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Aiming at the shortcomings of the Harris hawks optimization algorithm (HHO), such as poor initial population diversity, slow
convergence speed, poor local optimization ability, and easily falling into local optimum, a Harris hawks optimization algorithm
(CCCHHO) integrating multiple mechanisms is proposed. First, the population diversity is enhanced by the initialization of the
chaotic method. Second, the cosine function is used to better simulate the characteristics of the periodic change of the energy of
the prey in the repeated contests with the group of hawks, to better balance the exploration and exploitation of the algorithm.
�ird, Cauchy mutation on the optimal individual in the exploration phase is performed, and the characteristics of the Cauchy
distribution to enhance the diversity of the population are used, which can e�ectively prevent the algorithm from falling into the
local optimum. Fourth, the local optimization ability of the algorithm by using the ergodicity of the chaotic system in the
exploitation phase to perform a chaotic local search for the optimal individual is enhanced, which can e�ectively jump out after the
algorithm falls into the local optimum. Finally, we use the elite individuals of the population to guide the position update of the
population’s individuals, fully communicate with the dominant individuals, and speed up the convergence speed of the algorithm.
�rough the simulation experiments on CCCHHOwith 11 di�erent benchmark functions, CCCHHO is better than the gray wolf
optimization algorithm (GWO), the Salp swarm algorithm (SSA), the ant lion optimization algorithm (ALO), and three improved
HHO algorithms in terms of convergence speed and optimization accuracy, whether it is a unimodal benchmark function or a
multimodal benchmark function.�e experimental results show that CCCHHOhas excellent algorithm e�ciency and robustness.

1. Introduction

In recent years, meta-heuristic algorithms have attracted
more and more scholars’ attention. Because meta-heuristic
algorithms are simple to implement, have no layer depen-
dencies, and can jump out of local optima, they are used to
solve di�erent problems [1–4].

Meta-heuristic algorithms can be divided into four
categories: physics-based, evolution-based, population-
based, and human-based. �e physics-based aspect mainly
simulates the physical rules in the universe. Common

physics-based meta-heuristic algorithms include gravita-
tional search algorithm (GSA) [5], central force optimization
(CFO) [6], and Black Hole optimization algorithm (BH) [7].
�e evolution-based methods are inspired by biological
evolution and classical evolutionary algorithms such as
genetic algorithm (GA) [8], di�erential evolution algorithm
(DE) [9], and biogeography-based optimizer(BBO) [10].�e
population-based algorithms are inspired by the collective
behavior of biological populations and classical swarm in-
telligence algorithms such as ant colony optimization(ACO)
[11], particle swarm optimization algorithm (PSO) [12],
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artificial bee colony optimization algorithm (ABC) [13], and
Monarch butterfly optimization algorithm [14]. More novel
population-based algorithms are gray wolf optimization
algorithm (GWO) [15], wolf pack optimization algorithm
(WPA) [16], dragonfly algorithm (DA) [17], whale opti-
mization algorithm (WOA) [18], ant lion optimization al-
gorithm (ALO) [19], and Salp swarm algorithm (SSA) [20].
-e human-based algorithms are inspired by human be-
havior, such as brain storm optimization (BSO) [21].

Harris hawks optimization algorithm (HHO) [22]is a
swarm intelligence optimization algorithm proposed in recent
years, which is derived from the group hunting behavior of
Harris hawks. Because HHO has a simple structure, easy
implementation, and high performance, it has attracted the
attention of a large number of researchers since the algorithm
was proposed. -e researchers have improved the basic HHO
algorithm in different aspects, and some of the improved al-
gorithms have been applied to different fields. ElSayed et al. [23]
used HHO combined with sequential quadratic programming
(SQP) to the optimal coordination problem of directional
overcurrent relays incorporating distributed generation. Abbasi
et al. [24]used the chaos method, Gaussian mutation, differ-
ential evolution, and other methods to improve the basic HHO
and apply the improved algorithm to the fatigue life analysis of
tapered roller bearings. Jouhari et al. [25]introduced the Salp
swarm algorithm (SSA) into the basic HHO, and the position
update mechanism is selected through a parameter, and the
improved algorithm is applied to the scheduling problem. Chen
et al. [26]introduced chaotic drift mechanism into the basic
HHO to improve the algorithm, and the improved algorithm is
applied to the parameter identification problem of photovoltaic
cells and modules. Jia et al. [27]used dynamic parameters to
adjust prey escape energy factor and mutation mechanism to
improve the basic HHO, and used the improved algorithm for
the satellite image segmentation problem. Qu et al. [28] en-
hanced the information exchange between population indi-
viduals and introduced escape energy factors with chaotic
disturbances to improve the basic HHO algorithm.

Although different scholars have proposed different im-
proved HHO algorithms, they are not suitable for all optimi-
zation problems. Based on this, it makes sense to develop more
efficient and accurate algorithms. In this article, a CCCHHO
algorithm that integrates multiple strategies is proposed. -e
algorithm initializes the population through the chaotic method
and uses the ergodicity of the chaotic system to enhance the
diversity of the population, and uses the characteristics of the
cosine function to periodically trigger the update of the prey
escape energy that more efficiently balances the exploration and
exploitation of the algorithm, and introduces a mutation
strategy to enhance the global exploration ability that can
prevent the algorithm from falling into the local optimum.-e
use of chaotic local search can effectively jump out after the
algorithm falls into the local optimum and improve the local
optimization ability of the algorithm at the same time. Finally,
the elite individual guidance mechanism is used to update the
population’s individual position and use the greedy mechanism
to obtain the optimal population as the initial population of the
next iteration, which enhances the diversity of the population to
accelerate the convergence speed of the algorithm. In order to

verify the performance of the proposed algorithm, 11 bench-
mark test functions are used for simulation analysis and
compared with other meta-heuristic algorithms and some
improved HHO algorithms.

-e structure of this article is as follows. Section 2 in-
troduces the basic HHO algorithm. Section 3 introduces the
proposed CCCHHO algorithm. -e fourth section is a
simulation experiment, and the results are analyzed at the
same time. Section 5 expounds on the conclusions and
future work.

2. Harris Hawks Optimization
Algorithm (HHO)

-eHarris hawks optimization algorithm is a meta-heuristic
algorithm inspired by the Harris hawks hunting. HHO
contains multiple search mechanisms depending on the
different strategies adopted by the hawk at different phases.
A detailed description of these search mechanisms is given
below.

2.1. Exploration Phase. At this phase, the Harris hawks
update position with two different strategies based on the
probability q. -e formulas are as follows:

X(t +1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, q≥0.5,

Xrabbit(t) − Xm(t) − r3 LB+ r4(UB − LB)( 􏼁, q<0.5,

⎧⎪⎨

⎪⎩

(1)

Xm(t) �
1
N

􏽘

N

i�1
Xi(t),

(2)
where X(t + 1) and X(t) represent the position vector of
hawks in iteration t + 1 and t, respectively, Xrabbit(t) is the
position of rabbit, Xm(t) is the average position of the
current population of hawks, Xrand(t) represents randomly
selected individuals in the current population, r1, r2, r3, r4,
and q are random numbers between 0 and 1, and LB and UB
are the upper and lower bounds of the population, re-
spectively, and N is the population number.

2.2. Transition from Exploration to Exploitation. HHO re-
alizes the transformation of exploration and exploitation
through the escape energy factor E. -e formula as follows:

E � 2E0 1 −
t

T
􏼒 􏼓 , (3)

where E0 is a random number between − 1 and 1, T is the
maximum number of iterations, and t is the current number
of iterations. When |E|≥ 1, HHO performs the global search.
Otherwise, local exploitation is performed.

2.3. Exploitation Phase. During the exploitation phase,
HHO uses four different strategies to update location and
decides which strategy to use by the escape energy factor E

and the random number r ∈ (0, 1), and r indicates the
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chance of the prey to escape before the surprise pounce.
When r≥ 0.5, it cannot escape. When r< 0.5, it can.

2.4. Soft Besiege. When r≥ 0.5 and |E|≥ 0.5, the prey has
enough energy to try to escape by jumping, but ultimately, it
cannot. -e hawk’s position update formula is as follows:

X(t + 1) � Xrabbit(t) − X(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (4)

where J � 2(1 − r5) represents the random jump intensity
when the prey escapes, and r5 is a random number between 0
and 1.

2.5. Hard Besiege. When r≥ 0.5 and |E|< 0.5, the prey is
captured by the hawks with lower energy. -e hawk’s po-
sition update formula is as follows:

X(t + 1) � Xrabbit(t) − E Xrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (5)

2.6. Soft Besiege with Progressive Rapid Dives. When r< 0.5
and |E|≥ 0.5, the prey has enough energy to ensure a suc-
cessful escape, so the soft besiege strategy of fast dive is
implemented, and the position update formulas are as
follows:

Y � Xrabbit(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (6)

Z � Y + S × LF(D) , (7)

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
􏼨 (8)

where D is the problem dimension, S is the D dimension
random row vector, and LF is the Levf function.-e formula
is as follows:

LF(x) � 0.01 ×
u × σ
|v|

1/β ,

σ �
Γ(1 + β) × sin(πβ/2)

Γ(1 + β/2) × β × 2(β− 1/2)
􏼠 􏼡

1/β

,

(9)

where u and v are random numbers between 0 and 1, and β is
1.5.

2.7. Hard Besiege with Progressive Rapid Dives. When r< 0.5
and |E|< 0.5, prey energy is lower, but escape is still possible.
A hard besiege strategy of rapid dive is implemented to
reduce the average distance from the prey, and the position
update formulas are as follows:

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
􏼨 (10)

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 , (11)

Z � Y + S × LF(D) , (12)

where D is the problem dimension, S is the D dimension
random row vector, LF is the Levf function (Equation (9)),
Xrabbit(t) is the position of rabbit, and Xm(t) is the average
position of the current population of hawks.

3. Harris Hawks Optimization Algorithm with
Multiple Strategies (CCCHHO)

Aiming at the problems existing in the HHO algorithm, the
article improves the HHO through various aspects. By in-
troducing the method of Logistic map to replace the random
initialization method of the basic HHO algorithm, the
characteristics of the chaotic system are used to help the
algorithm generate more diverse populations. In the ex-
ploration phase, the Cauchy mutation strategy is used to
enhance the global search ability that helps the algorithm
jump out of the local optimum. A new formula is used to
update the energy factor E to better balance the global search
and local exploitation. In the exploitation phase, the chaotic
local search strategy is used to enhance the local search
ability. Finally, introduce the elite guidance strategy, which
uses the dominant group to guide the update of the pop-
ulation individuals, and then, use the greedy strategy to save
the better individuals to speed up the convergence speed of
the algorithm.

3.1. Chaotic Maps. Chaotic systems have the characteristics
of randomness and ergodicity. More diverse populations can
be generated by using these characteristics, thereby im-
proving the performance and speeding up the convergence
speed of the algorithm. Kaur et al. [29] used the chaotic map,
which generates the initialization population instead of the
randomly generated population, which makes the improved
algorithm easy to jump out of the local optimum and im-
proves the optimization performance of the whale algo-
rithm. At present, there are many different chaotic maps in
the optimization field [30], mainly including Logistic map,
Tent map, and Gauss map.-is article uses the Logistic map
to generate the initialization population. -e Logistic map is
defined as follows:

xi+1 � μxi 1 − xi( 􏼁 , i � 1, 2,&, N − 1, (13)

where μ is 4, x1 is a random number between 0 and 1, and N
is the number of population’s individuals.

-e initial population position generated by using the
Logistic map is more uniform distribution of population
position compared to the randomly generated, which in-
creases the diversity of the population and expands the
search range of the hawks in space. To a certain extent, it
improves the shortcomings of HHO that it is easy to fall into
local optimum.

3.2. CauchyMutation. Cauchy mutation originates from the
Cauchy distribution, and the standard Cauchy distribution
probability density is as follows:
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f(x) �
1
π

.
1

1 + x
2, x ∈ (− ∞, +∞) . (14)

Figure 1 shows that the probability distribution of the
Cauchy distribution function is closer to the horizontal axis
in the horizontal direction, and the slower it changes.
-erefore, the Cauchy distribution can be regarded as
infinite. So in terms of probabilities, the Cauchy distribution
has a wider distribution range [31]. -is means that by using
the random numbers generated by the Cauchy distribution
as the perturbation factor in the optimization process, one
can obtain a relatively broad search space, which can prevent
the algorithm from falling into the local optimum in the
exploration phase in a way, and after falling into the local
optimum, it is easier to jump out the optimum. After
obtaining the optimal solution of the current population, use
the following formula to update the current global optimal
solution:

Xbest′ � Xbest + Xbest × cauchy(0, 1)
1
2
. (15)

Here, cauchy(0, 1) is the standard Cauchy distribution.

3.3. Nonlinear Energy Factor E Based on Cosine Strategy.
In the HHO algorithm, the energy factor E is an important
parameter to balance the exploration phase and the ex-
ploitation phase. -e larger |E|, the more inclined the HHO
algorithm is to perform the exploration. Conversely, the
more inclined it is to perform the exploitation. In the HHO
algorithm, the energy factor E decreases linearly from large
to small, which cannot effectively describe the real situation
of Harris hawks rounding up prey in nature. In the mul-
tiround game of the Harris hawks and the prey, the energy of
the prey cannot be simply reflected by linear changes. -e
energy of the prey should change periodically and eventually
reach zero to be captured by the hawks. During each round
of rounding up, the prey will get a short rest to recover a
small amount of energy, but over time, the energy recovered

by the prey will gradually decrease until the energy reaches
zero. In this article, the cosine function is used to describe
the periodic change of prey energy.-e formula is as follows:

E � 2 × cos
5πt

T
􏼒 􏼓 × 1 −

t

T
􏼒 􏼓 ×(2rand − 1) . (16)

Figure 2 shows the change of energy escape factor during
iteration. As we can see, the energy escape factor changes
periodically until it becomes zero, which well describes the
energy change of prey in the process of being rounded up.

3.4. Chaotic Local Search. Local search is one of the effective
methods to prevent the algorithm from falling into the local
optimum. In most cases, the solution is near the local op-
timum, and the algorithm cannot obtain it. After the al-
gorithm falls into the local optimum, by using the local
search method to search for the vicinity of the local optimal
solution, one can effectively jump out of the local optimum
and improve the performance of the algorithm. However,
sometimes, the local method does not produce ideal results.
-e ergodic characteristics of chaotic systems can be con-
sidered, and the system starts from an initial state and
follows its ownmotion law and experiences all state points in
its attraction space without repetition for a long enough
time. If a chaotic sequence of length k is superimposed on
the optimal individual of the current population, it is
equivalent to carrying out k times local search without
repetition in the neighbourhood of the optimal individual of
the current population. Introduce the chaotic local search
strategy [32], and the ergodicity of the chaotic system can
effectively prevent the algorithm from falling into the local
area, and at the same time, the search efficiency and search
range are enhanced compared with local search. -e
pseudocode of the chaotic local search algorithm is given in
Algorithm 1.

In this article, Equation (13) is used in the chaotic
search algorithm that the Logistic map produces a chaotic
sequence. -e chaotic sequence value generated by the
Logistic map is between 0 and 1. If the value is directly
superimposed on any dimension of the optimal
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Figure 1: Standard Cauchy distribution probability density
function curve.
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Figure 2: Energy escape factor.
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individual, the search will only be carried out in one
direction, so that the local search performance will be
greatly reduced. To solve this problem, this article uses

the number that chaotic search counter k to periodically
adjust the search direction. -e position update formula
is as follows:

Initialization chaotic search times D

Generate a chaotic sequence of length D by using a chaotic map
Get the best individual in the current population Xbest
Setting up the chaotic search counter k � 0
While k<D

Superimpose an item of the chaotic sequence on any dimension in Xbest to form a new individual Xcls
best

Calculate the fitness value f(Xcls
best) of new individual Xcls

best
iff(Xcls

best)<f(Xbest)

Update the optimal individual and fitness value of the current population
end if
k � k + 1

end while

ALGORITHM 1: Chaotic local search.

Initialize population size N, number of iterations T
Use Equation (13) to perform chaotic strategy initialization population Xi (i � 1, 2, . . . , N)
Set the current number of iterations t � 0
while t<T
Calculate the fitness value of hawks
Set the best position as the position of the prey Xrabbit
for each individual Xi

Update escape energy E and jump strength J by using Equation (16)
if(|E|≥ 1)

Update location by using Equation (1)
Get the optimum of the current population and use Equation (15) to carry out the Cauchy mutation

end if
if(|E|< 1)

if(r≥ 0.5, |E|≥ 0.5)

Update location by using Equation (4)
else if(r≥ 0.5, |E|< 0.5)

Update location by using Equation (5)
else if(r≥ 0.5, |E|< 0.5)

Update location by using Equation (8)
else if(r≥ 0.5, |E|< 0.5)

Update location by using Equation (10)
end if

Carry out chaotic local search
end if

end for
Carry out elite individual guidance
t � t + 1

end while

ALGORITHM 2: CCCHHO algorithm.

Discrete Dynamics in Nature and Society 5



X
cls
best � Xbest +(− 1)

kβk
, (17)

where Xbest is the optimal individual in the current
population, Xcls

best is the new individual after a chaotic local
search, k is the number that chaotic search counter, and βk

is the chaotic sequence value generated by the Logistic
map.

3.5. Elite Individual Guidance Mechanism. In the gray wolf
optimization algorithm, it is proposed that the position of
the wolf pack follows the guidance of three individuals in the
group, α wolf, β wolf, and δ wolf, which can effectively
improve the search efficiency. Based on this, this article
introduces an elite individual guidance mechanism. -e top
three better individuals in the current population are se-
lected as leaders to guide the location update of other in-
dividuals, so that the information exchange between the
population individuals and the better individual in the
population is strengthened, thereby enhancing the diversity
of the population. -e hawk’s position update formulas are
as follows:

X′ � X + A∗ 2Xα − Xβ − Xδ􏼐 􏼑, (18)

A � 2ar − a, (19)

where X is the current individual position, X′ is the
updated position, Xα is the optimal solution in the
current population, Xβ is the suboptimal solution in
the current population, Xδ is the third optimal solution in
the current population, a is linearly decreased from 2 to 0
in the iterative process, and r is a random number be-
tween 0 and 1.

Based on the greedy mechanism, the better one is se-
lected as a new individual, and the rabbit position and rabbit
energy are updated at the same time.

3.6. �e Pseudocode of CCCHHO. Algorithm 2 pseudocode
describes the details of CCCHHO.

4. Results and Discussion

In order to verify the performance of the proposed
CCCHHO algorithm, this article tests the algorithm through
11 benchmark functions and gives the experimental results
and analysis. -e test functions can be divided into two
groups: F1∼ F5 are unimodal benchmark functions, in which
the characteristics with the unique global optimal value can
evaluate the local exploitation capabilities of different op-
timization algorithms, and F6∼ F11 are multimodal
benchmark functions, which can evaluate the global ex-
ploration of different algorithms and the ability to avoid
local optimum. According to the best, mean, worst, and
standard deviation of the results, the proposed CCCHHO is
compared with other optimization algorithms, such as
GWO, SSA, and ALO. At the same time, it is compared with
the other improved HHO algorithms.-e information of the
benchmark functions F1–F11 is shown in Table 1.

4.1. Experimental Settings. All algorithms run using MAT-
LAB R2019b on a computer with 16Gmemory, AMD4800U.
-e population size of all algorithms is set to 30, the
maximum number of iterations is set to 500, and each al-
gorithm loop executes 30 times.

Table 1: Description of benchmark functions.

Function V_no Range fmin

F1(x) � 􏽐
n
i�1 x2

i 30 [− 100,
100] 0

F2(x) � 􏽐
n
i�1 |xi| + 􏽑

n
i�1 |xi| 30 [− 10, 10] 0

F3(x) � max |xi|, 1≤ i≤ n􏼈 􏼉 30 [− 100,
100] 0

F4(x) � 􏽐
n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [− 30, 30] 0

F5(x) � 􏽐
n
i�1 ([xi + 0.5])2 30 [− 100,

100] 0

F6(x) � 􏽐
n
i�1 − xisin(

���
|xi|

􏽰
) 30 [− 500,

500] − 418.9829× 5

F7(x) � − 20exp(− 0.2
�����������
(1/n) 􏽐

n
i�1 x2

i

􏽱
) − exp((1/n) 􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [− 32, 32] 0

F8(x) � (π/n) 10sin(πy1) + 􏽐
n− 1
i�1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2􏽮 􏽯 + 􏽐

n
i�1 u(xi, 10, 100, 4)

yi � 1 + (xi + 1/4)u(xi, a, k, m) �

k(xi − a)
m

xi > a,

0 − a<xi < a,

k(− xi − a)
m

xi < − a,

⎧⎪⎨

⎪⎩

30 [− 50, 50] 0

F9(x) � 0.1 sin2(3πx1) + 􏽐
n
i�1 (xi − 1)2[1 + sin2(3πxi + 1)]􏽮

+(xn − 1)2[1 + sin2(2πxn)]} + 􏽐
n
i�1 u(xi, 5, 100, 4)

30 [− 50, 50] 0

F10(x) � ((1/500) + 􏽐
25
j�1(1/j + 􏽐

2
i�1 (xi − aij)

6))− 1 2 [− 65, 65] 1
F11(x) � 􏽐

11
i�1[ai − (x1(b2i + bix2)/b2i + bix3 + x4)]

2 4 [− 5, 5] 0.00030
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4.2. Comparison of CCCHHO and Other Optimization
Algorithms. -is section compares CCCHHO with four
optimization algorithms: HHO, GWO, SSA, and ALO.
Record the optimal value (best), mean value (avg), worst
value (worst), and standard deviation (std) of each al-
gorithm. -e results of each algorithm are shown in
Table 2.

From Table 2, it can be seen that the performance of
the CCCHHO algorithm proposed in this article is greatly
improved compared with the performance of other
swarm intelligence optimization algorithms. For the F1∼
F5 function, the results of the four dimensions of

CCCHHO are much higher than the other four algo-
rithms, especially the results of F1, F4, and F5 all reach the
minimum value of the function. At the same time, the
stability of CCCHHO is also far better than the other four
algorithms. For the six functions of F6∼ F11, the results of
F8 and F9 are better than the other four algorithms. And
the results of F7 are the same as the HHO algorithm,
better than GWO, SSA, and ALO. -e mean value of F6 is
the same as that of HHO, but the stability is better. It is
also better than GWO, SSA, and ALO. -e mean values of
F10 and F11 are slightly superior, and the stability is also
better.

Table 2: -e result of the comparison of CCCHHO with HHO, GWO, SSA, and ALO.

Function Index CCCHHO HHO GWO SSA ALO

F1

Best 0.00E+ 00 7.44E − 115 6.94E − 30 3.42E − 08 2.25E − 09
Avg 0.00E+ 00 1.42E − 98 9.05E − 28 6.22E − 07 9.83E − 09
Worst 0.00E+ 00 2.90E − 97 5.04E − 27 7.13E − 06 5.86E − 08
Std 0.00E+ 00 5.43E − 98 1.33E − 27 1.50E − 06 1.00E − 08

F2

Best 6.30E− 238 2.38E − 60 1.93E − 17 5.10E − 06 1.68E − 05
Avg 1.69E− 180 5.47E − 52 8.89E − 17 2.09E − 03 5.72E − 01
Worst 5.07E− 179 4.53E − 51 1.99E − 16 5.18E − 02 3.95E+ 00
Std 0.00E+ 00 1.22E − 51 5.33E − 17 9.47E − 03 9.83E − 01

F3

Best 3.04E− 239 2.83E − 57 9.35E − 08 9.21E − 06 2.04E − 04
Avg 3.72E− 209 3.16E − 50 6.08E − 07 2.07E − 05 4.69E − 03
Worst 1.07E− 207 1.73E − 49 1.88E − 06 3.48E − 05 5.53E − 02
Std 0.00E+ 00 5.37E − 50 5.15E − 07 6.34E − 06 1.16E − 02

F4

Best 0.00E+ 00 3.34E − 04 2.57E+ 01 3.84E+ 00 5.57E − 04
Avg 0.00E+ 00 1.15E − 02 2.69E+ 01 1.34E+ 02 1.07E+ 02
Worst 0.00E+ 00 6.87E − 02 2.87E+ 01 2.03E+ 03 6.67E+ 02
Std 0.00E+ 00 1.61E − 02 8.70E − 01 3.79E+ 02 1.82E+ 02

F5

Best 0.00E+ 00 2.60E − 10 5.27E − 05 4.30E − 10 1.83E − 09
Avg 0.00E+ 00 1.01E − 04 7.06E − 01 9.71E − 10 1.11E − 08
Worst 0.00E+ 00 3.43E − 04 1.43E+ 00 1.98E − 09 8.91E − 08
Std 0.00E+ 00 1.08E − 04 3.59E − 01 4.14E − 10 1.57E − 08

F6

Best −1.26E+ 04 −1.26E+ 04 − 7.79E+ 03 − 3.71E+ 03 − 3.56E+ 03
Avg −1.26E+ 04 −1.26E+ 04 − 6.02E+ 03 − 2.83E+ 03 − 2.54E+ 03
Worst −1.26E+ 04 − 1.23E+ 04 − 3.77E+ 03 − 2.25E+ 03 − 1.81E+ 03
Std 1.85E− 12 5.55E+ 01 7.57E+ 02 3.44E+ 02 5.44E+ 02

F7

Best 8.88E− 16 8.88E− 16 7.19E − 14 8.15E − 06 2.33E − 05
Avg 8.88E− 16 8.88E− 16 1.05E − 13 7.30E − 01 3.82E − 01
Worst 8.88E− 16 8.88E− 16 1.36E − 13 2.32E+ 00 2.01E+ 00
Std 0.00E+ 00 0.00E+ 00 1.65E − 14 9.43E − 01 6.73E − 01

F8

Best 1.57E− 32 3.91E − 08 1.28E − 02 1.33E − 11 9.98E − 10
Avg 1.57E− 32 5.78E − 06 6.31E − 02 9.92E − 01 2.78E+ 00
Worst 1.57E− 32 2.89E − 05 5.57E − 01 6.37E+ 00 8.15E+ 00
Std 5.57E− 48 8.34E − 06 9.56E − 02 1.44E+ 00 2.58E+ 00

F9

Best 1.35E− 32 1.28E − 07 2.01E − 01 5.81E − 11 2.15E − 09
Avg 1.35E− 32 1.01E − 04 5.58E − 01 2.56E − 03 2.13E − 03
Worst 1.35E− 32 5.26E − 04 9.24E − 01 1.10E − 02 3.08E − 02
Std 5.57E− 48 1.29E − 04 1.93E − 01 4.73E − 03 6.37E − 03

F10

Best 9.98E− 01 9.98E− 01 9.98E− 01 9.98E− 01 9.98E− 01
Avg 9.98E− 01 1.49E+ 00 4.23E+ 00 1.13E+ 00 2.15E+ 00
Worst 9.98E− 01 5.93E+ 00 1.27E+ 01 1.99E+ 00 7.87E+ 00
Std 2.40E− 16 9.62E − 01 3.80E+ 00 3.44E − 01 1.76E+ 00

F11

Best 3.08E− 04 3.09E − 04 3.08E− 04 5.14E − 04 5.06E − 04
Avg 3.26E− 04 4.50E − 04 1.81E − 03 4.19E − 03 4.84E − 03
Worst 3.65E− 04 1.40E − 03 2.04E − 02 2.04E − 02 2.12E − 02
Std 1.55E− 05 3.06E − 04 5.05E − 03 7.37E − 03 8.01E − 03
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4.3. Comparison of CCCHHO and Other Improved HHO
Algorithms. -is section compares CCCHHO with THHO
[33], MHHO [34], and OBLHHO [35]. We record the
optimal value (best), mean value (avg), worst value (worst),
and standard deviation (std) of each algorithm, and the
results of each algorithm are shown in Table 3.

As can be seen from Table 3, the results of the
CCCHHO algorithm in 7 benchmark functions that F1∼
F5, F8, and F9 are higher than other improved HHO
algorithms in 4 dimensions, among which F1, F4, and F5
have reached the minimum value of the function. -e

mean values of the three functions F6, F10, and F11 are
slightly better than other improved algorithms; the re-
sults of F7 are the same as those of HHO and the im-
proved HHO algorithm. At the same time, the CCCHHO
algorithm has better advantages in the standard deviation
of all functions except F7. -e results show that the
CCCHHO algorithm outperforms the other improved
algorithms in terms of accuracy and stability.

-e convergence curves of CCCHHO, HHO, and other
improved HHO algorithms in each benchmark function are
shown in Figures 3 and 4.

Table 3: -e result of comparison of CCCHHO with the improved algorithm.

Function Index CCCHHO THHO MHHO OBLHHO

F1

Best 0.00E+ 00 0.00E+ 00 1.58E − 141 0.00E+ 00
Avg 0.00E+ 00 6.48E − 108 4.94E − 124 7.20E − 299
Worst 0.00E+ 00 1.92E − 106 1.01E − 122 2.16E − 297
Std 0.00E+ 00 3.51E − 107 1.92E − 123 0.00E+ 00

F2

Best 6.30E− 238 2.74E − 178 1.53E − 72 9.02E − 222
Avg 1.69E− 180 1.01E − 56 8.05E − 63 2.35E − 170
Worst 5.07E− 179 1.54E − 55 1.95E − 61 7.02E − 169
Std 0.00E+ 00 3.40E − 56 3.57E − 62 0.00E+ 00

F3

Best 3.04E− 239 6.44E − 170 9.30E − 71 1.15E − 212
Avg 3.72E− 209 3.41E − 56 1.42E − 63 1.41E − 159
Worst 1.07E− 207 8.97E − 55 2.95E − 62 4.22E − 158
Std 0.00E+ 00 1.64E − 55 5.43E − 63 7.70E − 159

F4

Best 0.00E+ 00 3.92E − 08 9.05E − 06 5.63E − 06
Avg 0.00E+ 00 6.65E − 03 5.84E − 03 1.01E − 02
Worst 0.00E+ 00 3.87E − 02 3.96E − 02 8.90E − 02
Std 0.00E+ 00 9.68E − 03 8.69E − 03 2.01E − 02

F5

Best 0.00E+ 00 5.93E − 09 1.89E − 07 5.03E − 07
Avg 0.00E+ 00 1.64E − 04 8.92E − 05 1.76E − 04
Worst 0.00E+ 00 1.13E − 03 4.92E − 04 8.03E − 04
Std 0.00E+ 00 2.92E − 04 1.06E − 04 2.13E − 04

F6

Best −1.26E+ 04 −1.26E+ 04 −1.26E+ 04 −1.26E+ 04
Avg −1.26E+ 04 − 1.25E+ 04 − 1.25E+ 04 − 1.25E+ 04
Worst −1.26E+ 04 − 9.95E+ 03 − 1.19E+ 04 − 9.05E+ 03
Std 1.85E− 12 4.78E+ 02 1.23E+ 02 6.43E+ 02

F7

Best 8.88E− 16 8.88E − 16 8.88E − 16 8.88E − 16
Avg 8.88E− 16 8.88E − 16 8.88E − 16 8.88E − 16
Worst 8.88E− 16 8.88E − 16 8.88E − 16 8.88E − 16
std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F8

Best 1.57E− 32 7.43E − 09 1.20E − 09 1.48E − 08
Avg 1.57E− 32 1.11E − 05 5.14E − 06 6.55E − 06
Worst 1.57E− 32 4.83E − 05 3.97E − 05 6.32E − 05
Std 5.57E− 48 1.23E − 05 7.67E − 06 1.25E − 05

F9

Best 1.35E− 32 4.52E − 08 9.51E − 08 3.10E − 07
Avg 1.35E− 32 2.40E − 04 6.75E − 05 7.72E − 05
Worst 1.35E− 32 9.31E − 04 2.60E − 04 5.53E − 04
Std 5.57E− 48 2.64E − 04 7.84E − 05 1.21E − 04

F10

Best 9.98E− 01 9.98E− 01 9.98E− 01 9.98E− 01
Avg 9.98E− 01 1.49E+ 00 1.66E+ 00 1.41E+ 00
Worst 9.98E− 01 5.93E+ 00 5.93E+ 00 2.98E+ 00
Std 2.40E− 16 1.26E+ 00 1.50E+ 00 6.12E − 01

F11

Best 3.08E− 04 3.08E− 04 3.08E− 04 3.10E − 04
Avg 3.26E− 04 3.66E − 04 3.85E − 04 3.47E − 04
Worst 3.65E− 04 4.75E − 04 1.68E − 03 4.23E − 04
Std 1.55E− 05 4.93E − 05 2.48E − 04 3.24E − 05
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Figure 3: Convergence curve of unimodal function. (a) F1. (b) F2. (c) F3. (d) F4.(e) F5.
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Figure 4: Convergence curve of multimodal function. (a) F6. (b) F7. (c) F8. (d) F9. (e) F10. (f ) F11.
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Figure 3 shows the convergence curves of each algorithm
on the unimodal benchmark function. Among the five
improved algorithms, the CCCHHO proposed in this article
has the best performance in optimization. In F1∼ F3,
CCCHHO converges the fastest and has the highest accu-
racy. In F4 and F5, it can be seen that CCCHHO has fallen
into the local optimum many times in the iterative process.
In the early phase, it jumped out of the local optimum
through the Cauchy mutation strategy, successfully jumped
out of the local optimum through the chaotic local search
strategy in the later phase of the iteration, and finally found a
better solution.

Figure 4 shows the convergence curve of each algorithm on
the multimodal benchmark function. For the F6 function, the
convergence speed of CCCHHO is relatively fast, and the
optimization results are basically the same. In the F7 function,
the convergence speed of CCCHHO is only second to
OBLHHO. For the F8 function and the F9 function, compared
with the other improved HHO algorithms, they fell into local
optimum very early and have not jumped out of it. CCCHHO
jumped out the local optimal valuemany times throughCauchy
mutation, chaotic local search, and elite individual guidance
strategy and finally found a better solution. In F10∼ F11, the
final results of CCCHHO and the other improved algorithms
are better, and the convergence speed of CCCHHO is relatively
fast.

5. Conclusions

In this article, a new Harris hawks optimization algo-
rithm with multistrategy (CCCHHO) is proposed by
introducing chaotic method initialization population,
Cauchy mutation, nonlinear escape energy factor based
on cosine function, chaotic local search, and elite indi-
vidual guidance mechanism to improve the optimization
performance of the basic HHO algorithm. In order to
verify the performance of the proposed algorithm, 11
different types of benchmark functions were tested to
analyze the exploration ability, exploitation ability, and
convergence behavior of CCCHHO. -e experimental
results show that the exploration, exploitation, and
convergence speed of CCCHHO is better than that of the
basic HHO, three improved HHO algorithms, and three
other swarm intelligence optimization algorithms. In
future work, higher-dimensional problems will be tested
and evaluated, and CCCHHO will be applied to practical
engineering problems, such as parameter optimization
and shop scheduling.
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