a + x

− m2y − dy
2
,

(1)

here the parameters r1, K1, α, a, m1, e, m2 and d are all
positive constants with practically biological meanings, re-
spectively. r1 denotes the intrinsic growth rate of the prey,
K1 represents the carrying capacity of the environment, a is
the half-saturation constant, α is the search efficiency of
predator for prey, m1 and m2 are mortality rate of the prey
and predator species respectively, e is the biomass conver-
sion, d is the intra-specific competition coefficient. -e
functions x � x(t) and y � y(t) represent densities of the
prey and predator at time t, respectively. -e term dy2

represents interspecific density-restricted effect on the
predator; the term αx/a + x (Holling type II functional
response) is named after C. S. Holling, who proposed several
functional responses for different kinds of species to model
the phenomena of predation in 1965, since then the classical
Lotka-Volterra predator-prey system in biomathematics was
more advanced and realistic [11–14]. -ese functional re-
sponses described how predators transform harvested prey
into the growth of themselves and were discussed by many
researchers [15], especially the Rosenzweig-MacArthur
model (R-M model) or a predator-prey model with Holling
type II functional response [16].

To investigate complex dynamical behaviors of the
system (1) more precisely, in this paper, we concentrate on
Bogdanov-Takens (BT) bifurcations at corresponding in-
terior equilibria, respectively. It is clear to see that all so-
lutions of the system (1) are positive and bounded with
respect to the positive initial conditions x(0)> 0, y(0)> 0.
Also, the x-axis and y-axis are invariant, namely, the system
(1) is dissipative in the first quadrant R+2 and well-defined
on the domain R2

+ � R+2. -e rest of this paper is organized
as followed. In Section 2, we mainly consider stability of
interior (positive) equilibria with respect to following special
cases: (i) A1 � 0, A2 > 0; (ii) A1 � A2 � 0; (iii) A2 � 0, A1 ≠ 0.
-e first case (i) ensures the potential Hopf bifurcation with
the help of standard bifurcation theory, while the second
case (ii) exhibits BT bifurcations of codimension 2 with two
bifurcation parameters and a degenerate focus type BT
bifurcation of codimension 3 with three bifurcation pa-
rameters. -e statements of bifurcations are illustrated in
Section 3. Finally, we also give some numerical simulations
and discussions to support our theories. -e last Section 4 is
a short summary.

2. Equilibria Analysis

In this section, we mainly discuss the existence conditions
and stability analysis of interior equilibria in some special
cases. It is clear that the system (1) has bound equilibria
E0: � (0, 0), E1: � (0, − m2/d) and E2: � (K1(1 − m1/
r1), 0). For biological consideration, we omit the point E1.

2.1. Preliminaries. In this subsection, we fully discuss pre-
liminaries of the interior equilibrium point in the system (1).
Here we denote it as E∗ � (x∗, y∗) for later use. An equi-
librium point E∗must satisfy following algebraic polynomial
form equations

f(x, y) � r1 1 −
x

K1
􏼠 􏼡(a + x) − αy − m1(a + x) � 0,

g(x, y) � αex − m2(a + x) − dy(a + x) � 0.

(2)

In other words, x∗ and y∗ must be positive roots of
following third-order polynomials (cubic equations) p(x) �

􏽐
3
i�0 aix

i and p(y) � 􏽐
3
i�0 biy

i, respectively, where coeffi-
cients are

a3 � dr1, a2 � d m1 − r1( 􏼁K1 + 2adr1,

a1 � 2a m1 − r1( 􏼁d + α αe − m2( 􏼁􏼂 􏼃K1 + a
2
dr1,

a0 � a m1 − r1( 􏼁d − m2α􏼂 􏼃aK1,

b3 � K1d
2
, b2 � − 2K1d αe − m2( 􏼁,

b1 � αe − m2( 􏼁
2

+ ade r1 − m1( 􏼁􏽨 􏽩K1 + a
2
der1,

b0 � e m1 − r1( 􏼁 αe − m2( 􏼁K1 + am2r1􏼂 􏼃a.

(3)

Wewill mention an eliminant method in linear algebraic
merely for completeness and shall not involve it in detail. If
we sort above equations (2) as the form of f(x, y) �

a0(x)y + a1(x) � 0, g(x, y) � b0(x)y + b1(x) � 0, the
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cubic equation p(x) � 0 can also be obtained again from the
first Sylvester’s resultant Ry(f, g) � a0(x)b1(x) −

a1(x)b0(x). Similarly, if we sort the equations (2) as the form
of f(x, y) � c0(y)x2 + c1(y)x + c2(y) � 0, g(x, y) �

d0(y)x + d1(y) � 0, the second resultant

Rx(f, g) �

c0(y) c1(y) c2(y)

d0(y) d1(y) 0

0 d0(y) d1(y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (4)

Also deduces the cubic equation q(y) � 0.
-anks to Scipione del Ferro, Niccolo Fontana(Tarta-

glia), Gerolamo Cardano and Shengjin Fan’s ground-
breaking masterpieces, a third-order algebraic equation’s
root(s) can be formulated by Cardano’s formula or
Shengjin’s formula, and may qualitatively have one, two or
three positive roots in the light of Rene Descartes’ rule of
signs or Shengjin’s discriminant. Here we let these com-
plicated expressions

px �
a1

a3
−
1
3

a2

a3
􏼠 􏼡

2

,

qx �
2
27

a2

a3
􏼠 􏼡

3

−
1
3

a2

a3

a1

a3
+

a0

a3
,

Δx �
qx

2
􏼒 􏼓

2
+

px

3
􏼒 􏼓

3
,

(5)

and

py �
b1

b3
−
1
3

b2

b3
􏼠 􏼡

2

,

qy �
2
27

b2

b3
􏼠 􏼡

3

−
1
3

b2

b3

b1

b3
+

b0

b3
,

Δy �
qy

2
􏼒 􏼓

2
+

py

3
􏼒 􏼓

3
,

(6)

be discriminants of above cubic equations p(x) � 0 and
q(y) � 0, respectively [5].

-e interior equilibrium point E∗ does not exist when
r1 ≤m1 or αe≤m2, thus we always assume r1 >m1 and
αe>m2 in the rest of this paper. -e isoclines from the
equations (2) and cobweb model show that an interior
equilibrium point E∗ exists if condition

0<
m2a

αe − m2
<K1 1 −

m1

r1
􏼠 􏼡, (7)

holds. Noticing that the condition (7) deduces a0 < 0, b0 < 0,
according to the zero theorem and

p
m2a

αe − m2
􏼠 􏼡 �

− αex2 + m2 a + x2( 􏼁􏼂 􏼃e
2
r1a

2α2d
αe − m2( 􏼁

3 < 0,

q
αe − m2

d
􏼒 􏼓 � a

2αe
2
r1 > 0.

(8)

It is supposed that such condition (7) is well-done. In
addition, the condition (7) and one of following conditions

(i)
x2 − a

2
≤

m2a

αe − m2
,

(ii) a1, a2 ≥ 0,

(iii) a
2
2 − 3a1a3 ≤ 0,

(iv) b
2
2 − 3b1b3 ≤ 0,

(9)

can lead to the uniqueness of the equilibrium point E∗, here
x2 � K1(1 − (m1/r1)).

2.2. Multiple Focus withMultiplicity One. Due to the Routh-
Hurwitz criterion and the Perron’s theorems, we merely
need to consider the Jacobian matrix at a non-hyperbolic
interior equilibrium point E∗:

J E∗( 􏼁 � Jij􏼐 􏼑2×2

�

αx∗y∗

a + x∗( 􏼁
2 −

r1x∗
K1

−
αx∗

a + x∗

αeay∗

a + x∗( 􏼁
2 − dy∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

Furthermore, the trace, determinant and discriminant of
matrix J(E∗) are denoted as

A1 :� A1 E∗( 􏼁

� trJ E∗( 􏼁

�
− 2r1x

2
∗ + − αe − m1 + m2 + r1( 􏼁K1 − r1a􏼂 􏼃x∗ + K1am2

K1 a + x∗( 􏼁
,

(11)

A2 :� A2(E∗) � detJ(E∗) and Δ∗ :� Δ∗(E∗) � A2
1 − 4A2,

respectively. In order to obtain potential Hopf bifurcation,
i.e. A1 � 0 and A2 > 0 (matrix J(E∗) has a pair of pure
imaginary eigenvalues), we take the threshold of parameter
m1 � r1 − αe − m2, which can ensure that the numerator of
A1 has a perfect square discriminant with respect of variable
x∗. -us the system (1) has an equilibrium point
E3 :� (x3, y3) � (aλμ, (λμ + 1)ea) with parameters

m2 � λαe,

K1 �
μar1

αe
,

d � −
α[(λ − 1)μ + 1]λ

a(λμ + 1)
2 ,

(12)

and control variables λ ∈ (0, 1), μ> μm � 1/1 − λ. -is spe-
cial case is now denoted as (C1) for later use.

Let us firstly discuss the equilibrium E3 more qualita-
tively, under the assumption of this case, the determinant is
simplified as
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A2 E3( 􏼁 � −
λα2e2φA2

(λ, μ)

(λμ + 1)
2 ,

φA2
(λ, μ) � λ3μ2 + − 2μ2 + 2μ􏼐 􏼑λ2 +(μ − 1)

2λ − μ.

(13)

-e equation φA2
(λ, μ) � 0 has a quite clear positive root.

μ1 �
− 2λ2 + 2λ + 1 + s

2λ(1 − λ)
2 > μm,

s �

�����������

− 4λ2 + 4λ + 1
􏽱

.

(14)

-at is to say: (i) A2(E3)> 0 and E3 is a center or focus
when μ ∈ (μm, μ1); (ii) A2(E3) � 0 and E3 is a potential cusp
of codimension at least 2 when μ � μ1; (iii) A2(E3)< 0 and
E3 is just a saddle point when μ> μ1.

-is subsection will deal with above case (i). By using
transformation x � u + x3, y � v + y3, the point E3 is
translated to the origin O � (0, 0). Making a change of
variables as u � − dy3X + βY, v � − αeay3/(a + x3)

2X, in
which β �

������
A2(E3)

􏽰
> 0, then the system (1) becomes

_X � F2(X, Y) � − βY + 􏽘
3

i+j�2
aijX

i
Y

j
+ O |X, Y|

4
􏼐 􏼑,

_Y � G2(X, Y) � βX + 􏽘
3

i+j�2
bijX

i
Y

j
+ O |X, Y|

4
􏼐 􏼑.

(15)

Following [17, 18], the first Lyapunov number of the
system (15) at the point E3, which is used to determine the
stability of limit cycles as well, is presented as.

σ �
3π
2β

􏼚3 a30 + b03( 􏼁 + a12 + b21( 􏼁

−
1
β

2 a20b20 − a02b02( 􏼁 − a11 a02 + a20( 􏼁 + b11 b02 + b20( 􏼁􏼂 􏼃􏼩

�
3πα3e3λμφσ(λ, μ)

2a
2
(λμ + 1)

4βφA2
(λ, μ)

,

(16)

where

φσ(λ, μ) � 2 + 2λ4μ2 + 4μ − 2μ2􏼐 􏼑λ3 +(2 − μ)λ2 +(μ + 1)λ. (17)

-e transformation u � βX + dy3Y, v � αeay3/
(a + x3)

2Y can also be used to deduce σ in (16).
For any arbitrary λ, in view of a quadratic function

φσ(λ, μ) with respect to variable μ, it is a downward opening
parabola with a symmetry axis μ � 4λ2 − λ + 1/4λ2(1 − λ)> 0
and has a positive maximum λ2 + 14λ + 1/8λ(1 − λ). -e
equation φσ(λ, μ) � 0 straightly has a unique positive root

μσ �
4λ2 +

����������

λ2 + 14λ + 1
􏽱

− λ + 1
4λ2(1 − λ)

> μm. (18)

What is more, μ1 > μσ (or μσ exists) if λ> 2/5; μ1 < μσ if
λ< 2/5; μ1 � μσ only if λ � 2/5. -erefore, the equilibrium
point E3 is respectively a stable(unstable if μσ exists) multiple

focus with multiplicity one if μ< μσ(> rbinμσ). When μ � μσ
(if μσ exists), σ vanishes and one need to calculate the second
Lyapunov coefficient l2. -e generalized Hopf bifurcation of
codimension 2 (Bautin bifurcation) may occur and two
homocentric limit cycles may appear in some particular
cases around the Bautin point E3 if l2 ≠ 0.

2.3.Weak Focus ofOrder 2. When μ � μσ , the first Lyapunov
coefficient will be zero and we need to treat a weak (fine)
focus E3 of order at least 2 in the so-called center-focus
problem. -is subsection starts with the system (15) or a
standard form

_x � − βy + φ(x, y),

_y � βx + ψ(x, y),
(19)

where φ(x, y), ψ(x, y) are both analytical functions and
φ(0, 0) � ψ(0, 0) � 0. Taking the polar coordinate trans-
formation x � rcosθ, y � rsinθ, we derive a new system
_r � rR(r, θ), θ

.

� β + Q(r, θ), where R(r, θ) � φcosθ + ψsinθ,
Q(r, θ) � 1/r(ψcosθ − φsinθ) are also analytical functions.
Now we rewrite the above system as

dr

dθ
�

rR

β + Q
� 􏽘
∞

k�2
Rk(θ)r

k
, (20)

here Rk(θ) are just polynomials of triangle functions cos θ
and sin θ.

We suppose that the special solution of the system (20)
with initial condition r(θ � 0) � c is r(θ, c) � 􏽐

∞
k�1 rk(θ)ck.

Substituting it into the equation (20) and comparing all
terms in ck, we have a series of coupled first-order differ-
ential equations

dr1

dθ
� 0,

dr2

dθ
� R2r

2
1,

dr3

dθ
� 2R2r1r2 + R3r

3
1, · · · . (21)

-ese equations naturally yield solutions r1 � 1,
rk � gkθ + φk(θ)(k> 1), where involved constants are

g2 �
1
2π

􏽚
2π

0
R2(τ)dτ, g3 �

1
2π

􏽚
2π

0
R3(τ) + 2R2(τ)r2(τ)􏼂 􏼃dτ,

(22)

and φk(θ) are periodic functions with a period 2π as well.
For the system (19) with standard form, we obviously derive
the first focal quantity g3 with g2 � 0, which repeats the
formula (16) again, i.e. g3/σ ≡ constant.> 0.

If g3 � 0 or σ � 0, from the integrals (22), we know g4 �

0 and the second focal quantity g5 (see the Appendix). From
now on, with the system (15) at hand, the second focal
quantity g5 reads

g5 � −
2097152λ8e4α4

�
2

√
(λ − 1)

6φg5
(λ)

3a
4

s1 + 3λ + 1( 􏼁
12 4λ2 − λ + s1 + 1􏼐 􏼑

4 ����
1 − λ

√
ψg5

(λ)
7/2

,

(23)

in which auxiliary functions are ψg5
(λ) � 9λ3 − λ2s1 + 3λ2 +

4λs1 − 3λ − s1 − 1 and
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φg5
(λ) � 1 + s1 + 54s1 + 61( 􏼁λ + 1179s1 + 1533( 􏼁λ2 + 13252s1 + 20377( 􏼁λ3

+ 79878s1 + 151954( 􏼁λ4 + 230064s1 + 604458( 􏼁λ5 + 57696s1 + 873264( 􏼁λ6

+ − 1682544s1 − 2369616( 􏼁λ7 + − 6203262s1 − 14628750( 􏼁λ8

+ − 11558132s1 − 36469478( 􏼁λ9 + − 6708162s1 − 43299230( 􏼁λ10

+ 22132104s1 + 19510890( 􏼁λ11 + 88954156s1 + 206053636( 􏼁λ12

+ 179705232s1 + 536172580( 􏼁λ13 + 268668984s1 + 899927400( 􏼁λ14

+ 310805040s1 + 1188987000( 􏼁λ15 + 295112037s1 + 1226575797( 􏼁λ16

+ 224630382s1 + 1060506033( 􏼁λ17 + 141939919s1 + 727205209( 􏼁λ18

+ 69055348s1 + 415540245( 􏼁λ19 + 27134470s1 + 180678370( 􏼁λ20

+ 6942224s1 + 61201034( 􏼁λ21 + 1283776s1 + 13517744( 􏼁λ22

+ 19840s1 + 1703872( 􏼁λ23 + − 800s1 − 14240( 􏼁λ24 + 800λ25.

(24)

Symbol s1 is
����������
λ2 + 14λ + 1

􏽰
. -e resultant

Rs1
φg5

􏼐 􏼑 � 1048576(5λ − 2)
2λ17(λ − 1)

14 12λ3 + 2λ2 + 2λ − 1􏼐 􏼑

· λ2 + 2λ + 3􏼐 􏼑
2
2λ2 + λ + 2􏼐 􏼑

4
≠ 0.

(25)

Implies that φg5
(λ)> 0 when λ ∈ (2/5, 1). While ψg5

(λ)

is also positive since Rs1
(ψg5

) � 16λ2(λ − 1) (5λ − 2)

(λ2 + 2λ + 3)≠ 0, then g5 < 0(≠0). In other words, the
equilibrium point E3 with σ � 0 is a stable weak focus of
order 2.

2.4. Cusp of Codimension 2. From the case (C1), undaunted
by the scale of the distinction, this subsection reasonably set
about finishing a puzzle when μ � μ1. Letting A2 � 0 in this
case, we have threshold of parameters, a nilpotent E(2)

∗ �

(x(2)
∗ , y(2)
∗ ) and an elementary equilibrium E(1)

∗ � (x(1)
∗ , y(1)
∗ )

as follows:

m1 � r1 − (λ + 1)αe, d �
λα μ1 − λμ1 − 1( 􏼁

a λμ1 + 1( 􏼁
2 ,

x
(2)
∗ � μ1aλ, y

(2)
∗ � ea λμ1 + 1( 􏼁,

x
(1)
∗ � −

λ2 − λ + 1􏼐 􏼑s − λ2 + λ + 1􏽨 􏽩a

λ(s + 1)(λ − 1)
,

y
(1)
∗ �

2ae sλ + 2λ2 − 2s − λ − 2􏼐 􏼑

(λ − 1) − 2λ2 + 2λ + 1 + s􏼐 􏼑
.

(26)

Firstly, we can make a transformation (I): x � X + x(2)
∗ ,

y � Y + y(2)
∗ for the system (1) with above threshold of

parameters:

_X � F1(X, Y), _Y � G1(X, Y). (27)

Secondly, we take the transformation

(II): X �
1
4

(s − 2λ + 1)αeu + v, Y �
αe

2
(s − 2λ + 1)(s − 1)u

8λ
.

(28)

-us above system becomes Jordan’s standard form

_u � F2(u, v) � v + a20u
2

+ a11uv + a02v
2

+ O |u, v|
3

􏼐 􏼑,

_v � G2(u, v) � b20u
2

+ b11uv + b02v
2

+ O |u, v|
3

􏼐 􏼑.
(29)

By using the Lemma 1 (or the Lemma 1 in [19]), this
system (29) is equivalent to following system

_x � y,

_y � d1(λ)x
2

+ d2(λ)xy + O |x, y|
3

􏼐 􏼑,
(30)

where discriminants manipulated by λ are

d1 � d1(λ) � b20 �
α3e3(λ − 1)

4φd1
(λ)

4a(2λs + 4λ − 3s − 5)
,

d2 � d2(λ) � b11 + 2a20

�
α2e2λ(1 − λ)

3
s
3

+(5 − 2λ)s
2

+(19 − 12λ)s + 23 − 18λ􏽨 􏽩

a(s + 1)ψd2
(λ)

.

(31)

Here temporarily auxiliary functions are φd1
(λ) � 2λs −

2s2 + 8λ − s + 1 and ψd2
(λ) � s3 + (2λ − 1)s2+ (12λ − 15)s+

14λ − 17. We have added control variable s ∈ (1,
�
2

√
].

Lemma 1. 9e following system

_x � y + Ax
2

+ Bxy + Cy
2

+ O |x, y|
3

􏼐 􏼑,

_y � Dx
2

+ Exy + Fy
2

+ O |x, y|
3

􏼐 􏼑,
(32)

is equivalent to the system

_x � y,

_y � Dx
2

+(E + 2A)xy + O |x, y|
3

􏼐 􏼑.
(33)
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After some nonsingular transformations in the neigh-
bourhood of the origin O.

Letting function φd1
(λ) be zero and solving out the

threshold of λ from the resultant (determinant)

Rs φd1
􏼐 􏼑 �

1
1 − 2λ
2

− 1 − 8λ
2

0

0 1
1 − 2λ
2

− 1 − 8λ
2

1 0 h(λ) 0

0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 4λ3(5λ − 2), (34)

or equation φd1
(λ) � 0, it leads to a unique solution λ � 2/5,

where h(λ) � 4λ2 − 4λ − 1. And the derivative
dφd1

(λ)

dλ
�
2
s

s
2

− 1􏼐 􏼑 + 8sλ + 4λ(1 − λ)􏽨 􏽩> 0. (35)

Implies that the function φd1
(λ) is a monotonic in-

creasing function defined on interval (0, 1). Combining the
denominator of d1:

4a(2λs + 4λ − 3s − 5) � 4a[(2s + 4)(λ − 1) − (s + 1)]< 0. (36)

Here we know that d1 < (>)0 if λ> (<)2/5. Notice that
the numerator of d2 is obviously positive since the range of λ.
In fact, we can assert that d2 is non zero. Indeed, for the
function ψd2

(λ) in the denominator of d2, its negativity will
be found and well verified from an inequality
ψd2

(λ) � s
2
(s + λ) − 3(s + 1) +(λ − 1) s

2
+ 12s + 14􏼐 􏼑

< s
2

− 3􏼐 􏼑(s + 1).
(37)

-at is to say, ψd2
(λ) is always negative, namely d2 is

negative here. All in all, d1d2 ≠ 0 when m2 ≠ 2/5αe, while
d1d2 � 0 when m2 � 2/5αe.

Next, we mainly concentrate on the stability of the
equilibrium point E(1)

∗ whose trace, determinant and dis-
criminant are parameterized as

A1 E
(1)
∗􏼐 􏼑 �

αe(5 − s)φA1
(λ)

2(s + 1)(2λs + 4λ − 3s − 5)
,

A2 E
(1)
∗􏼐 􏼑 �

αe αe − m2( 􏼁(s − 3)φA2
(λ)

2(s + 1)(2λs + 4λ − 3s − 5)
,

Δ∗ E
(1)
∗􏼐 􏼑 � −

m
2
2φΔ(λ)

(s + 1)
4ψΔ(λ)

.

(38)

In which some continuous auxiliary functions can be
respectively expressed by
φA1

(λ) � − 2s
3

+(2λ − 7)s
2

+(− 6λ + 6)s − 16λ + 19,

φA2
(λ) � s

3
+(14λ − 19)s

2
+(12λ − 9)s − 34λ + 43,

φΔ(λ) � 􏽘
9

j�1
xjs

9− j
,

ψΔ(λ) � s
4

+ 4s
3

+(8λ − 6)s
2

+(28λ − 34)s + 24λ − 29,

(39)

with

x1 � 1, x2 � 64λ − 226, x3 � 124λ − 354, x4 � − 1532λ + 3156,

x5 � − 2452λ + 5010, x6 � 8248λ − 11682, x7 � 13172λ − 18786,

x8 � − 10108λ + 12208, x9 � − 16476λ + 19889.

(40)

-e determinants

Rs φA1
􏼐 􏼑 �

1 − λ +
7
2

3λ − 3 8λ −
19
2

0

0 1 − λ +
7
2

3λ − 3 8λ −
19
2

1 0 h(λ) 0 0

0 1 0 h(λ) 0

0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 16(5λ − 2)(λ − 1)
5
,

Rs φA2
􏼐 􏼑 �

1 14λ − 19 12λ − 9 − 34λ + 43 0

0 1 14λ − 19 12λ − 9 − 34λ + 43

1 0 h(λ) 0 0

0 1 0 h(λ) 0

0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 128(5λ − 2)
2
(λ − 1)

4
,

(41)

and

Rs φΔ( 􏼁 �

1 x2 x3 x4 x5 x6 x7 x8 x9 0

0 1 x2 x3 x4 x5 x6 x7 x8 x9

1 0 h(λ) 0 0 0 0 0 0 0

0 1 0 h(λ) 0 0 0 0 0 0

0 0 1 0 h(λ) 0 0 0 0 0

0 0 0 1 0 h(λ) 0 0 0 0

0 0 0 0 1 0 h(λ) 0 0 0

0 0 0 0 0 1 0 h(λ) 0 0

0 0 0 0 0 0 1 0 h(λ) 0

0 0 0 0 0 0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 65536 41λ2 − 54λ + 81􏼐 􏼑(λ − 1)
12

(5λ − 2)
2
,

(42)

which are respectively from equations φA1
(λ) � 0, φA2

(λ) �

0 and φΔ(λ) � 0, yield the unique solution (zero point) λ �

2/5 once more.
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For the sake of mathematical natures of the functions
φA1

(λ), φA2
(λ), φΔ(λ) and ψΔ(λ) defined on interval (0, 1),

we calculate their derivatives up to second order with respect
to λ:

dφA1
(λ)

dλ
�
φDφA1

(λ)

s
,

d
2φA1

(λ)

dλ2
�
24s

4
+(− 48λ + 72)s

3
+ − 96λ2 + 168λ − 72􏼐 􏼑s

2
+ 96(λ − 1)(λ − 1/2)

2

s
3 ,

dφA2
(λ)

dλ
�
φDφA2

(λ)

s
,

d
2φA2

(λ)

dλ2
�

− 12s
4

+(− 336λ + 264)s
3

+ 48λ2 − 192λ + 96􏼐 􏼑s
2

− 192λ3 + 336λ2 − 192λ + 36

s
3 ,

dφΔ(λ)

dλ
�
φDφΔ(λ)

s
,

d
2φΔ(λ)

dλ2
�

1
s
3 − 32s

9
+(− 5376λ + 8120)s

8
+ 768λ2 − 9696λ + 11664􏼐 􏼑s

7
􏽨

+ 35840λ3 − 162400λ2 + 227440λ − 125400􏼐 􏼑s
6

+ 47616λ3 − 183552λ2 + 265536λ − 153376􏼐 􏼑s
5

+ − 367680λ3 + 1125120λ2 − 1146288λ + 428520􏼐 􏼑s
4

+ − 313856λ3 + 955136λ2 − 1035872λ + 415984􏼐 􏼑s
3

+ 395904λ3 − 956640λ2 + 781008λ − 229448􏼐 􏼑s
2

+161728 λ −
1
2

􏼒 􏼓
2
λ −

436
361

􏼒 􏼓􏼣,

dψΔ(λ)

dλ
�
φDψΔ(λ)

s
,

(43)

where new auxiliary continuous functions are

φDφ A1
(λ) � 2s

3
+(24λ − 18)s

2
+ − 16λ2 + 64λ − 44􏼐 􏼑s + 24λ2 − 36λ + 12,

φDφ A2
(λ) � 14s

3
+(− 12λ + 18)s

2
+ − 112λ2 + 208λ − 110􏼐 􏼑s − 48λ2 + 60λ − 18,

φDφ Δ(λ) � 64􏽘
9

j�1
yjs

9− j
,

φDψ Δ(λ) � (− 16λ + 16)s
3

+(− 48λ + 52)s
2

+ − 64λ2 + 80λ􏼐 􏼑s − 112λ2 + 192λ − 68,

(44)

in which
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y1 � 1, y2 �
− 32λ + 140

64
, y3 �

− 1792λ2 + 7224λ − 4696
64

,

y4 �
− 2976λ2 + 9984λ − 6700

64
, y5 �

30640λ2 − 78440λ + 39808
64

,

y6 �
39232λ2 − 99776λ + 53252

64
, y7 �

− 98976λ2 + 189672λ − 80200
64

,

y8 �
− 105376λ2 + 202976λ − 91620

64
, y9 �

40432λ2 − 69048λ + 24416
64

.

(45)

-e following determinants

Rs φDφA1
􏼐 􏼑 �

1 12λ − 9 − 8λ2 + 32λ − 22 12λ2 − 18λ + 6 0

0 1 12λ − 9 − 8λ2 + 32λ − 22 12λ2 − 18λ + 6

1 0 h(λ) 0 0

0 1 0 h(λ) 0

0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 144(λ − 1)
4 20λ2 − 12λ − 3􏼐 􏼑,

Rs φDφA2
􏼐 􏼑 �

1
− 6λ + 9

7
− 8λ2 +

104λ − 55
7

− 24λ2 + 30λ − 9
7

0

0 1
− 6λ + 9

7
− 8λ2 +

104λ − 55
7

− 24λ2 + 30λ − 9
7

1 0 h(λ) 0 0

0 1 0 h(λ) 0

0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
1152
49

(5λ − 2)(5λ + 1)(λ − 1)
4
,

Rs φDφΔ􏼐 􏼑 �

1 y2 y3 y4 y5 y6 y7 y8 y9 0

0 1 y2 y3 y4 y5 y6 y7 y8 y9

1 0 h(λ) 0 0 0 0 0 0 0

0 1 0 h(λ) 0 0 0 0 0 0

0 0 1 0 h(λ) 0 0 0 0 0

0 0 0 1 0 h(λ) 0 0 0 0

0 0 0 0 1 0 h(λ) 0 0 0

0 0 0 0 0 1 0 h(λ) 0 0

0 0 0 0 0 0 1 0 h(λ) 0

0 0 0 0 0 0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 128 6560λ4 − 12808λ3 + 14305λ2 − 4395λ − 1520􏼐 􏼑(5λ − 2)(λ − 1)
11

,

(46)
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and

Rs φDψΔ􏼐 􏼑 �

1
− 48λ + 52
− 16λ + 16

− 64λ2 + 80λ
− 16λ + 16

− 112λ2 + 192λ − 68
− 16λ + 16

0

0 1
− 48λ + 52
− 16λ + 16

− 64λ2 + 80λ
− 16λ + 16

− 112λ2 + 192λ − 68
− 16λ + 16

1 0 h(λ) 0 0

0 1 0 h(λ) 0

0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 64λ(λ − 1)
5
, (47)

which are respectively constructed from equations
φDφA1

(λ) � 0, φDφA2
(λ) � 0, φDφΔ(λ) � 0 and φDψΔ(λ) � 0,

yield that:

(i) -e function φA1
(λ) has a (local) minimum φA1

(3 +

2
�
6

√
/10) � 227 − 147

�
6

√
/25 on interval [0, 1] since

d2/dλ2φA1
(3 + 2

�
6

√
/10) � 438

�
6

√
− 1008> 0, and,

the detailed numerical simulation results are shown
in Figure 1(a);

(ii) -e function φA2
(λ) has a (local) minimum

φA2
(2/5) � 0 on interval [0, 1] since

d2/dλ2φA2
(2/5) � 6480/49> 0, and, the detailed

numerical simulation results are shown in
Figure 1(b);

(iii) -e function φΔ(λ) has a local minimum φΔ(2/5) �

0 and a local maximum φΔ(λ3) ≈ 534.507461 on
interval [0, 1] since d2/dλ2φΔ(2/5) � 1156415616/
30625> 0 and d2/dλ2φΔ(λ3) ≈ − 13531.790941< 0,
where λ3 is another positive root of equation
φDφΔ(λ) � 0 or the unique positive root of equation
6560λ4 − 12808λ3 + 14305λ2 − 4395λ − 1520 � 0 in
open interval (0, 1), i.e.

λ3 �
1

9840M
1/6

N
1/4

�
6

√
− 205

��
N

√
M2/3 + − 4040497M1/3 + 17198445275( 􏼁

��
N

√

+6993186747
���
3M

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

+4803M
1/6

N
1/4

−
�
3

√
N

3/4

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

≈ 0.764691, (48)

with
M � 2783067866245 + 19175820

�����������
22669769211

√
,

N � 410M
2/3

− 4040497M
1/3

− 34396890550,
(49)

and then, the detailed numerical simulation results
are shown in Figure 1(c); (iv) -e function ψΔ(λ) is
a monotonic function on interval (0, 1) since
dψΔ(λ)/dλ≠ 0, and, the detailed numerical simu-
lation results are shown in Figure 1(d).

Hence, maxima and minima of the functions φA1
(λ),

φA2
(λ), φΔ(λ) and ψΔ(λ) on unit interval [0, 1] are listed as

follows:

max φA1
(λ)􏽮 􏽯 � 16, min φA1

(λ)􏽮 􏽯 �
227 − 147

�
6

√

25
< 0,

max φA2
(λ)􏽮 􏽯 � 16, min φA2

(λ)􏽮 􏽯 � 0,

max φΔ(λ)􏼈 􏼉 � 9216, min φΔ(λ)􏼈 􏼉 � 0,

max ψΔ(λ)􏼈 􏼉 � − 4, min ψΔ(λ)􏼈 􏼉 � − 64.

(50)

Combining Figures 1(a)–1(d) and the determinant
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Rs ψΔ( 􏼁 �

1 4 8λ − 6 28λ − 34 24λ − 29 0

0 1 4 8λ − 6 28λ − 34 24λ − 29

1 0 h(λ) 0 0 0

0 1 0 h(λ) 0 0

0 0 1 0 h(h(λ)λ) 0

0 0 0 1 0 h(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 256(λ − 1)
8
.

(51)

-us we have a rough summary:

(i) φA1
(λ) is positive (negative) when λ< 2/5(λ> 2/5),

and it has a unique zero point 2/5;
(ii) φA2

(λ) and φΔ(λ) are nonnegative functions defined
on interval (0, 1), and they both have the unique
zero point λ � 2/5;

(iii) ψΔ(λ) is a negative function defined on interval
(0, 1).

-us, it follows that: (i) A1(E(1)
∗ ) is negative (positive)

when λ< 2/5(λ> 2/5); (ii) A2(E(1)
∗ ) and Δ∗(E(1)

∗ ) are always
positive when λ≠ 2/5. In a word, the equilibrium point E(1)

∗
is a stable or unstable elementary node when λ≠ 2/5.

On the whole, when m2 ≠ 2/5αe, we have d1d2 ≠ 0, an
interior equilibrium point E(2)

∗ with A1 � A2 � 0 from the
case (C1) is a cusp of codimension 2, and an interior
equilibrium point E(1)

∗ is a stable (unstable) node when
m2 < 2/5αe(m2 > 2/5αe). When m2 � 2/5αe, the unique in-
terior equilibrium point E∗ becomes a cusp of codimension
at least 3.

Theorem 1. From the case (C1), when m2 ≠ 2/5αe, an in-
terior equilibrium point E(2)

∗ with A1 � A2 � 0 is a cusp of
codimension 2 (Bogdanov-Takens bifurcation point) since
d1d2 ≠ 0, and an interior equilibrium point E(1)

∗ is an as-
ymptotic stable (unstable) node when m2 < 2/
5αe(m2 > 2/5αe). When m2 � 2/5αe, the unique interior
equilibrium point E∗ � (4a, 5ea) is a cusp of codimension at
least 3, indeed it is a codimension 3 BT singularity (focus or
center case), see next subsection.
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Figure 1: (a) Figure of function φA1
(λ) on the interval [0, 1]; (b) figure of function φA2

(λ) on the interval [0, 1]; (c) figure of function φΔ(λ)

on the interval [0, 1]; (d) figure of function ψΔ(λ) on the interval [0, 1].

10 Discrete Dynamics in Nature and Society



Remark 1. When we use the transformations (III): u � p+

a02pq, v � q − a20p
2, and (IV): p � w, q � z − c11wz, the

system (29) firstly becomes

_p � q + c11pq + O |p, q|
3

􏼐 􏼑,

_q � d20p
2

+ d11pq + d02q
2

+ O |p, q|
3

􏼐 􏼑,
(52)

and then becomes

_w � z + O |w, z|
3

􏼐 􏼑,

_z � f20w
2

+ f11wz + f02z
2

+ O |w, z|
3

􏼐 􏼑.
(53)

Finally, in order to obtain standard form, we construct a
transformation (V): w � x1 + (1/2)f02x

2
1, z � f02x1y1 + y1,

above system becomes

x1
.

� y1 + O x1, y1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

􏼐 􏼑,

y1
.

� d1x
2
1 + d2x1y1 + O x1, y1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
3

􏼐 􏼑.
(54)

-is also ensures the -eorem 1 and (31).

2.5. Bogdanov-Takens Singularity (Focus or Center) of Codi-
mension 3. Letting px � Δx � 0 or py � Δy � 0, we obvi-
ously derive thresholds of parameters

K1 �
ar1 8αe + m2( 􏼁

r1 − m1( 􏼁 αe − m2( 􏼁
,

d �
8αe + m2( 􏼁 αe − m2( 􏼁

2

27αa r1 − m1( 􏼁e
2 ,

(55)

and a unique degenerate equilibrium point E6 ≔ (x6, y6) �

((a(2αe + m2)/ αe − m2), 18(r1 − m1)e
2αa/(8αe + m2) (αe−

m2)). In this case, it is quite obvious to see that A2(E6) � 0,
while the trace reduces to

A1 E6( 􏼁 � −
16α2e2 + 6αem1 − 14αem2 − 6αer1 + 3m1m2 − 2m

2
2 − 3m2r1

3 8αe + m2( 􏼁
.

(56)

-e combinations in this case with A1(E6)≠ 0 is denoted
as (C4). Furthermore, if A1(E6) � 0 in the case (C4),
thresholds of parameters r1, K1, d and a unique nilpotent
equilibrium point E7 are

r1 �
2 αe − m2( 􏼁 8αe + m2( 􏼁 + 3m1 2αe + m2( 􏼁

3 2αe + m2( 􏼁
,

K1 �
a 2 αe − m2( 􏼁 8αe + m2( 􏼁 + 3m1 2αe + m2( 􏼁􏼂 􏼃

2 αe − m2( 􏼁
2 ,

d �
2αe + m2( 􏼁 αe − m2( 􏼁

18e
2αa

,

E7 ≔ x7, y7( 􏼁 �
a 2αe + m2( 􏼁

αe − m2
,
12e

2αa

2αe + m2
􏼠 􏼡.

(57)

Similarly, we denote this special case as (C5). Note that
the conditions (9) (iii) and (9) (iv) all hold in cases (C4) or
(C5) since a2

2 − 3a1a3 � b22 − 3b1b3 � 0.
For the case (C4), we take transformations (I):

x � X + x6, y � Y + y6 and

(II): X �
αx6u

a + x6
+ v,

Y � dy6u +
3 r1 − m1( 􏼁e

8αe + m2
v,

τ � tA1.

(58)

-e system (1) becomes a normal form

_u � u +Φ(u, v), (59)

_v � Ψ(u, v), (60)

where Φ(u, v),Ψ(u, v) � O(|u, v|2). -e implicit function
u � h(v) � h2v

2 + · · · from right hand side of the equation
(59) implies ψ(v) � Ψ(h(v), v) � a3v

3 + · · · with

a3 �
2 r1 − m1( 􏼁 αe − m2( 􏼁

3 2αe + m2( 􏼁

27 8αe + m2( 􏼁e
2α2a2

A
2
1
≠ 0. (61)

-ere is only one zero eigenvalue and a nonzero ei-
genvalue for the matrix J(E6), by using the -eorem 7.1 in
Zhifen Zhang’s book [20], it is easy to see that the equi-
librium point E6 is a stable (unstable) node if A1 < 0(A1 > 0).

We will provide some explicitly smooth transformations
to obtain a normal form with terms up to fourth order and
determine the exact type of the equilibrium point E7. Firstly,
we take a transformation (I): x � X + x7, y � Y + y7 and
translate the equilibrium point E7 to the origin O. Secondly,
we take a linear transformation

(II): u � −
27 αe − m2( 􏼁 2αe + m2( 􏼁X

aα 8αe + m2( 􏼁
2 −

9 αe − m2( 􏼁 2αe + m2( 􏼁Y

aαe 8αe + m2( 􏼁
2 ,

v � −
6 αe − m2( 􏼁

2
X

αa 8αe + m2( 􏼁
+
3 αe − m2( 􏼁 2αe + m2( 􏼁Y

eaα 8αe + m2( 􏼁
,

(62)

and transform matrix J(E7) to its real Jordan’s canonical
form, then above system becomes

_u � F2(u, v) � v + 􏽘
4

i+j�2
aiju

i
v

j
+ O |u, v|

5
􏼐 􏼑,

_v � G2(u, v) � 􏽘
4

i+j�2
biju

i
v

j
+ O |u, v|

5
􏼐 􏼑,

(63)

where a11 � b20 � 0 and a20a02b11b02 ≠ 0.
Coming to the equation (63), we denote it in obvious

notations:

_u � v +Φ(u, v), (64)

_v � Ψ(u, v), (65)
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where Φ(u, v),Ψ(u, v) � O(|u, v|2). Substituting an implicit
function v � h(u) � α2u2 + α3u3 + · · · from right hand side
of the first equation (64) into the second equation (65),
where

α2 � −
2 8αe + m2( 􏼁 αe − m2( 􏼁

81e
,

α3 �
4 αe − m2( 􏼁

2 8αe + m2( 􏼁

2187e
2 .

(66)

We immediately derive series ψ(u) � Ψ[u, h(u)] �

a3u
3 + · · ·, [Φu(u, v) + Ψv(u, v)]∣v�h(u) � b1u + · · · and a

discriminant μ � b21 + 8a3, where

a3 � b30 − a20b11 � −
4 αe − m2( 􏼁

2 8αe + m2( 􏼁
2

6561e
2 < 0,

b1 �
αe − m2( 􏼁 8αe + 7m2( 􏼁 8αe + m2( 􏼁

81e 2αe + m2( 􏼁
≠ 0,

μ � −
αe − m2( 􏼁

2 8αe + m2( 􏼁
2 64α2e2 + 16αem2 − 17m

2
2􏼐 􏼑

6561e
2 2αe + m2( 􏼁

2 < 0.

(67)

-us the equilibrium point E7 is a center or a focus.
-irdly, we take near identity transformations

(III): u � p, v � q − a20p
2

− a02q
2
,

(IV): p � w +
1
2
d02w

2
, q � d02wz + z.

(68)

To eliminate second order terms in _u and q2 term in _q,
thus above system firstly becomes

_p � F3(p, q) � q + O |p, q|
3

􏼐 􏼑,

_q � G3(p, q) � d11pq + d02q
2

+ O |p, q|
3

􏼐 􏼑,
(69)

and finally becomes

_w � F4(w, z) � z + 􏽘
i+j�3

eijw
i
z

j
+ O |w, z|

4
􏼐 􏼑,

_z � G4(w, z) � f11wz + 􏽘
i+j�3

fijw
i
z

j
+ O |w, z|

4
􏼐 􏼑.

(70)

Taking into account f11 � b11 + 2a20 and the Lemma 1,
the equilibrium point E7 is a cusp of codimension at least 3.
Obviously, we notice that coefficients f11 ≠ 0, f30 < 0 and

5f30 f21 + 3e30( 􏼁 − 3f11 f40 − e30f11( 􏼁 �
4 8αe + m2( 􏼁

4 56α2e2 − 4αem2 − 7m
2
2􏼐 􏼑 αe − m2( 􏼁

3

14348907 2αe + m2( 􏼁
2
e
4 ≠ 0,

f
2
11 + 8f30 � −

8αe + m2( 􏼁
2 64α2e2 + 16αem2 − 17m

2
2􏼐 􏼑 αe − m2( 􏼁

2

6561e
2 2αe + m2( 􏼁

2 < 0.

(71)

By Lemma 3.1 in paper [21], there must exist a small
neighbourhood of the origin O such that the system (70) is
locally topologically equivalent to system.

_x � y,

_y � f11xy + f30x
3

+ f21 + 3e30( 􏼁x
2
y + f40 − e30f11( 􏼁x

4

+ 4e40 + f31 +
1
3
e21f11 +

1
6
f11f12􏼒 􏼓x

3
y + O |x, y|

5
􏼐 􏼑.

(72)

Hence the degenerate equilibrium point E7 is a codi-
mension 3 Bogdanov-Takens singularity (focus or center).
-us, we have the following theorem:

Theorem 2. In the cases (C4) and (C5), we have: (i) the
equilibrium point E6 is a stable (unstable) node if
A1 < 0(A1 > 0); (ii) the equilibrium point E7 is a codimension
3 Bogdanov-Takens singularity (focus or center case).

2.6. Numerical Simulations and A Brief Summary. -is
subsection will give numerical simulations for above sub-
sections, which is also a preliminaries of following
bifurcations.

2.6.1. 9e Case (C1)

Example 1. For the case (C1), we set values of some pa-
rameters as follow: r1 � 0.6, α � 0.5, a � 1.5 and e � 0.6. For
the value λ � (1/2), we have: when μ � 3< μσ , the unique
equilibrium point E3 is a stable multiple focus with mul-
tiplicity one since the negative first Lyapunov number
σ ≈ − 0.021655< 0; when μ � μσ , the equilibrium point E3 is
a weak stable focus of order 2; when μ � 10> μσ , the
equilibrium point E3 becomes an unstable multiple focus
with multiplicity one; when μ � 14> μ1, the equilibrium
point E3 is a saddle point. A brief inspection in Figure 2 can
reveal this phenomenon. Furthermore, it can be noticed that
the condition (9) (iii) holds since a2

2 − 3a1a3 < 0 when μ � 3.
Figures 3 and 4 include curves of functions φA2

(λ, μ)

(red) and φσ(λ, μ) (blue) in the case (C1) corresponding to
λ � (1/2) and λ � (1/3), respectively. Furthermore, it can be
noticed that when λ � (1/3) with A2 > 0, μσ > μ1 or μσ does
not exist.

2.6.2. Cases (C2) and (C3). Moreover, as we take m2 �

(αe/2)(λ � (1/2)), K1 � (2(3 + 2
�
2

√
)ar1/αe), m1 � r1−

(3αe/2) and d � ((
�
2

√
− 1)α/8a) to guarantee A2(E

(2)
4 ) � 0
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in the case (C1), then A1(E
(2)
4 ) � Δx � Δy � 0 and our

system coexists a degenerate equilibrium point E
(2)
4 :�

(x
(2)
4 , y

(2)
4 ) � ((3 + 2

�
2

√
)a, 2ae(

�
2

√
+ 2)) and an unstable

node E
(1)
4 :� (x

(1)
4 , y

(1)
4 ) � ((1 + 2

�
2

√
)a, 4

�
2

√
ea). We denote

this case as (C2).

On the other hand, when we set m2 � (αe/3)(λ � (1/3)),
m1 � r1 − (4αe/3), K1 � (3(13 + 3

��
17

√
)ar1/8αe) and

d � ((− 5 + 3
��
17

√
)α/72a), thus we have A1(E

(2)
5 ) �

A2(E
(2)
5 ) � 0, a nilpotent (or double-zero eigenvalue)

E
(2)
5 ≔ (x

(2)
5 , y

(2)
5 ) � (((13 + 3

��
17

√
)a/8), (3ae(7 +

��
17

√
)/

1

y

2

3
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Figure 2: Phase diagrams around E3 in the case (C1) with (λ � (1/2)): (a) A stable multiple focus with multiplicity one with μ � 3; (b) An
unstable multiple focus with multiplicity one with μ � 10; (c) A stable weak focus of order 2 with μ � μσ . (d) A saddle point with μ � 14.
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Figure 3: Curves of functions φA2
(λ, μ) (in red) and φσ(λ, μ) (in blue) in the case (C1) with λ � (1/2).
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8)) and a stable node E
(1)
5 ≔ (x

(1)
5 , y

(1)
5 ) � (((5+

3
��
17

√
)a/4), (3(

��
17

√
− 1)ea/2)). -is case is denoted as (C3).

Obeying to Zhifen Zhang’s book [20] once more, for the
case (C2) and the system (29), we denote it in analogy with

the equations (64). -en an implicit function from the right
hand side of the equation (64) is v � h(u) � (α(1−

2
�
2

√
)/16ea2)u3 + · · ·. Substituting v � h(u) into the equa-

tion (65), we have series

ψ(u) � Ψ[u, h(u)] � a2u
2

+ · · · , a2 � b20 �
(

�
2

√
− 2)α2e
32a

≠ 0,

Φu(u, v) + Ψv(u, v)􏼂 􏼃∣v�h(u) � b1u + · · · , b1 � 2a20 + b11 �
(4 − 5

�
2

√
)α

8a
≠ 0.

(73)

Hence the equilibrium point E
(2)
4 is a degenerate singular

point (in the sense of [20]). -e point E
(2)
5 in the case (C3) is

also a degenerate singular point since a2 � ((− 5+

3
��
17

√
)α2e/432a)≠ 0 and b1 � (α(17 − 7

��
17

√
)/36a)≠ 0.

Example 2. For the cases (C2) and (C3), we take values of
parameters from the Example 1.-en a cusp of codimension
2 is E

(2)
4 ≈ (8.742641, 6.145584), and an unstable node is

E
(1)
4 ≈ (5.742641, 5.091169), which is surrounded by an

closed orbit (see Figure 5(a)); a cusp of codimension 2 is

E
(2)
5 ≈ (4.756747, 3.754048), and a stable node is

E
(1)
5 ≈ (6.513494, 4.216193) with characteristic direction

θ � θ1 ≈ 0.234711, which appeals all trajectories in a small
neighbourhood of it (see Figure 5(b)).

2.6.3. 9e Cases (C4) and (C5)

Example 3. For the cases (C4) and (C5), we take some
parameters as α � 0.6, e � 0.9, m1 � 0.43, m2 � 0.2 and
a � 0.125. A codimension 3 BTsingularity equilibrium point
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μ1

, μ

μσ

φσ

1
3

λ = 

6

5 10 15

4

2

0

–2

–4

–6

3
2

1
3

, μφA2
1
3

μ

Figure 4: Curves of functions φA2
(λ, μ) (in red) and φσ(λ, μ) (in blue) in the case (C1) with (λ � (1/3)).
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4 in the case (C2). (b) A cusp E
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5 of codimension 2 and a stable node

E
(1)
5 in the case (C3).
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is E7 ≈ (0.470588, 0.569531) with r1 ≈ 1.230417 (see Fig-
ure 6). When r1 � 1, a stable node is E6 ≈
(0.470588, 0.405580) (see Figure 7(a)).While for r1 � 1.5, an
unstable node is E6 ≈ (0.470588, 0.761352), and the

Poincare-Bendixson theorem yields that there exists a limit
cycle enclosing this equilibrium (see Figure 7(b)).

Finally, at the end of this section, we will conclude
stability and type of the equilibrium point E3 as follows:

λ �
2
5

μ1 � μσ ,∄μσ( 􏼁

multiple stable focus withmultiplicity one, μ< μ1,

codimension 3 BT singularity (focus or center) E3 ∈ E7􏼂 􏼃( 􏼁, μ � μ1,

saddle point, μ> μ1;

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ ∈
2
5
, 1􏼒 􏼓 μ1 > μσ ,∃μσ( 􏼁

multiple stable focus withmultiplicity one, μ ∈ 0, μσ( 􏼁,

weak stable focus of order 2, μ � μσ ,

multiple unstable focus withmultiplicity one, μ ∈ μσ , μ1( 􏼁,

cusp of codimension 2 E3 ∈ E
(2)
4􏽨 􏽩􏼐 􏼑, μ � μ1,

saddle point, μ> μ1;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ∈ 0,
2
5

􏼒 􏼓 μ1 > μσ ,∄μσ( 􏼁

multiple stable focus withmultiplicity one, μ ∈ 0, μ1( 􏼁,

cusp of codimension 2 E3 ∈ E
(2)
5􏽨 􏽩􏼐 􏼑, μ � μ1,

saddle point, μ> μ1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(74)

In which [E] represents the “equivalence class” of
equilibria, which have same properties in stability and type
with the representative element E, symbols ∃μσ and ∄μσ is
the meaning that μσ exists and μσ does not exist.

3. Local Bifurcations

In this section, more words are included here about the
existence of Hopf bifurcation curve in a small neighbour-
hood of the equilibrium point E3 in the case (C1), BT bi-
furcations of codimension 2 in the cases (C2) and (C3), and a

degenerate focus type BT bifurcation of codimension 3 in the
case (C5), respectively.

3.1.HopfBifurcationCurveAroundE3. For the case (C1), the
system (1) undergoes a nondegenerate Hopf bifurcation
around the equilibrium point E3 as σ ≠ 0. -e Hopf bifur-
cation is supercritical (subcritical) and limit cycles generated
by the critical point are stable (unstable) if σ < 0(σ > 0). On
occasion, there may exist some parameter values such that
σ � 0 or the system (1) may undergo a degenerate Hopf
bifurcation for some values of parameters [17].
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Figure 6: A codimension 3 Bogdanov-Takens singularity (focus type) in the case (C5).
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Conversely, we also study existence of Hopf bifurcation
curve in this special case. Choosing m2 and d as bifurcation
parameters and introducing sufficiently small parameter
(λ1, λ2) . For an unfolding system

_x � x r1 1 −
xαe

μar1
􏼠 􏼡 + e(λ + 1)α − r1 −

αy

a + x
􏼢 􏼣,

_y � y
xαe

a + x
− λαe − λ1 − −

λα(λμ − μ + 1)

a(λμ + 1)
2 + λ2􏼠 􏼡y􏼢 􏼣.

(75)

We suppose that the above system has an equilibrium
point E∗ � (x∗, y∗) when (λ1, λ2)≠ 0, where x∗ � x3 + w

with |w|≪ 1. Calculating A1 � 0 and A2 > 0, we have a
solution

λ1 �
weα(2aλμ + a + 2w)

a(aλμ + a + w)μ
,

λ2 �
− αw

a(aμ − w)(λμ + 1)
2
((λμ + 1)a + w)

2

λ3 + λ􏼐 􏼑μ2 + 2λ2 + λ − 1􏼐 􏼑μ + λ + 1􏼐 􏼑(λμ + 1)a
2

+ 2w

λ3 − (1/2)λ2 +(1/2)λ􏼐 􏼑μ2

+ 2λ2 +(1/2)λ􏼐 􏼑μ + λ + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a + w

2
(1 +(λ − 1)μ)λ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(76)

with

A2 �
− e

2α2

μ2a2
(aλμ + a + w)

2 (aλμ + w)

λ(λ − 1)
2μ2 + 2λ2 − 2λ − 1􏼐 􏼑μ + λ􏼐 􏼑μa

3

+5w
1
5

+ λ2 −
6
5

􏼒 􏼓λ +
1
5

􏼒 􏼓􏼒 􏼓μ2 +
6
5

􏼒 􏼓λ −
1
5

􏼒 􏼓􏼒 􏼓μ􏼒 􏼓a
2

+8w
2
((1/2) +(λ − (1/2))μ)a + 4w

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (77)

At this point, the Hopf bifurcation curve of the system
(75) is defined by

Hp � λ1, λ2( 􏼁 ∣ λ1, λ2( 􏼁satisfy(3.2)􏼈 􏼉, (78)

and the approximation of Hp is a straight line with slope
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Figure 7: Phase diagrams in the case (C4): (a) Stable node E6 with r1 � 1; (b) Unstable node E6 with r1 � 1.5.
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k � lim
w⟶0

λ2(w)

λ1(w)
�

− μ2λ3 − 2μλ2 + − μ2 − μ − 1􏼐 􏼑λ + μ − 1

a(λμ + 1)
2
e(2λμ + 1)

.

(79)

In a small neighbourhood of the origin in parameter
plane.

Similarly, for the bifurcation parameters m1, m2 and
corresponding unfolding system

_x � x r1 1 −
xαe

μar1
􏼠 􏼡 + e(λ + 1)α − r1 − λ1 −

αy

a + x
􏼢 􏼣,

_y � y
xαe

a + x
− λαe − λ2 +

λα(λμ − μ + 1)y

a(λμ + 1)
2􏼢 􏼣.

(80)

-e Hopf bifurcation curve of the system (80) is defined
by

λ1 �

− wα
a
2λ4μ3 + 3a(a +(2/3)w)μ2λ3 + μ μ2 + μ + 3􏼐 􏼑a

2
− w(μ − 4)a + w

2
􏼐 􏼑λ2

+ (2μ + 1)a
2

+ w μ2 + μ + 2􏼐 􏼑a − w
2
(μ − 1)􏼐 􏼑λ − ((μ − 1)a − 2w)a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

a
2λ4μ3 + 3a(a +(2/3)w)μ2λ3 + 3 a

2
− (1/3)w(μ − 4)a +(1/3)w

2
􏼐 􏼑􏼐 􏼑μλ2

+ a
2

+ 2wa − w
2
(μ − 1)􏼐 􏼑λ + wa

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠aμ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

,

λ2 �

wα

a
3λ5μ4 +(4(a +(3/4)w))a

2μ3λ4 − μ2 + μ − 6􏼐 􏼑a
2

+ w(μ − 9)a − 3w
2

􏼐 􏼑aμ2λ3

− 2 (μ − 2)a
3

+ w(μ − 3/2)(μ + 3)a
2

+ w
2
(μ − 3)a − (1/2)w

3
􏼐 􏼑􏼐 􏼑μλ2

+(a + w) μ2 − μ + 1􏼐 􏼑a
2

− w(μ + 2)(μ − 1)a − w
2
(μ − 1)􏼐 􏼑λ + a

2μw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(aλμ + a + w) a
2λ4μ3 + 3a(a +(2/3)w)μ2λ3 + 3 a

2
− (1/3)w(μ − 4)a +(1/3)w

2
􏼐 􏼑􏼐 􏼑μλ2 + a

2
+ 2wa − w

2
(μ − 1)􏼐 􏼑λ + wa􏼐 􏼑aμ􏽮 􏽯

,

(81)

with A2 > 0. Hence the slope of approximation around the
origin is

k � lim
w⟶0

λ2(w)

λ1(w)
� −

λ 1 + λ3 − λ􏼐 􏼑μ3 + 3λ2 − λ + 1􏼐 􏼑μ2 +(3λ − 1)μ􏽨 􏽩

λ3 + λ􏼐 􏼑μ2 + 2λ2 + λ − 1􏼐 􏼑μ + λ + 1􏽨 􏽩(λμ + 1)
. (82)

From the Example 1 with values of parameters r1 � 0.6,
α � 0.5, a � 1.5 and e � 0.6, Figure 8 show the Hopf bi-
furcation curves with respect to (i) λ � (1/2), μ � 3, (ii)
λ � (1/2), μ � 10, (iii) λ � (1/3), μ � 3 and (iv) λ � (1/3),
μ � 10, respectively. Following subsections will make further
efforts to illustrate these curves

3.2. BT Bifurcations of Codimension 2 Around E
(2)
4 . In this

subsection, we firstly choose m2 and d as bifurcation pa-
rameters, and then investigate BT bifurcation of codi-
mension 2 in the case (C2) by following the techniques and
steps in [22, 23] for an unfolding system

_x � x r1 1 −
x

K1
􏼠 􏼡 − m1 −

αy

a + x
􏼢 􏼣,

_y � y
αex

a + x
− m2 + λ1( 􏼁 − d + λ2( 􏼁y􏼔 􏼕,

(83)

where parameters λ1 and λ2 are sufficiently small. Denoting a
provisional parameter vector λ � (λ1, λ2) in a small neigh-
bourhood of the origin O, we firstly select a linear trans-
formation (I): x � X + x

(2)
4 , y � Y + y

(2)
4 to rewrite above

system as

_X � F1(X, Y) � 􏽘
2

i+j�1
aij(λ)X

i
Y

j
+ O |X, Y|

3
􏼐 􏼑,

_Y � G1(X, Y) � 􏽘
2

i+j�0
bij(λ)X

i
Y

j
+ O |X, Y|

3
􏼐 􏼑.

(84)

Secondly, we should be able to make an affine trans-
formation (II): u � X, v � a10(λ)X + a01(λ)Y, then the
system (84) is transformed into

_u � F2(u, v) � v + c20(λ)u
2

+ c11(λ)uv + O |u, v|
3

􏼐 􏼑,

_u � G2(u, v) � 􏽘
2

i+j�0
dij(λ)u

i
v

j
+ O |u, v|

3
􏼐 􏼑,

(85)
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without demur. -irdly, letting a transformation (III):
p � u − (c11(λ) + d02(λ)/2)u2, q � c20(λ)u2 − d02(λ)uv + v,
we derive a new system

_p � F3(p, q) � q + O |p, q|
3

􏼐 􏼑, (86)

_q � G3(p, q) � 􏽘
2

i+j�0
fij(λ)p

i
q

j
+ O |p, q|

3
􏼐 􏼑, (87)

where f02(λ) � 0. Finally, in order to eliminate all higher
order terms in the equation (86), we mechanically construct
a transformation (IV): w � p, z � F3(p, q), then the system
(86) is transformed into

_w � F4(w, z) � z,

_z � G4(w, z) � 􏽘
2

i+j�0
hij(λ)w

i
z

j
+ O |w, z|

3
􏼐 􏼑,

(88)

where h00(λ) � f00(λ), h10(λ) � f10(λ), h01(λ) � f01(λ)

and h02(λ) � 0. Denoting functions depended on parameters
λ1 and λ2:

d1(λ) � f20(λ), d1 � d1(0) �
(4 − 3

�
2

√
)α2e2

32a
,

d2(λ) � h11(λ), d2 � d2(0) �
αe(9

�
2

√
− 14)

8a
,

ξ1(λ) �
f00(λ)

d1(λ)
, ξ2(λ) �

f10(λ)

− d1(λ)
, η(λ) �

− f01(λ)
������
− d1(λ)

􏽰 ,

Φ(w, λ) � f00(λ) + f10(λ)w + f20(λ)w
2

+ · · · ,

(89)

and noticing that d1, d2 < 0, then we take a time transformation
(V): X1 � − w, X2 � z, τ � − t to make it positive and use the
Malgrange preparation theorem [24] to obtain a decomposition

− Φ X1, λ( 􏼁 � ξ1(λ) + ξ2(λ)X1 + X
2
1􏼐 􏼑Ψ X1, λ( 􏼁,Ψ(0, λ) � − d1(λ).

(90)

Applying a transformation (VI): Y1 � X1, Y2 � (X2/��������
Ψ(X1, λ)

􏽰
), dτ �

��������
Ψ(X1, λ)

􏽰
dt and a parameter dependent

affine transformation (VII): x � Y1 + (1/2)ξ2(λ), y � Y2, we
finally transform above system into the normal form, which
still use symbol t as time variable:
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Figure 8: (a) Hopf bifurcation curve with λ � (1/2) and μ � 3 for the case (C2); (b) Hopf bifurcation curve with λ � (1/2) and μ � 10 for the case
(C2); (c)Hopf bifurcation curve with λ � (1/3) and μ � 3 for the case (C3); (d)Hopf bifurcation curve with λ � (1/3) and μ � 10 for the case (C3).
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_x � y,

_y � μ1(λ) + μ2(λ)y + x
2

+
d2����
− d1

􏽰 xy + O |x, y|
3

􏼐 􏼑,
(91)

where μ1(λ) � ξ1(λ) − (1/4)ξ2(λ)2 and μ2(λ) � η(λ)−

(d2/2
����
− d1

􏽰
)ξ2(λ). Since the Jacobian

z μ1, μ2( 􏼁

z λ1, λ2( 􏼁
∣ λ�0 � −

128
�������
3

�
2

√
− 4

􏽰
(1591

�
2

√
+ 2250)a

(7/2)

eα2
≠ 0, (92)

We point out that the above transformation is non-
singular, and the results in [25–27] yield that the system (91)
is strongly topologically equivalent to system

_x � y,

_y � μ1 + μ2y + x
2

− xy.
(93)

In other words, the system (91) will become a standard
form

_u � v, _v � ϵ1 + ϵ2v + u
2

− uv + · · · . (94)

Under a transformation: x � (− d1/d2
2)u, y � − (

����
− d1

􏽰
/

d2)
3v, t � − (d2/

����
− d1

􏽰
)τ, where ϵ1 � (d2/

����
− d1

􏽰
)4μ1 and

ϵ2 � − (d2/
����
− d1

􏽰
)μ2.-us, the system (83) will undergo a BT

bifurcation with bifurcation parameters μ1 and μ2 when
parameter λ varies in as small neighbourhood of the origin.
Hence, we have following theorem.

Theorem 3 (Bogdanov-Takens bifurcation of codimension 2
around E

(2)
4 ). For the case (C2), in a small neighbourhood of

the equilibrium point E
(2)
4 , the system (83) undergoes a

Bogdanov-Takens bifurcation of codimension 2 when pa-
rameter λ varies in a small neighbourhood of the origin when
we choose m2 and d as bifurcation parameters. At the same
time, there exist values of parameters such that this system
(83) has a limit cycle or a homoclinic loop surround the cusp
E

(2)
4 .

Finally, based on the above -eorem 3, the local rep-
resentations of bifurcation curves up to third-order ap-
proximations in a small neighbourhood of the origin with
slope k � (− 2 +

�
2

√
/4ae) are presented as follows, including

description of saddle-node (SN), Hopf (H) and homoclinic
(HL) bifurcation curves [28, 29]. -e slope k can be viewed
as the limiting case of the slope (79) when μ⟶ μ1. -ese
bifurcation curves can divide a small neighbourhood of the
origin in the parameter plane into several regions, which can
exhibit dynamics of the system (83).

(i) -e saddle-node bifurcation curve is formulated by

SN � λ ∣ μ1(λ) � 0, μ2(λ)≠ 0􏼈 􏼉

� λ ∣ λ2 �

�
2

√
− 2

4ae
λ1 + O λ21􏼐 􏼑􏼨 􏼩,

(95)

and

SN
+

� λ ∣ μ1(λ) � 0, μ2(λ)> 0􏼈 􏼉,

SN
−

� λ ∣ μ1(λ) � 0, μ2(λ)< 0􏼈 􏼉.
(96)

(ii) -e Hopf bifurcation curve is formulated by

H � λ | μ2(λ)
2

−
d
2
2

d1
μ1(λ) � 0, μ1(λ)< 0􏼨 􏼩

�

λ| −
16(81 + 56

�
2

√
)a

αe
λ1 −

32(274 + 193
�
2

√
)a

2

α
λ2

+
16(713

�
2

√
+ 1000)a

α2e2
λ21 +

128(1067
�
2

√
+ 2269)a

2

e
α2)λ1λ2

+
256(3485

�
2

√
+ 4927)a

3

α2
λ22 −

64(3139 + 2213
�
2

√
)a

e
3α3

λ31 −
128(31753

�
2

√
+ 44932)a

2

α3e2
λ21λ2 −

256(150706
�
2

√
+ 213155)a

3

eα3
λ1

λ22 −
1024(117609

�
2

√
+ 166328)a

4

α3
λ32

+O λ1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4

􏼐 􏼑 � 0, μ1(λ)< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Discrete Dynamics in Nature and Society 19



(iii) -e homoclinic bifurcation curve is formulated by

HL � λ ∣ μ2(λ)
2

−
25d

2
2

49d1
μ1(λ) � 0, μ1(λ)< 0􏼨 􏼩

�

λ ∣ −
400(81 + 56

�
2

√
)a

49αe
λ1 −

800(274 + 193
�
2

√
)a

2

49α

λ2 +
16(17897

�
2

√
+ 25096)a

49α2e2
λ21 +

128(40859
�
2

√
+ 57685)a

2

49α2e
λ1

λ2 +
256(93767

�
2

√
+ 132559)a

3

49α2
λ22 −

64(78787 + 55541
�
2

√
)a

49e
3α3

λ31 −
128(807529

�
2

√
+ 1142740)a

2

49α3e2
λ21

λ2 −
256(3995074

�
2

√
+ 5650643)a

3

49eα3
λ1

λ22 −
1024(3358401

�
2

√
+ 4749632)a

4

49α3
λ32 + O λ1, λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑 � 0, μ1(λ)< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(98)

Example 4. -e values of parameters will be recalled from
the Example 2. Figure 9 gives the saddle-node, Hopf and
homoclinic bifurcation curves when the value of parameter λ
falls in a small neighbourhood of the origin in the parameter
plane. Figures 10–13 depict the dynamics of the system (83)
in a small neighbourhood of the origin in the parameter
plane when we set values of λ1 and λ2.

(i) When the value of λ lies on the saddle-node bi-
furcation curve SN− , there exist two interior
equilibria and one is unstable node.

(ii) When the value of λ lies on region I (the region
below the saddle-node bifurcation curve), there
exists a unique unstable node. -e Poincre-
Bendixson theorem implies that there is a large
limit cycle enclosing this equilibrium point, the
detailed numerical simulation results are shown in
Figure 10(a) with (λ1, λ2) ≈ (1 × 10− 4, − 3.255138×

10− 5).
(iii) When the value of λ lies on another saddle-node

bifurcation curve SN+, there exists a unique un-
stable node and a limit cycle.

(iv) When the value of λ lies on region IV (the region
between the saddle-node bifurcation curve SN+

and the homoclinic curve), there exist an unstable
node, a saddle, a stable focus, and the homoclinic
loop in case (v) is broken, in which the saddle and
the focus are bifurcated from the curve SN+, a large
limit cycle and enlarged phase diagrams around a

stable focus can be seen in Figure 11 with
(λ1, λ2) ≈ (1 × 10− 4, − 8.131779 × 10− 6).

(v) When the value of λ lies on the homoclinic curve,
there exist three interior equilibrium points and a
homoclinic loop enclosing a stable focus, the de-
tailed numerical simulation results are shown in
Figure 12(a) with (λ1, λ2) ≈ (1 × 10− 4, − 1.626356×

10− 5) and enlarged phase diagrams can be seen in
Figure 12(b).

(vi) When the value of λ crosses the homoclinic curve
into region III (the region between the homo-
clinic curve and the Hopf curve), there exist an
unstable node, a saddle and a stable focus, the
detailed numerical simulation results are shown
in Figure 13 with (λ1, λ2) ≈(1 × 10− 4, − 1.626653×

10− 5).
(vii) When the value of λ lies on the Hopf curve, there

exist an unstable node, a saddle, an non-hyperbolic
equilibrium point (multiple focus or center)
according to Hopf bifurcation and a large limit
cycle enclosing these equilibria.

(viii) When the value of λ crosses the Hopf curve into
region II (the region between the Hopf curve and
the saddle-node bifurcation curve SN− ), there
exist an unstable node, a saddle and an unstable
focus, the detailed numerical simulation results are
shown in Figure 10(b) with (λ1, λ2) ≈
(1 × 10− 4, − 1.627259 × 10− 5). At the same time, it
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Figure 9: Saddle-node (in red), hopf (in green) and homoclinic (in blue) bifurcation curves in case (C2).
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Figure 10: Phase diagrams in cases (ii) and (viii).
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Figure 11: Phase diagrams in the case (iv).
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can be noticed that the stable focus in case (vi) can
become unstable.

3.3. BT Bifurcation of Codimension 2 Around E
(2)
5 . In this

subsection, we set out to deal with BT bifurcation of
codimension 2 around the equilibrium point E

(2)
5 in the case

(C3). Here we choose m1 and m2 as bifurcation parameters
and rewrite the system (1) as the unfolding form:

_x � x r1 1 −
x

K1
􏼠 􏼡 + m1 + λ1( 􏼁 −

αy

a + x
􏼢 􏼣,

_y � y
αex

a + x
− m2 + λ2( 􏼁 − dy􏼔 􏼕,

(99)

where λ1 and λ2 are sufficiently small parameters and
λ � (λ1, λ2). Firstly, we take a mere linear transformation (I):
x � X + x

(2)
5 , y � Y + y

(2)
5 , the equilibrium point E

(2)
5 is

translated to the origin O:

_X � F1(X, Y) � 􏽘
2

i+j�0
aij(λ)X

i
Y

j
+ O |X, Y|

3
􏼐 􏼑,

_Y � G1(X, Y) � 􏽘
2

i+j�0
bij(λ)X

i
Y

j
+ O |X, Y|

3
􏼐 􏼑.

(100)

Secondly, we take a transformation (II): u � X,
v � F1(X, Y), then the above system becomes

_u � F2(u, v) � v,

_v � G2(u, v) � 􏽘
2

i+j�0
dij(λ)u

i
v

j
+ O |u, v|

3
􏼐 􏼑.

(101)

-irdly, we take a transformation (III): p � u+

(d01(λ)/d11(λ)), q � v since d11(0, 0) � ((− 85+ 19
��
17

√
)αe/

36a)≠ 0, then we have following system with f01(λ) � 0:
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Figure 12: Phase diagrams in case (v).
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Figure 13: Phase diagrams in case (vi).
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_p � F3(p, q) � q,

_q � G3(p, q) � 􏽘
2

i+j�0
fij(λ)p

i
q

j
+ O |p, q|

3
􏼐 􏼑.

(102)

Letting (IV): w � p, z � (1 − f02(λ)p)q, dt � (1−

f02(λ)p)dτ and rewrite symbol τ as t, we derive a new
system

_w � F4(w, z) � z,

_z � G4(w, z) � 􏽘
2

i+j�0
hij(λ)w

i
z

j
+ O |w, z|

3
􏼐 􏼑.

(103)

It can be noticed that h20(0, 0) � ((33−

7
��
17

√
)α2e2/432a)> 0 and h11(0, 0) � d11(0, 0)≠ 0, so

h20(λ)> 0 and h11(λ)≠ 0 when λ changes in a small
neighbourhood of the origin, which depends smoothly on λ.
Finally, we construct a time transformation (V): m �

(h11(λ)2/h20(λ))w, n � (h11(λ)3/h20(λ)2)z, dt � (h11(λ)/
h20(λ))dτ and rewrite symbol τ as t, then the above system
(103) becomes

_m � F5(m, n) � n,

_n � G5(m, n)

� μ1(λ) + μ2(λ)m + m
2

+ mn + O |m, n|
3

􏼐 􏼑,

(104)

where

μ1 � μ1(λ)

�
578(1 −

��
17

√
)

αe
λ1 +

867(9 −
��
17

√
)

αe
λ2 + O λ1, λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑,

μ2 � μ2(λ)

�
2(− 51 + 11

��
17

√
)

αe
λ1 +

6(9
��
17

√
− 85)

αe
λ2 + O λ1, λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑.

(105)

-erefore, owing to the Jacobian of μ1 and μ2
z μ1, μ2( 􏼁

z λ1, λ2( 􏼁
|λ�0 �

3468(85 + 19
��
17

√
)

α2e2
≠ 0, (106)

or

−
1

zμ1/zλ2( 􏼁
·
z μ1, μ2( 􏼁

z λ1, λ2( 􏼁
|λ�0< 0. (107)

-e system (99) is a generic family unfolding at the
codimension 2 cusp E

(2)
5 , and we have following local

representations of the bifurcation curves up to second-order
approximations with slope k � ((1 +

��
17

√
)/12) for the

system (104) [30].-us, it can be noticed that this slope k can
be viewed as the limiting case of the slope (82) when
μ⟶ μ1.

(i) -e saddle-node bifurcation curve is formulated by

SN � λ|μ1 �
1
4
μ22􏼚 􏼛

�

λ|
578(1 −

��
17

√
)

αe
λ1 +

867(9 −
��
17

√
)

αe
λ2 +

17(9775 − 63
��
17

√
)

2α2e2
λ21

+
255(1003 − 499

��
17

√
)

α2e2
λ1λ2 +

306(3111 − 623
��
17

√
)

α2e2
λ22 + O λ1, λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
3

􏼐 􏼑 � 0

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(108)

(ii) -e Hopf bifurcation curve is formulated by

H � λ|μ1 � 0, μ2 < 0􏼈 􏼉

�

λ|
578(1 −

��
17

√
)

αe
λ1 +

867(9 −
��
17

√
)

αe
λ2 +

51(3441 − 65
��
17

√
)

2α2e2
λ21

+
51(5723 − 2659

��
17

√
)

α2e2
λ1λ2 +

1224(841 − 167
��
17

√
)

α2e2
λ22

+O λ1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

􏼐 􏼑 � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(109)

(iii) -e homoclinic bifurcation curve is formulated by
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HL � λ ∣ μ1 � −
6
25
μ22, μ2 < 0􏼚 􏼛

�

λ|
578(1 −

��
17

√
)

αe
λ1 +

867(9 −
��
17

√
)

αe
λ2 +

51(90409 − 2681
��
17

√
)

50α2e2
λ21

+
51(160067 − 70411

��
17

√
)

25α2e2
λ1λ2 +

1224(22543 − 4445
��
17

√
)

25α2e2
λ22 + O λ1, λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
3

􏼐 􏼑 � 0

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(110)

Theorem 4 (Bogdanov-Takens bifurcation of codimension
2 around E

(2)
5 ). For the case (C3), in a small neighbourhood

of the equilibrium point E
(2)
5 , there exist values of param-

eters such that the system (99) undergoes an attracting
Bogdanov-Takens bifurcation of codimension 2 when pa-
rameter λ varies in a small neighbourhood of the origin with
bifurcation parameters m1 and m2. And this system is a
generic family unfolding at the cusp E

(2)
5 of codimension 2.

Example 5. Here we extract values of parameters in the
Subsection 3.2 and the Example 3. Figure 14 presents the
saddle-node, Hopf and homoclinic bifurcation curves when
the value of parameter λ falls in a small neighbourhood of
the origin in the parameter plane, which can divide a small
neighbourhood of the origin in the parameter plane into
several regions and exhibit different dynamical behavior of
the system (99).

(i) When the value of λ crosses the λ1 axis into region I
(the region between the saddle-node bifurcation
curve SN2 and the homoclinic bifurcation curve),
there exist an unstable focus, a saddle and a stable
node, in which the focus and saddle are bifurcated
from the curve SN2.

(ii) When the value of λ lies on the homoclinic bi-
furcation curve, there exist a saddle, a stable node
and a homoclinic loop enclosing an unstable focus.

(iii) When the value of λ crosses the homoclinic bi-
furcation curve into region II (the region between
the homoclinic bifurcation curve and the Hopf
bifurcation curve), there exist an unstable focus, a
saddle and a stable node.

(iv) When the value of λ lies on the Hopf bifurcation
curve, there exist three interior equilibria including
a saddle and a stable node.

(v) When the value of λ crosses the Hopf bifurcation
curve into region III (the region between the Hopf
bifurcation curve and the saddle-node bifurcation
curve SN1), there exist a stable focus, a saddle and a
stable node. Furthermore, ti shall be noticed that
the unstable focus in case (iii) becomes stable,
which can ensure potential Hopf bifurcation.

(vi) When the value of λ lies on the saddle-node bi-
furcation curve SN1, there exist two interior
equilibria including a stable node.

(vii) When the value of λ crosses the saddle-node bi-
furcation curve into region IV (the region above

the saddle-node bifurcation curve), there exists a
unique stable node.

(viii) When the value of λ lies on the saddle-node bi-
furcation curve SN2, the unique equilibrium point
is a stable node.

3.4. Degenerate Focus Type BT Bifurcation of Codimension 3.
We should always keep the case (C5) in mind and choose
r1, K1 and d as bifurcation parameters and use the method
in [14].-us we introduce sufficiently small variables α1, α2,
α3, a parameter vector A � (α1, α2, α3), the origin
O � (0, 0, 0) in parameter space and an unfolding form
system

_x � x r1 + α1( 􏼁 1 −
x

K1 + α2
􏼠 􏼡 −

αxy

a + x
− m1x,

_y �
αexy

a + x
− m2y − d + α3( 􏼁y

2
.

(111)

Of the system (1) since the -eorem 2 (ii). As indicated
in Subsection 2.5 for the system (111), by using the coor-
dinate transformations (I), (II), (III) and (IV), actual cal-
culations can yield a new system

_w � F4(w, z) � 􏽘
3

i+j�0
eij(A)w

i
z

j
+ O |w, z|

4
􏼐 􏼑, (112)

_z � G4(w, z) � 􏽘
3

i+j�0
fij(A)w

i
z

j
+ O |w, z|

4
􏼐 􏼑. (113)

Here we omit complicated, but consider inconsequential
expressions of smooth functions eij(A) and fij(A) for the
sake of convenience, while eij(0) � eij, fij(0) � fij, for
instance, e00(0) � e10(0) � e20(0) � e11(0) � e02(0) � 0 and
f00(0) � f10(0) � f01(0) � f20(0) � f02(0) � 0.

Secondly, in order to eliminate third-order terms in right
hand side of equation (112) when A � 0, we construct a
transformation

(V): w � x1 + e03x1y
2
1,

z � − e12x1y
2
1 − e21x

2
1y1 − e30x

3
1 + y1.

(114)

Above system becomes
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x1
.

� F5 x1, y1( 􏼁 � y1 + 􏽘
3

i+j�0
gij(A)x

i
1y

j
1 + O x1, y1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑,

y1
.

� G5 x1, y1( 􏼁 � 􏽘
3

i+j�0
hij(A)x

i
1y

j
1 + O x1, y1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑.

(115)

Similarly, coefficients gij(A), hij(A) are all omitted for
space and can be deduced by coefficients eij(A) and fij(A).
Moreover, it shall be noticed that gij(0) � 0(i + j≤ 3). Fi-
nally, the transformation (VI): x2 � x1, y2 � F5(x1, y1) can
translate the above system into the following system

x2
.

� F6 x2, y2( 􏼁 � y2,

y2
.

� G6 x2, y2( 􏼁

� 􏽘

3

i+j�0
kij(A)x

i
2y

j
2 + O x2, y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑,

(116)

where coefficients kij(A) can be expressed by gij(A) and
hij(A) recursively, and we also omit them here since they are
much too tedious.

In addition, it shall be noticed that

k30(0) � −
4 αe − m2( 􏼁

2 8αe + m2( 􏼁
2

6561e
2 < 0,

k21(0) � −
αe − m2( 􏼁 8αe + m2( 􏼁

2 64α2e2 − 20αem2 − 35m
2
2􏼐 􏼑

8748 2αe + m2( 􏼁
2
e
2 < 0.

(117)

Combining the paper [14, 31] and making a time
transformation τ � − ((k30(A))/(k21(A)))t in a small
neighbourhood of A � 0 (we still use symbol t), the new
version of the system (116)

_u �
σ(A)

](A)
v,

_v � −
k30(A)

σ(A)
λ1(A) + λ2(A)](A)u − ](A)

3
u
3

􏽨 􏽩

+ k21(A) λ3(A) + A(A)](A)u + ](A)
2
u
2

􏽨 􏽩 + v
2
Q1(u, v,A) + O |u, v|

4
􏼐 􏼑,

(118)

can be rewriten as

_u � v,

_v � μ1(A) + μ2(A)u − u
3

+ v μ3(A) + A1(A)u + u
2

􏽨 􏽩 + v
2
Q2(u, v, (A)) + O |u, v|

4
􏼐 􏼑,

(119)

SN1

SN2

λ2

IV

I

0

III
II

λ1

Figure 14: Saddle-node (in red), hopf (in green) and homoclinic (in blue) bifurcation curves in the case (C3).
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where coefficients are

λ1(A) � −
k00(A)

k30(A)
+

k10(A)k20(A)

3k30(A)
2 −

k20(A)
3

9k30(A)
3 +

k20(A)
3

27k30(A)
3,

λ2(A) � −
k10(A)

k30(A)
+

k20(A)
2

3k30(A)
2,

λ3(A) �
k01(A)

k21(A)
−

k11(A)k20(A)

3k21(A)k30(A)
+

k21(A)k20(A)
2

9k21(A)k30(A)
2,

A(A) �
k11(A)

k21(A)
+
2k20(A)

3k30(A)
,

](A) �

��������

−
k30(A)

k21(A)
2

􏽳

,

σ(A) � −
k30(A)

k21(A)
](A),

Q1(u, v,A) � σ(A) k02(A) +
k12(A)k20(A)

2

9k30(A)
2 + σ(A)k03(A)v + ](A)k12(A)u􏼢 􏼣,

A1(A) �
k21(A)

��������

− k30(A)

􏽱

k30(A)
A(A),

Q2(u, v,A) � −
k21(A)

k30(A)
Q1(u, v,A),

(120)

and a transformation is

μ1(A) �
k21(A)

3

k30(A)

��������

− k30(A)

􏽱 λ1(A),

μ2(A) � −
k21(A)

2

k30(A)
λ2(A),

μ3(A) � −
k21(A)

2

k30(A)
λ3(A).

(121)

With some necessary calculations, we can derive

A1(0) � −
8αe + 7m2

2 2αe + m2( 􏼁
< 0,

z μ1, μ2, μ3( 􏼁

z α1, α2, α3( 􏼁
∣A�0 �

− 9e 64α2e2 − 20αem2 − 35m
2
2􏼐 􏼑

6

131072 16α2e2 + 6αem1 − 14αem2 + 3m1m2 − 2m
2
2􏼐 􏼑 2αe + m2( 􏼁

12 ≠ 0.

(122)

-at is to say, the transformation (121) is a homeo-
morphism and independent in a small neighbourhood of the
origin. By the results of [14, 31–33], the above system (119) is

a generic three parameters family or standard family of BT
singularity of codimension 3 (focus case). Hence, the system
(1) in the case (C5) undergoes a degenerate focus type BT
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bifurcation of codimension 3 with the value of bifurcation
parameters r1, K1 and d falling in a small neighbourhood of
E7.

Theorem 5 (Degenerate focus type Bogdanov-Takens bi-
furcation of codimension 3). For the case (C5), if the variable
A falls in a small neighbourhood of the origin, then the system
(111) undergoes a degenerate focus type BT bifurcation of
codimension 3 in a small neighbourhood of E7. In a suffi-
ciently small neighbourhood of (r1, K1, d) of the bifurcation
parameter space, there is a Hopf bifurcation surface, two
homoclinic bifurcation surfaces, two saddle-node loop bi-
furcation surfaces, a multiple limit cycle bifurcation surface,
and two saddle-node bifurcation surfaces for the system (111).
When parameters (r1, K1, d) cross above surfaces, the system
(111) undergoes above bifurcations, respectively.

Example 6. We take out values of parameters from the
Example 3, the system (111) undergoes a degenerate focus
type Bogdanov-Takens bifurcation of codimension 3 in a
small neighbourhood of E7 when the variable vector A �

(α1, α2, α3) varies in a small neighbourhood of the origin O.

4. Summary

In summary, the main object of writing this paper is to
consider Hopf and BT bifurcations of codimension 2 and 3
in the Bazykin’s predator-prey system. -e system in our
paper has complicated and rich dynamical behaviors. -e
particular cases (C1)–(C5) based on polynomial equations
and Jacobian matrix at point E∗ are analytical obtained and
investigated in detail. In the case (C1), for the equilibrium
point E3, with the normal form and the Lyapunov number at
hand, we analyze the stability, Hopf bifurcation with stan-
dard bifurcation theory and existence of Hopf bifurcation
curve with bifurcation parameters m1 and d. In the cases
(C2) and (C3), the equilibria E

(2)
4 and E

(2)
5 are both cusp of

codimension 2, and we analytically give formulae of saddle-
node, Hopf and homoclinic bifurcation curves, respectively.
-ese bifurcation curves can divide a small neighbourhood
of the origin in the parameter plane into several regions,
which can exhibit dynamical behaviors of corresponding
unfolding system, respectively. In the case (C5), the nilpo-
tent equilibrium point E7 is a codimension 3 BT singularity
(focus or center), which can exhibit a degenerate focus type
BT bifurcation of codimension 3 in a small neighbourhood.
For the system (1) or a general ODEs system, some open
problems are:

(i) Whether the BT bifurcations in Subsection 3.2 and
Subsection 3.3 are limiting cases of the Hopf bi-
furcations in Subsection 3.1 when μ⟶ μ1?

(ii) -e existence and uniqueness of a codimension N

cusp, and the corresponding bifurcation;
(iii) Whether a codimension N + 1 cusp (bifurcation) is

the threshold or limiting case of some codimension
N cusps (bifurcations) or not?

(iv) -e classification work of a codimension N cusp,
for instance, topologically equivalent systems,
diffeomorphic systems, limit cycles or homoclinic
loops;

(v) -e existence of invariant quantities under some
nonsingular transformations, for instance, the
Lyapunov quantities, the symbolled “index”
sgn(d1d2) � ±1 or 0 within codimension 2 cusps.
Correspondingly, a codimension 2 and 3 cusps
respectively signifies sgn(d1d2) � ±1 and
sgn(d1d2) � 0.

Besides to the-eorem 3,-eorem 4 and-eorem 5, in
a sense, we point out that the maximum number of limit
cycles in our system is an important research content,
particularly the versal unfolding of a focus type BT sin-
gularity of codimension 3. -ese are reflected in the open
problems in [34] or the Hilbert’s 16th problem. Up to now,
the Poincare-Bendixson’s existence theorem, the Zhifen
Zhang’s uniqueness theorem and the Wintner-Perko ter-
mination principle to determine at most two limit cycles
surrounding a singular point in [35, 36] are functional
tools. Aparting from these theorems, the-eorem 5.4 (ii) in
[37] established a result that there exists a unique stable
limit cycle in the first quadrant if required condition holds;
the -eorem 4, Corollary 1 and Corollary 2 in [38] proved
that the system has at least one stable limit cycle and one
unstable limit cycle.

Based on above open problem (iv), the paper [10] mainly
gave occurrence of Bogdanov-Takens bifurcations and
modified the approximate calculation of limit cycles via a
perturbation procedure and canonical transformation in
view of supercritical Hopf bifurcation. It further illustrate
the BT singularity (focus or center) E7 of codimension 3,
which also shows its uniqueness and nonexistence of
codimension N≥ 4 cusps. Finally, it is our expectancy that
the qualitative analysis of stability and bifurcations can be
suitable to more predator-prey systems to reveal these
phenomena, which are much more complex and have richer
dynamical behaviors, even physical mechanical systems and
epidemic models, etc.

In the follow-up research works, we will first deepen
theoretical research of bifurcation dynamics by learning
from relevant results in these papers [39–41], and then
further explore the dynamic behavior of patch pattern in
ecosystem in the help of these papers [42–44], finally put
mathematical models in specific ecological and environ-
mental problems to study their ecological significance by
means of these papers [45–47]. In a word, all these results are
expected to be useful in studying dynamic behavior of the
ecosystem.

Appendix: The Second Focal Quantity

After reducing a30, all coefficients in the second focal
quantity g5 � 1/144β4 􏽐

3
k�0 β

kg
(5)
k are
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g
(5)
3 � 9 a32 + 5a50 + 5b05 + b23 + b41 + a14( 􏼁,

g
(5)
2 � 3

9a31 + 22b04 + 4b22 − 6b40 + 7a13( 􏼁a20 + − 22a40 − 9b13 − 7b31 + 6a04 − 4a22( 􏼁b02

+ 5a13 + 3a31 + 20b04 + 2b22( 􏼁a02 + − 5a40 − 2b31 + 3a04 + a22( 􏼁a11

+ b12 + 3a03 + 3b30 + a21( 􏼁a12 + − 3b12 + 9a03 + 9b30 − 3a21( 􏼁b03

+ 5b04 − b22 − 3b40 + 2a13( 􏼁b11 + − 20a40 − 3b13 − 5b31 − 2a22( 􏼁b20

− 2b21 b12 + a21( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g
(5)
1 � 15b03 + 14b21 − 13a12( 􏼁b

2
02 + 24a03 − 30b12 + 24b30 − 30a21( 􏼁a20

+ 48a03 − 24b12 + 18b30 − 18a21( 􏼁a02 + − 12b03 + 5b21 − 7a12( 􏼁a11

+ 3a03 + 12b12 + 12b30 + 3a21( 􏼁b11 + 10b20 b21 − 2a12 −
21
5

􏼒 􏼓b03􏼒 􏼓b02

+ − 15b03 − 18b21 + 9a12( 􏼁a
2
20 + 42b03 − 6b21 + 24a12( 􏼁a02

+ 21a03 + 12b30 + 9a21( 􏼁a11 + 12b03 − 3b21 + 9a12( 􏼁b11

− 12 b12 −
5
2

􏼒 􏼓b30 +(3/2)a21􏼒 􏼓b20􏼒 􏼓a20 + 45b03 + 15a12( 􏼁a
2
02

+ 24a03 + 3b12 + 9b30 + 6a21( 􏼁a11 + 12b03 − 3b21 + 9a12( 􏼁b11 − 6b20 b12 + a21( 􏼁( 􏼁a02

+ − 3b03 − b21 + 2a12( 􏼁a
2
11 + 6a03 + 6b30( 􏼁b11 + 5b20 b21 −

7
5

􏼒 􏼓a12 −
12
5

􏼒 􏼓b03􏼒 􏼓􏼒 􏼓a11

+ 3b03 + 3b21( 􏼁b
2
11 + 9 b12 +

5
3

􏼒 􏼓b30 +(2/3)a21􏼒 􏼓􏼒 􏼓b20b11 − 15b
2
20 a12 + 3b03( 􏼁,

g
(5)
0 � 10a02 − 5b11 + 18a20( 􏼁b

3
02 + − 28b20 − 21a11( 􏼁a02 + − 10a20 + 4b11( 􏼁a11 + 20a20b20( 􏼁b

2
02

+ 30a
3
02􏼐 + 18a20 + 3b11( 􏼁a

2
02 + − 9a

2
11 − 28a11b20 − 30a

2
20 + 6a20b11 + 6b

2
11 − 30b

2
20􏼐 􏼑a02

+ − 10a20 + b11( 􏼁a
2
11 − 12b20 a20 +

1
12

􏼒 􏼓b11􏼒 􏼓a11 − 18 a20 +(1/2)b11( 􏼁( 􏼁 a
2
20 −

4
3

􏼒 􏼓b11a20 +(1/3)b
2
11 −

5
9

􏼒 􏼓b
2
20􏼒 􏼓b02

+ 15a
3
02a11 + 24 a20 +

3
8

􏼒 􏼓b11􏼒 􏼓􏼒 􏼓a11a
2
02 +

2a
3
11 − 7b20a

2
11 + 9a

2
20 + 9a20b11 − 15b

2
20􏼐 􏼑a11

+6b11 a20 +
1
2

􏼒 􏼓b11􏼒 􏼓b20

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
a02

+ 2a
3
11a20 − 8b20 a20 −

1
8

􏼒 􏼓b11􏼒 􏼓a
2
11

− 10 a20 +
1
2

􏼒 􏼓b11􏼒 􏼓􏼒 􏼓b
2
20a11 + 18b11 a20 −

1
3

􏼒 􏼓b11􏼒 􏼓 a20 +
1
2

􏼒 􏼓b11􏼒 􏼓b20.

(A.1)
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For more details of the Lyapunov quantity, see the
paper [48] or the expression of L2 with β � 1 in the paper
[49].
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