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In this paper, we construct and investigate the space of null variable exponent second-order quantum backward di�erence
sequences of fuzzy functions, which are crucial additions to the concept of modular spaces. e idealization of the mappings has
been achieved through the use of extended s− fuzzy functions and this sequence space of fuzzy functions. is new space’s
topological and geometric properties and the mappings’ ideal that corresponds to them are discussed. We construct the existence
of a �xed point of Kannan contraction mapping acting on this space and its associated pre-quasi ideal. To demonstrate our
�ndings, we give a number of numerical experiments. ere are also some signi�cant applications of the existence of solutions to
nonlinear di�erence equations of fuzzy functions.

1. Introduction

We assume thatN is the set of non-negative integers. Yaying
et al. [1] de�ned quantum second-order backward di�erence
operator, ∇2p, where za � 0, for a< 0, and
∇2pza � za − (1 + p)za− 1 + pza− 2, for all p ∈ (0, 1) and
a ∈N. Note that the operator ∇2p reduces to ∇2 when
p⟶ 1− , which de�ned and studied in Reference [2]. ey
proved that the spaces c0(∇2p) and c(∇2p) are Banach spaces
linearly isomorphic to c0 and c, respectively, and obtained
their Schauder bases and α− , β− , and c− duals. ey de-
termined the spectrum, the point spectrum, the continuous
spectrum, and the residual spectrum of the operator ∇2p over
the Banach space c0 of null sequences. It is clear to see that

c0 ⫋ c0 ∇
2
p( ) ⫋ ∇2( ). (1)

For the strict inclusion, we have (1, 1, . . .) ∉ c0 and
(1, 1, . . .) ∈ c0(∇2p), and (0, 1, 2, . . .) ∉ c0(∇2p) and
(0, 1, 2, . . .) ∈ c0(∇2).

e mappings’ ideal theory is well regarded in functional
analysis. Fixed-point theory, Banach space geometry, nor-
mal series theory, approximation theory, and ideal trans-
formations all use mappings’ ideal. Using s-numbers is an
essential technique. For more background details, see
Pietsch [3], Constantin [4], and Tita [5]. Pre-quasi map-
pings’ ideals are more extensive than quasi mappings’ ideals,
according to Faried and Bakery [6]. Bakery and Elmatty [7]
explained a note on Nakano generalized di�erence sequence
space under premodular. Since the booklet of the Banach
�xed-point theorem [8], many mathematicians have worked
on many developments. For more background and recent
works on applicative approach of �xed-point theory, see
Ruẑiĉka [9], Mao et al. [10], and Younis et al. [11–14].
Kannan [15] gave an example of a class of mappings with the
same �xed-point actions as contractions, though that fails to
be continuous. e only attempt to describe Kannan op-
erators in modular vector spaces was once made in Refer-
ence [16]. Bakery andMohamed [17] explored the concept of
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the pre-quasi-norm on Nakano sequence space such that its
variable exponent belongs to (0, 1]. ,ey explained the
sufficient conditions on it equipped with the definite pre-
quasi-norm to generate pre-quasi Banach. ,ey examined
the Fatou property of different pre-quasi-norms on it.
Moreover, they showed a fixed point of Kannan pre-quasi-
norm contraction maps on it and on the pre-quasi Banach
operator ideal constructed by s-numbers that belong to this
sequence space.

Zadeh [18] established the concept of fuzzy sets and
fuzzy set operations, and many researchers adopted the
concept of fuzziness in cybernetics and artificial intelligence
as well as in expert systems and fuzzy control. We refer the
reader to the following exciting works dealing with Kannan
mappings and fuzzy concepts with different applications, see
Reference [19–25]. Many researchers in sequence spaces and
summability theory studied fuzzy sequence spaces and their
properties. In Reference [26], the Nakano sequences of fuzzy
integers were defined and analyzed. Bakery and Mohamed
[27] introduced the certain space of sequences of fuzzy
numbers, in short (cssf ), under a certain function to be pre-
quasi (cssf ). ,is space and s− numbers have been used to
describe the structure of the ideal operators. ,ey defined
and studied the weighted Nakano sequence spaces of fuzzy
functions. ,ey constructed the ideal generated by extended
s− fuzzy functions and the sequence spaces of fuzzy func-
tions. ,ey presented some topological and geometric
structures of this class of ideal and multiplication mappings
acting on this sequence space of fuzzy functions. Moreover,
the existence of Caristi’s fixed point was examined. Many
fixed-point theorems are effective when applied to a given
space because they either enlarge the self-mapping acting on
it or expand the space itself. Specifically, in this study, we
construct and investigate the space of null variable exponent
second-order quantum backward difference sequences of
fuzzy functions, which are crucial additions to the concept of
modular spaces. ,e idealization of the mappings has been
achieved through the use of extended s− fuzzy functions and
this sequence space of fuzzy functions. ,e topological and
geometric properties of this new space and the mappings’
ideal that corresponds to them are discussed. We construct
the existence of a fixed point of Kannan contraction map-
ping acting on this space and its associated pre-quasi ideal.
Interestingly, several numerical experiments are presented
to illustrate our results. Additionally, some successful ap-
plications to the existence of solutions of nonlinear differ-
ence equations of fuzzy functions are introduced.

2. Definitions and Preliminaries

It is worth mentioning that Matloka [28] introduced
bounded and convergent fuzzy numbers, investigated
some of their properties, and demonstrated that any
convergent fuzzy number sequence is bounded. Nanda
[29] researched fuzzy number sequences and demon-
strated that the set of all convergent fuzzy number se-
quences forms a complete metric space. Kumar et al. [30]
presented the concept limit points and cluster points of
sequences of fuzzy numbers. If Ξ is the set of all closed and

bounded intervals on the real line R, then we assume y �

[y1, y2] and z � [z1, z2] in Ξ, let

y≤ z, if , only if , y1 ≤ z1, y2 ≤ z2. (2)

Clearly, the relation ≤ is a partial order on Ξ. We define
a metric ρ on Ξ by

ρ(y, z) � max y1 − z1


, y2 − z2


 . (3)

Matloka [28] proved that ρ is a metric on Ξ and (Ξ, ρ) is a
complete metric space.

Definition 1. A fuzzy number z is a fuzzy subset ofR, that is,
a mapping z: R⟶ [0, 1] that verifies the four conditions:

(a) z is fuzzy convex; that is, for t1, t2 ∈ R, and
α ∈ [0, 1], z(αt1 + (1 − α)t2)≥min z(t1), z(t2) .

(b) z is normal; that is, there is t0 ∈ R such that
z(t0) � 1.

(c) z is an upper-semicontinuous, that is, for all α> 0,
z− 1([0, t + α)), for all t ∈ [0, 1], is open in the usual
topology of R.

(d) ,e closure of z0: � t ∈ R: z(t)> 0{ } is compact.

,e β-level set of a fuzzy real number z, 0< β< 1,
denoted by zβ, is defined as

z
β

� t ∈ R: z(t)≥ β . (4)

,e set of all upper semicontinuous, normal, convex
fuzzy number, and zβ is compact, is marked by R([0, 1]).
,e set R can be embedded in R([0, 1]), if we define
r ∈ R([0, 1]) by

r(t) �
1, t � r,

0, t≠ r.
 (5)

,e additive identity and multiplicative identity in
R[0, 1] are denoted by 0 and 1, respectively. We assume that
y, z ∈ R[0, 1]and the β-level sets are [y]β � [y

β
1 , y

β
2],

[z]β � [z
β
1, z

β
2], and β ∈ [0, 1]. A partial ordering for any

y, z ∈ R[0, 1] is as follows: y≺ z, if and only if, yβ ≤ zβ, for
all β ∈ [0, 1].

We assume that ρ: R[0, 1] × R[0, 1]⟶ R+ ∪ 0{ } is
defined by ρ(y, z) � sup0≤β≤1ρ(yβ, zβ).

We recall that

(1) (R[0, 1], ρ) is a complete metric space
(2) ρ(y + x, z + x) � ρ(y, z) for all y, z, x ∈ R[0, 1]

(3) ρ(y + x, z + l)≤ ρ(y, z) + ρ(x, l)

(4) ρ(ξy, ξz) � |ξ|ρ(y, z), for all ξ ∈ R

By c0, ℓ∞, and ℓr, we denote the space of null, bounded,
and r-absolutely summable sequences of real numbers,
respectively. We indicate the space of all bounded, finite
rank linear mappings from an infinite dimensional Banach
space Ω into an infinite dimensional Banach space Λ by
L(Ω,Λ), and F(Ω,Λ) and when Ω � Λ, we inscribeL(Ω)

and F(Ω). ,e space of approximable and compact
bounded linear mappings from Ω into Λ will be denoted by
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Υ(Ω,Λ) and Lc(Ω,Λ), and if Ω � Λ, we mark Υ(Ω) and
Lc(Ω), respectively.

Definition 2 (see [31]). An s-number function is a mapping
s: L(Ω,Λ)⟶ R+N

that gives all V ∈L(Ω,Λ) a
(sd(V))∞d�0 holds the following conditions:

(a) ‖V‖ � s0(V)≥ s1(V)≥ s2(V)≥ . . . ≥ 0, for every
V ∈L(Ω,Λ).

(b) sl+d− 1(V1 + V2)≤ sl((V1) + sd(V2), for every
V1, V2 ∈L(Ω,Λ) and l, d ∈N.

(c) sd(VYW)≤ ‖V‖sd(Y)‖W‖, for every W ∈L(Ω0,
Ω), Y ∈L(Ω,Λ), and V ∈L(Λ,Λ0), where Ω0 and
Λ0 are arbitrary Banach spaces.

(d) Assume V ∈L(Ω,Λ) and c ∈ R, then sd(cV) �

|c|sd(V).
(e) If rank(V)≤ d, then sd(V) � 0, for all V ∈L(Ω,Λ).
(f ) sl≥a(Ia) � 0 or sl<a(Ia) � 1, where Ia indicates the

unit mapping on the a-dimensional Hilbert space ℓa
2.

We give here some examples of s-numbers:

(1) ,e qth Kolmogorov number, denoted by dq(X), is
marked by dq(X) � inf

dim J≤q
sup‖f‖≤1 inf

g∈J
‖Xf − g‖.

(2) ,e q-th approximation number, indicated by
αq(X), is marked by αq(X) � inf ‖X−{ Y‖: Y ∈
L(Ω,Λ) and rank(Y)≤ q}.

Definition 3 (see [32]). Let L be the class of all bounded
linear operators within any two arbitrary Banach spaces. A
subclass U of L is said to be a mappings’ ideal, if every
U(Ω,Λ) � U∩L(Ω,Λ) satisfies the following setups:

(i) IΓ ∈ U, where Γ indicates Banach space of one
dimension.

(ii) ,e space U(Ω,Λ) is linear over R.
(iii) If W ∈L(Ω0,Ω), X ∈ U(Ω,Λ), and Y ∈L

(Λ,Λ0), then YXW ∈ U(Ω0,Λ0).

Notations 1 (see [27]).

IU: � IU(Ω,Λ) ,whereIU(Ω,Λ): � V ∈L(Ω,Λ): sj(V) 
∞
j�0 ∈ U ,

Iα
U: � Iα

U(Ω,Λ) ,whereIα
U(Ω,Λ): � V ∈L(Ω,Λ): αj(V) 

∞
j�0 ∈ U ,

Id
U: � Id

U Ω, tΛ( ) ,whereId
U(Ω,Λ): � V ∈L(Ω,Λ): dj(V) 

∞
j�0 ∈ U ,

(6)

where

sj(V)(t) �
1, t � sj(V),

0, t≠ sj(V).

⎧⎨

⎩ (7)

Definition 4 (see [6]). A function H ∈ [0,∞)U is said to be a
pre-quasi-norm on the ideal U if the following conditions
hold:

(1) Assume V ∈ U(Ω,Λ), H(V)≥ 0, and H(V) � 0, if
and only if, V � 0

(2) One has Q≥ 1 with H(αV)≤D|α|H(V), for all
V ∈ U(Ω,Λ) and α ∈ R

(3) ,ere are P≥ 1 such that H(V1 + V2)≤
P[H(V1) + H(V2)], for all V1, V2 ∈ U(Ω,Λ)

(4) ,ere are σ ≥ 1 so that if V ∈L(Ω0,Ω),
X ∈ U(Ω,Λ) and Y ∈L(Λ,Λ0) then
H(YXV)≤ σ‖Y‖H(X)‖V‖

Theorem 1 (see [6]). H is a pre-quasi-norm on the ideal U,
whenever H is a quasi-norm on the ideal U.

Lemma 1 (see [33]). If τa > 0 and va, ta ∈ R, for all a ∈N,
then |va + ta|τa ≤ 2K− 1(|va|τa + |ta|τa ), where
K � max 1, supaτa .

3. Some Characteristics of cF
0(=2

p, τ)

,is section is devoted to provide sufficient criteria for the
space of null variable exponent second-order quantum
backward difference sequences of fuzzy numbers, cF

0(∇2p, τ),
endowed with definite function h, to be pre-quasi Banach.
We have examined some algebraic and topological prop-
erties such as completeness, solidness, symmetry, and
convergence-free. ,e Fatou property of various pre-quasi-
norms h on cF

0(∇2p, τ) has been presented.
Let ω(F) denote the classes of all sequence spaces of

fuzzy real numbers. If τ � (τa) ∈ R+N

, where R+N

is the
space of positive reals. ,e space of null variable exponent
second-order quantum backward difference sequences of
fuzzy numbers is defined as follows:cF

0(∇2p, τ) � z �{

(za) ∈ ω(F): lima⟶∞[ρ (|∇2p|μza||, 0)]τa/K �

0, for some μ> 0}.

Theorem 2. If (τa) ∈ ℓ∞, then
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c
F
0 ∇

2
p, τ  � z � za(  ∈ ω(F): lima⟶∞ ρ ∇2p μza






, 0  
τa/K

� 0, for any μ> 0 . (8)

Proof.

%

c
F
0 ∇

2
p, τ  � z � za(  ∈ ω(F): lima⟶∞ ρ ∇2p μza






, 0  
τa/K( )

� 0, for some μ> 0 ,

� z � za(  ∈ ω(F): inf
a

|μ|

τa

K lima⟶∞ ρ ∇2p za






, 0  
τa/K
≤ lima⟶∞ ρ ∇2p μza






, 0  
τa/K( )

� 0, for some μ> 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

� z � za(  ∈ ω(F): lima⟶∞ ρ ∇2p za






, 0  
τa/K

� 0 ,

� z � za(  ∈ ω(F): lima⟶∞ ρ ∇2p μza






, 0  
τa/K

� 0, for any μ> 0 .

(9)

It is clear to see that if (τa) ∈ ℓ∞, then

c
F
0(τ)⊊cF

0 ∇
2
p, τ ⊊cF

0 ∇
2
, τ . (10)

For the strict inclusion, we have (1, 1, 1, . . .) ∉ cF
0 and

(1, 1, 1, . . .) ∈ cF
0(∇2p, τ), and (0, 1, 2, . . .) ∉ cF

0(∇2p, τ) and
(0, 1, 2, . . .) ∈ cF

0(∇2, τ).
For z � (zk), a given sequence S(z) denotes the set of all

permutation of the elements of (zk); that is,
S(z) � (zπ(k)) . □

Definition 5
(1) A sequence space of fuzzy numbers U is said to be

symmetric if S(z) ∈ U, for all z ∈ U
(2) A sequence space of fuzzy numbers U is said to be

convergence-free if (yk) ∈ Uwhenever (zk) ∈ U and
zk � 0 implies yk � 0

Theorem 3. If (τa) ∈ ℓ∞, then the space (cF
0(∇2p, τ))h is not

symmetric.

Proof. consider(xk) � (︷1, . . . , 1
3times

, ︷− 1, . . . ,

− 13times,︷1, . . . , 1
6times

, ︷− 1, . . . , − 16times,︷1, . . . ,

19times,︷− 1, . . . , − 1
9times

, . . .). ,en, (xk) ∈ (cF
0(∇2p, τ))h. Now, if

(yk) is the rearrangement of (xk) defined by
(yk) � (1, − 1, 1, − 1, . . .), then (yk) ∉ (cF

0(∇2p, τ))h. ,ere-
fore, the space (cF

0(∇2p, τ))h is not symmetric. □

Theorem 4. If (τa) ∈ ℓ∞, then the space (cF
0(∇2p, τ))h is not

convergence-free.

Proof. consider the sequence (xk) � (1, 1, . . .). ,en,
(xk) ∈ (cF

0(∇2p, τ))h. Again if (yk) � (k), then clearly,

(yk) ∉ (cF
0(∇2p, τ))h. Hence, the space (cF

0(∇2p, τ))h is not
convergence-free.

Let us mark the space of all functions h: U⟶ [0,∞) by
[0,∞)U. □

Definition 6 (see [34]). U is a vector space. A function
h ∈ [0,∞]U is said to be modular if the following conditions
hold:

(a) Assume y ∈ U, y � ϑ⇔h(y) � 0 with h(y)≥ 0,
where ϑ � (0, 0, 0, . . .)

(b) h(ηz) � h(z) verifies for every z ∈ U and |η| � 1
(c) ,e inequality h(αy + (1 − α)z)≤ h(y) + h(z) holds

for every y, z ∈ U and α ∈ [0, 1]

Definition 7 (see [27]). ,e linear space U is called a certain
space of sequences of fuzzy numbers (cssf), when

(1) bq 
q∈N⊆U, where bq � (0, 0, . . . , 1, 0, 0, . . .), while 1

displays at the qth place

(2) U is solid; that is, if y � (yq) ∈ ω(F), z � (zq) ∈ U,
and |yq|≤ |zq| for every q ∈N, then y ∈ U

(3) (y[q/2])
∞
q�0 ∈ U, where [q/2]denotes the integral part

of q/2, if (yq)∞
q�0 ∈ U

Definition 8 (see [27]). A subclass Uh of U is said to be a
premodular (cssf), if there is h ∈ [0,∞)U, which satisfies the
following conditions:

(i) Assume y ∈ U, y � ϑ⇔h(y) � 0 with h(y)≥ 0,
where ϑ � (0, 0, 0, . . .).

(ii) One has Q≥ 1, the inequality h(αy)≤Q|α|h(y)

holds for all y ∈ U and α ∈ R.
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(iii) One has P≥ 1, the inequality h(y + z)≤P(h(y) +

h(z)) verifies, for all y, z ∈ U.
(iv) Suppose |yq|≤ |zq|, for all q ∈N, then

h((yq))≤ h((zq)).
(v) ,e inequality, h((yq))≤ h((y[q/2]))≤P0h((yq)),

verifies, for some P0 ≥ 1.
(vi) If E is the space of finite sequences of fuzzy

numbers, then the closure of E � Uh.
(vii) One has σ > 0 with

h(α, 0, 0, 0, . . .)≥ σ|α|h(1, 0, 0, 0, . . .), where

α(t) �
1, t � α

0, t≠ α.
 (11)

We note that the notion of premodular vector spaces is
more general than modular vector spaces. ,ere are some
examples of premodular vector spaces but not modular
vector spaces.

Example 1. ,e function h(z) � supq[ρ(|∇2p|zq||, 0)]4q+1/q+4

on the vector space cF
0(∇2p, (4q + 1/q + 4)). As for every

z, y ∈ cF
0(∇2p, (4q + 1/q + 4)), one has

h
z + y

2
  � supq ρ ∇2p

zq + yq

2








, 0  

4q+1/q+4
≤

8
�
24

√ (h(z) + h(y)). (12)

Example 2. ,e function h(z) � supq[ρ(|∇2p|zq||, 0)]5q+2/q+1

on the vector space cF
0(∇2p, (5q + 2/q + 1)). As for every

z, y ∈ cF
0(∇2p, (5q + 2/q + 1)), one has

h
z + y

2
  � supq ρ ∇2p

zq + yq

2








, 0  

5q+2/q+1
≤ 4(h(z) + h(y)). (13)

Some examples of premodular vector spaces and
modular vector spaces are as follows:

Example 3. ,e function h(z) � supq[ρ(|∇2p|zq||, 0)]q+1/3q+4

on the vector space cF
0(∇2p, (q + 1/3q + 4)). As for every

z, y ∈ cF
0(∇2p, (q + 1/3q + 4)), one has

h
z + y

2
  � supq ρ ∇2p

zq + yq

2








, 0  

q+1/3q+4
≤

1
�
24

√ (h(z) + h(y)). (14)

Example 4. ,e function h(y) � inf α> 0: supq

[ρ(|∇2p|yq/α||, 0)]2q+3/q+2 ≤ 1} is a premodular (modular) on
the vector space cF

0(∇2p, (2q + 3/q + 2)).

Definition 9 (see [27]). U is a cssf. ,e function h ∈ [0,∞)U

is said to be a pre-quasi-norm onU, if it verifies the following
settings:

(i) Suppose y ∈ U, y � ϑ⇔h(y) � 0 with h(y)≥ 0,
where ϑ � (0, 0, 0, . . .).

(ii) We have Q≥ 1, the inequality h(αy)≤Q|α|h(y)

holds, for all y ∈ U and α ∈ R.
(iii) One has P≥ 1, the inequality h(y + z)≤P(h(y) +

h(z)) verifies, for all y, z ∈ U.

Theorem 5 (see [27]). We suppose that U is a premodular
(cssf ), then it is pre-quasi-normed (cssf ).

Theorem 6 (see [27]). U is a pre-quasi-normed (cssf ), if it is
quasi-normed (cssf ).

Definition 10
(a) ,e function h on cF

0(∇2p, τ) is called h-convex, if

h(αy +(1 − α)z)≤ αh(y) +(1 − α)h(z), (15)

for every α ∈ [0, 1] and y, z ∈ cF
0(∇2p, τ).

(b) yq 
q∈N⊆(cF

0(∇2p, τ))h ish-convergent to
y ∈ (cF

0(∇2p, τ))h, if and only if,
limq⟶∞h(yq − y) � 0. When the h-limit exists,
then it is unique.

(c) yq 
q∈N⊆(cF

0(∇2p, τ))h is h-Cauchy, if
limq,r⟶∞h(yq − yr) � 0.

(d) Γ ⊂ (cF
0(∇2p, τ))h is h-closed, when for all h-con-

verges yq 
a∈N ⊂ Γ to y, then y ∈ Γ.

(e) Γ ⊂ (cF
0(∇2p, τ))h is h-bounded, if

δh(Γ) � sup h(y − z): y, z ∈ Γ <∞.
(f ) ,e h-ball of radius ε≥ 0 and center y, for every

y ∈ (cF
0(∇2p, τ))h, is described as follows:

Bh(y, ε) � z ∈ c
F
0 ∇

2
p, τ  

h
: h(y − z)≤ ε . (16)
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(g) A pre-quasi-norm h on cF
0(∇2p, τ) satisfies the Fatou

property, if for every sequence zq{ }⊆(cF
0(∇2p, τ))h

under limq⟶∞h(zq − z) � 0 and all
y ∈ (cF

0(∇2p, τ))h, one has
h(y − z)≤ supr inf

q≥r
h(y − zq).

We recall that the Fatou property gives the h-closedness
of the h-balls. We will denote the space of all increasing
sequences of real numbers by I.

Theorem 7. (cF
0(∇2p, τ))h, where h(y) � supq

[ρ(ηq(q!|∇2p|yq||)1/q+1, 0)]τq/K, for every y ∈ cF
0(∇2p, τ), is a

premodular (cssf ), if the following conditions are satisfied:

(a) (τq)q∈N ∈ ℓ∞ ∩ I with τ0 > 0.
(b) ∇2p is an absolute nondecreasing; that is, if |zi|≤ |yi|,

for all i ∈ N, then |∇2p|zi||≤ |∇2p|yi||.

Proof. Clearly, h(y)≥ 0 and h(y) � 0⇔y � ϑ.

(i) Assume y, z ∈ cF
0(∇2p, τ). We have

h(y + z) � supq ρ ∇2p yq + zq







, 0  
τq/K
≤ supq ρ ∇2p yq







, 0  
τq/K

+ supq ρ ∇2p zq







, 0  
τq/K

� h(y) + h(z)<∞.

(17)

,en, y + z ∈ cF
0(∇2p, τ).

(ii) ,ere are P≥ 1 with h(y + z)≤P(h(y) + h(z)),
for every y, z ∈ cF

0(∇2p, τ).

(iii) If α ∈ R and y ∈ cF
0(∇2p, τ), one has

h(αy) � supq ρ ∇2p αyq







, 0  
τq/K
≤ supq|α|

τq/Ksupq ρ ∇2p yq







, 0  
τq/K
≤Q|α|h(y) <∞. (18)

So, αy ∈ cF
0(∇2p, τ). From parts (1-i) and (1-ii), we

have cF
0(∇2p, τ) is linear. Also, bp ∈ cF

0(∇2p, τ), for
every p ∈N, as h(bp) �

supq[ρ(|∇2p|(bp)q||, 0)](τq/K) � 1.

(iv) One has Q � max 1, supq|α|τq/K− 1 ≥ 1 with
h(αy)≤Q|α|h(y), for every y ∈ cF

0(∇2p, τ) and
α ∈ R.

(v) If |yq|≤ |zq|, for every q ∈N and z ∈ cF
0(∇2p, τ). We

obtain

h(y) � supq ρ ∇2p yq







, 0  
τq/K
≤ supq ρ ∇2p zq







, 0  
τq/K

� h(z)<∞. (19)

,en, y ∈ cF
0(∇2p, τ).

(vi) Evidently, from Reference (2).
(vii) Assume (yq) ∈ cF

0(∇2p, τ), one can see

h y[q/2]   � supq ρ ∇2p y[q/2]







, 0  
τq/K
≤max supq ρ ∇2p yq







, 0  
τ2q/K

, supq ρ ∇2p yq







, 0  
τ2q+1/K

 

≤ supq ρ ∇2p yq







, 0  
τq/K

� h yq  .

(20)

,en, (y[q/2]) ∈ cF
0(∇2p, τ). (v) From (3), one has

P0 � 2≥ 1.
(viii) Clearly, the closure of E � cF

0(∇2p, τ).
(ix) One gets 0< σ ≤ supq|α|τq/K− 1, for α≠ 0 or σ > 0, for

α � 0 with h(α, 0, 0, 0, . . .)≥ σ|α|h(1,

0, 0, 0, . . .). □

Theorem 8. If the conditions of Jeorem 7 are satisfied, then
(cF

0(∇2p, τ))h is a pre-quasi Banach (cssf ), where
h(y) � supq[ρ(|∇2p|yq||, 0)]τq/K, for all y ∈ cF

0(∇2p, τ).

Proof. According to ,eorem 7 and ,eorem 5, the space
(cF

0(∇2p, τ))h is a pre-quasi-normed (cssf). If yl � (yl
q)
∞
q�0 is a
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Cauchy sequence in (cF
0(∇2p, τ))h, hence for all ε ∈ (0, 1),

then l0 ∈N such that for every l, m≥ l0, we have

h y
l
− y

m
  � supq ρ ∇2p y

l
q − y

m
q







, 0  
τq/K
< ε. (21)

,erefore, ρ(|∇2p|yl
q − ym

q ||, 0)< ε. Since (R[0, 1], ρ) is a
complete metric space, (ym

q ) is a Cauchy sequence in
R[0, 1], for fixed q ∈N. ,is gives limm⟶∞ym

q � y0
q, for

fixed q ∈N. ,en, h(yl − y0)< ε, for all l≥ l0. As h(y0) �

h(y0 − yl + yl)≤ h(yl − y0) + h(yl)<∞. ,en,
y0 ∈ cF

0(∇2p, τ). □

Theorem 9. Je function h(y) � supq[ρ(|∇2p|yq||, 0)]τq/K

satisfies the Fatou property, when the conditions of Jeorem 7
are satisfied.

Proof. Let zr{ }⊆(cF
0(∇2p, τ))h such that

limr⟶∞h(zr − z) � 0. Since (cF
0(∇2p, τ))h is a pre-quasi

closed space, we have z ∈ (cF
0(∇2p, τ))h. For every

y ∈ (cF
0(∇2p, τ))h, then

h(y − z) � supq ρ ∇2p yq − zq







, 0  
τq/K

≤ supq ρ ∇2p yq − z
r
q







, 0  
τq/K

+ supq ρ ∇2p z
r
q − zq







, 0  
τq/K
≤ supm inf

r≥m
h y − z

r
( .

(22)

□
Theorem 10. Je function h(y) � supq[ρ(|∇2p|yq||, 0)]τq

does not satisfy the Fatou property, for all y ∈ cF
0(∇2p, τ), if the

conditions of Jeorem 7 are satisfied with τ0 > 1.

Proof. Assume zr{ }⊆(cF
0(∇2p, τ))h such that

limr⟶∞h(zr − z) � 0. As (cF
0(∇2p, τ))h is a pre-quasi closed

space, we have z ∈ (cF
0(∇2p, τ))h. For all z ∈ (cF

0(∇2p, τ))h,
then

h(y − z) � supq ρ ∇2p yq − zq







, 0  
τq

≤ 2supqτq− 1 supq ρ ∇2p yq − z
r
q







, 0  
τq

+ supq ρ ∇2p z
r
q − zq







, 0  
τq

 

≤ 2supqτq− 1supm inf
r≥m

h y − z
r

( .
(23)

□
Example 5. For (τq) ∈ [1,∞)N, the function h(y) �

inf α> 0: supq[ρ(|∇2p|yq/α||, 0)]τq ≤ 1  is a norm on
cF
0(∇2p, τ).

Example 6. ,e function h(y) � supq[ρ(|∇2p|yq||, 0)]3q+2/q+3

is a pre-quasi-norm (not a norm) on
cF
0(∇2p, (3q + 2/q + 3)∞q�0).

Example 7. ,e function h(y) � supq[ρ(|∇2p|yq||, 0)]3q+2/q+1

is a pre-quasi-norm (not a quasi-norm) on
cF
0(∇2p, (3q + 2/q + 1)∞q�0).

4. Structure of Mappings’ Ideal

,e structure of the mappings’ ideal by (cF
0(∇2p, τ))h, where

h(z) � supq[ρ(|∇2p|zq||, 0)]τq/K, for all z ∈ cF
0(∇2p, τ), and

extended s− fuzzy functions have been explained. We
study enough setups on (cF

0(∇2p, τ))h such that the class
I(cF

0 (∇2p,τ))h
is complete. We investigate conditions (not

necessary) on (cF
0(∇2p, τ))h such that

the closure of F � Iα
(cF

0 (∇2p,τ))h
. ,is gives a negative an-

swer of Rhoades [34] open problem about the linearity of
s− type (cF

0(∇2p, τ))h spaces. We explain enough setups on
(cF

0(∇2p, τ))h such that I(cF
0 (∇2p,τ))h

is strictly contained for
different powers, weights, and backward generalized
differences, the classI(cF

0 (∇2p,τ))h
is simple, and the space of

every bounded linear mappings is which sequence of
eigenvalues in (cF

0(∇2p, τ))h equals I(cF
0 (∇2p,τ))h

.

Theorem 11 (see [27]). If U is a (cssf ), then IU is a
mappings’ ideal.

In view of Jeorem 7 and Jeorem 11, one has the fol-
lowing theorem:

Theorem 12. If the conditions of Jeorem 7 are satisfied,
then I(cF

0 (∇2p,τ))h
is a mappings’ ideal.

Theorem 13. If the conditions of Jeorem 7 are satisfied,
then the function H is a pre-quasi-norm on I(cF

0 (∇2p,τ))h
, with

H(Z) � supq[ρ(|∇2p|sq(Z)||, 0)]τq/K, for every
Z ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ).

Proof
(1) Suppose X ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ), H(X) �

supq[ρ(|∇2p|sq(Z)||, 0)]τq/K ≥ 0 and H(X) �

supq[ρ(|∇2p|sq(Z)||, 0)]τq/K � 0, if and only if,
sq(X) � 0, for all q ∈N, if and only if, X � 0.

(2) One has Q≥ 1 with H(αX) �

supq[ρ(|∇2p|sq(αX)||, 0)]τq/K ≤Q|α|H(X), for all
X ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ) and α ∈ R.

(3) For X1, X2 ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ), we have
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H X1 + X2(  � supq ρ ∇2p|sq X1 + X2( |


, 0  
τq/K
≤ h s[q/2] X1(  

∞
q�0 + h s[q/2] X2(  

∞
q�0 

≤ h sq X1(  
∞
q�0 + h sq X2(  

∞
q�0 .

(24)

(4) ,ere are ϱ ≥ 1, if X ∈L(Ω0,Ω),
Y ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ) and Z ∈L(Λ,Λ0), then

H(ZYX) � supq ρ ∇2p sq(ZYX)






, 0  
τq/K
≤ h ‖X‖‖Z‖sq(Y) 

∞
q�0 ≤ ϱ‖X‖H(Y)‖Z‖. (25)

In the next theorems, we will use the notation
(I(cF

0 (∇2p,τ))h
, H), where H(V) � h((sq(V))

∞
q�0), for all

V ∈ I(cF
0 (∇2p,τ))h

. □

Theorem 14. assume that the conditions of Jeorem 7 are
satisfied, then (I(cF

0 (∇2p,τ))h
, H) is a pre-quasi Banach map-

pings’ ideal.

Proof. Let (Va)a∈N be a Cauchy sequence in
I(cF

0 (∇2p,τ))h
(Ω,Λ). Since L(Ω,Λ)⊇S(cF

0 (∇2p,τ))h
(Ω,Λ), then

H Vr − Va(  � supq ρ ∇2p sq Vr − Va( 






, 0  
τq/K
≥ h s0 Vr − Va( , 0, 0, 0, . . . ≥ Vr − Va

����
����
τ0/K. (26)

,is implies that (Va)a∈N is a Cauchy sequence in
L(Ω,Λ). Since L(Ω,Λ) is a Banach space, one has
V ∈L(Ω,Λ) such that lima⟶∞‖Va − V‖ � 0 and as

(sq(Va))
∞
q�0 ∈ (cF

0(∇2p, τ))h, for every a ∈N, and
(cF

0(∇2p, τ))h is a premodular (cssf). ,en, we have

H(V) � h sq(V) 
∞
q�0 ≤ h s[q/2] V − Va(  

∞
q�0  + h s[q/2] Va( 

∞
q�0  ≤ h Va − V

����
����1 
∞
q�0  + h sq Va(  

∞
q�0 < ε. (27)

Hence, one has (sq(V))
∞
q�0 ∈ (cF

0(∇2p, τ))h, then
V ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ). □

Definition 11. A pre-quasi-norm H on the ideal IUh
sat-

isfies the Fatou property if for all Tq 
q∈N⊆IUh

(Ω,Λ) such
that limq⟶∞H(Tq − T) � 0 and M ∈ IUh

(Ω,Λ), then

H(M − T)≤ supq inf
j≥q

H M − Tj . (28)

Theorem 15. If the conditions of Jeorem 7 are satisfied,
then (I(cF

0 (∇2p,τ))h
, H) does not satisfy the Fatou property.

Proof. Let Tq 
q∈N⊆I(cF

0 (∇2p,τ))h
(Ω,Λ) with

limq⟶∞H(Tq − T) � 0. Since I(cF
0 (∇2p,τ))h

is a pre-quasi
closed ideal, then T ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ); hence, for all

M ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ), we have

H(M − T) � supq ρ ∇2psq(M − T)


, 0  
τq/K

≤ supq ρ ∇2ps[q/2] M − Ti( 


, 0  
τq/K

+ supq ρ ∇2ps[q/2] Ti − T( 


, 0  
τq/K
≤ supr inf

i≥r
supq ρ ∇2psq M − Ti( 



, 0  
τq/K

.

(29)

□
Theorem 16. Iα

(cF
0 (∇2p,τ))h

(Ω,Λ) � the closure of F(Ω,Λ),
if the conditions of Jeorem 7 are satisfied. But the converse is
not necessarily true.

Proof. As bm ∈ (cF
0(∇2p, τ))h, for all m ∈N and (cF

0(∇2p, τ))h

is a linear space. If Z ∈ F(Ω,Λ), one has (αm(Z))
∞
m�0 ∈ E.

,en, the closure of F(Ω,Λ)⊆Iα
(cF

0 (∇2p,τ))h
(Ω,Λ). Suppose
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Z ∈ Iα
(cF

0 (∇2p,τ))h
(Ω,Λ), one has (αm(Z))

∞
m�0 ∈ (cF

0(∇2p, τ))h.
Since h(αm(Z))

∞
m�0 <∞, if ρ ∈ (0, 1), one has m0 ∈N − 0{ }

so that h((αm(Z))
∞
m�m0

)< (ρ/4). As (αm(Z))
∞
m�0 is de-

creasing, one gets

sup2m0
m�m0+1 ρ ∇2pα2m0

(Z)


, 0  
τm/K
≤ sup2m0

m�m0+1 ρ ∇2pαm(Z)


, 0  
τm/K
≤ sup∞m�m0

ρ ∇2pαm(Z)


, 0  
τm/K
<
ρ
4
. (30)

,en, one has Y ∈ F2m0
(Ω,Λ) such that rank (Y)≤ 2m0

and

sup3m0
m�2m0+1 ρ ∇2p‖Z − Y‖



, 0  
τm/K
≤ sup2m0

m�m0+1 ρ ∇2p‖Z − Y‖


, 0  
τm/K
<
ρ
4
. (31)

As (τq)q∈N ∈ ℓ∞ ∩ I with τ0 > 0, we take

supm0
m�0 ρ ∇2p‖Z − Y‖



, 0  
τm/K
<
ρ
4
. (32)

According to inequalities (1–3), then

d(Z, Y) � sup∞m�0 ρ ∇2pαm(Z − Y)


, 0  
τm/K

≤ sup3m0− 1
m�0 ρ ∇2pαm(Z − Y)



, 0  
τm/K

+ sup∞m�3m0
ρ ∇2pαm(Z − Y)



, 0  
τm/K
≤ sup3m0

m�0 ρ ∇2p‖Z − Y‖


, 0  
τm/K

+ sup∞m�m0
ρ ∇2pαm+2m0

(Z − Y)


, 0  
τm+2m0/K ≤ sup3m0

m�0 ρ ∇2p‖Z − Y‖


, 0  
τm/K

+ sup∞m�m0
ρ ∇2pαm(Z)



, 0  
τm/K
≤ 3supm0

m�0 ρ ∇2p‖Z − Y‖


, 0  
τm/K

+ sup∞m�m0
ρ ∇2pαm(Z)



, 0  
τm/K
< ρ.

(33)

,is implies Iα
(cF

0 (∇2p,τ))h
(Ω,Λ)⊆ the closure of F(Ω,Λ).

Contrarily, one has a counterexample as
I3 ∈ Iα

(cF
0 (∇2p,(0,0,1,1,...))(Ω,Λ), but τ0 > 0 is not satisfied. □

Theorem 17. assume the conditions of Jeorem 7 are sat-
isfied with τ(1)

m < τ(2)
m , for every m ∈N, then

I
cF
0 ∇

2
q, τ(1)

m( )  
n

(Ω,Λ)⊊I
cF
0 ∇

2 , τ(2)
m( )( )( )n

(Ω,Λ)⊊L(Ω,Λ).

(34)

Proof. suppose that Z ∈ I
(cF

0 (∇2q,(τ(1)
m ))h

(Ω,Λ), then
(sm(Z))∈ (cF

0(∇2q, (τ(1)
m ))h. We have

limm⟶∞ ρ ∇2sm(Z)


, 0  
τ(2)

m
� limm⟶∞ ρ ∇2qsm(Z)



, 0  
τ(1)

m

� 0. (35)

,en, Z ∈ I
(cF

0 (∇2 ,(τ(2)
m )))h

(Ω,Λ). Next, if we take

(sm(Z))
∞
m�0 � (0, 1, 2, . . .), one has Z ∈L(Ω,Λ) so that

limm⟶∞ ρ ∇2qsm(Z)


, 0  
τ(1)

m

≠ 0,

limm⟶∞ ρ ∇2sm(Z)


, 0  
τ(2)

m
� 0.

(36)

,erefore, Z ∉ I
(cF

0 (∇2q,(τ(1)
m )))h

(Ω,Λ) and
Z ∈ I

(cF
0 (∇2 ,(τ(2)

m )))h
(Ω,Λ).

Evidently, I
(cF

0 (∇2 ,(τ(2)
m )))h

(Ω,Λ) ⊂L(Ω,Λ). After, if we
choose (sm(Z))

∞
m�0, then (∇2sm(Z)) � (1, 1, . . .). One has

Z ∈L(Ω,Λ) such that Z ∉ I
(χF

0 (∇2q,(τ(2)
m )))h

(Ω,Λ). □

Lemma 2 (see [3]). If we suppose B ∈L(Ω,Λ) and B ∉ Υ
(Ω,Λ), then D ∈L(Ω) and M ∈L(Λ) with MBDeb � eb,
with b ∈N.

Theorem 18 (see [3]). In general, one has
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F(Ω)⊊Y(Ω)⊊Lc(Ω)⊊L(Ω). (37) Theorem 19. If the conditions ofJeorem 7 are satisfied with
τ(1)

m < τ(2)
m , for all m ∈N, then

L I
cF
0 ∇

2 , τ(2)
m( )( )( )h

(Ω,Λ),I
cF
0 ∇

2
q, τ(1)

m( )  
h

(Ω,Λ)  � Υ I
cF
0 ∇

2 , τ(2)
m( )( )( )h

(Ω,Λ),I
cF
0 ∇

2
q, τ(1)

m( )  
h

(Ω,Λ) . (38)

Proof. Let X ∈L(I
(cF

0 (∇2 ,(τ(2)
m )))h

(Ω,Λ),
I

(cF
0 (∇2q,(τ(1)

m )))h
(Ω,Λ)) and

X ∉ Υ(I
(cF

0 (∇2 ,(τ(2)
m )))h

(Ω, Λ),I
(cF

0 (∇2q,(τ(1)
m )))h

(Ω,Λ)). In
view of Lemma 2, one has

Y ∈L(I
(cF

0 (∇2 ,(τ(2)
m )))h

(Ω,Λ))and Z ∈L
(I

(cF
0 (∇2q,(τ(1)

m )))h
(Ω,Λ)) so that ZXYIb � Ib, and then, with

b ∈N, we have

Ib

����
����I

cF
0 ∇

2
q, τ(1)

m( )( )( )h

(Ω,Λ) � supm ρ ∇2qsm Ib( 


, 0  
τ(1)

m

≤ ‖ZXY‖ Ib

����
����I

cF
0 ∇

2 , τ(2)
m( )( )( )h

(Ω,Λ)≤ supm ρ ∇2sm Ib( 


, 0  
τ(2)

m

. (39)

,is contradicts ,eorem 18. As
X ∈ Υ(I

(cF
0 (∇2 ,(τ(2)

m )))h
(Ω,Λ),I

(cF
0 (∇2q,(τ(1)

m )))h
(Ω,Λ)). □

Corollary 1. suppose that the conditions of Jeorem 7 are
satisfied with τ(1)

m < τ(2)
m , for every m ∈N, then

L I
cF
0 ∇

2 , τ(2)
m( )( )( )h

(Ω,Λ),I
cF
0 ∇

2
q, τ(1)

m( )  
h

(Ω,Λ)  � Lc I
cF
0 ∇

2 , τ(2)
m( )( )( )h

(Ω,Λ),I
cF
0 ∇

2
q, τ(1)

m( )  
h

(Ω,Λ) . (40)

Proof. Obviously, since Υ ⊂Lc. □

Definition 12. [3] A Banach space Ω is said to be simple, if
there is only one nontrivial closed ideal in L(Ω).

Theorem 20. assume that the conditions of Jeorem 7 are
verified, then I(cF

0 (∇2p,τ))h
is simple.

Proof. LetX ∈Lc(I(cF
0 (∇2p,τ))h

(Ω,Λ)) and
X ∉ Υ(I(cF

0 (∇2p,τ))h
(Ω,Λ)). From Lemma 2, there exist

Y, Z ∈L(I(cF
0 (∇2p,τ))h

(Ω,Λ)) with ZXYIb � Ib. ,is implies
I
I

(cF
0 (∇2

p
,τ))h

(Ω,Λ) ∈Lc(I(cF
0 (∇2p,τ))h

(Ω,Λ)). If

L(I(cF
0 (∇2p,τ))h

(Ω,Λ)) � Lc(I(cF
0 (∇2p,τ))h

(Ω,Λ)), then
I(cF

0 (∇2p,τ))h
is a simple Banach space. □

Notations 2.

IU 
λ
: � IU 

λ
(Ω,Λ);Ω andΛ are Banach Spaces ,where

IU 
λ
(Ω,Λ): � X ∈L(Ω,Λ): λm(X)( 

∞
m�0( ∈ U and X − ρ λm(X), 0( I

����
����is not invertible,withm ∈N .

(41)

Theorem 21. If the conditions of Jeorem 7 are satisfied,
then

I
cF
0 ∇

2
p,τ  

h

 

λ

(Ω,Λ) � I
cF
0 ∇

2
p,τ  

h

(Ω,Λ). (42)

Proof. Let X ∈ (I(cF
0 (∇2p,τ))h

)λ(Ω,Λ), then
(λm(X))∞m�0 ∈ (cF

0(∇2p, τ))h and ‖X − ρ(λm(X), 0)I‖ � 0, for
all m ∈N. ,erefore, limm⟶∞[ρ(|∇2p|λm(X)||, 0)]τm/K � 0.
One has X � ρ(λm(X), 0)I, for every m ∈N, so

ρ sm(X), 0  � ρ sm ρ λm(X), 0( I( , 0  � ρ λm(X), 0( ,

(43)

for every m ∈N. Hence, (sm(X))
∞
m�0 ∈ (cF

0(∇2p, τ))h,
and then, X ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ). After, we assume

X ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ). Hence, (sm(X))
∞
m�0 ∈ (cF

0(∇2p, τ))h.
We have

limm⟶∞ ρ ∇2p sm(X)





, 0  
τm/K

� 0. (44)

As ∇2p is continuous, then limm⟶∞ρ(sm(X), 0) � 0. If
‖X − ρ(sm(X), 0)I‖− 1 exists, with m ∈N, then
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‖X − ρ(sm(X), 0)I‖− 1 exists and bounded, for every m ∈N.
As limm⟶∞‖X − ρ(sm(X), 0)I‖− 1 � ‖X‖− 1 exists and

bounded. As (I(cF
0 (∇2p,τ))h

, H) is a pre-quasi mappings’ ideal,
one gets

I � XX
− 1 ∈ I

cF
0 ∇

2
p,τ  

h

(Ω,Λ)⇒ sm(I) 
∞
m�0 ∈ c

F
0 ∇

2
p, τ ⇒limm⟶∞ρ sm(I), 0  � 0. (45)

We have a contradiction, since limm⟶∞ρ(sm(I), 0) � 1.
,en, ‖X − ρ(sm(X), 0)I‖ � 0, with m ∈N, which proves
that X ∈ (I(cF

0 (∇2p,τ))h
)λ(Ω,Λ). □

Theorem 22. For s− type, Uh: � z �{ (sr(X)) ∈ ω(F): X ∈
L(Ω,Λ)andh(z)<∞}. IfIUh

is a mappings’ ideal, then the
following conditions are verified:

(1) E ⊂ s− type Uh.
(2) Assume (sr(X1))

∞
r�0 ∈ s− type Uh and

(sr(X2))
∞
r�0 ∈ s− type Uh, then

(sr(X1 + X2))
∞
r�0 ∈ s− type Uh.

(3) If λ ∈ R and (sr(X))
∞
r�0 ∈ s− type Uh, then

|λ|(sr(X))
∞
r�0 ∈ s− type Uh.

(4) Je sequence space Uh is solid; that is, if
(sr(Y))

∞
r�0 ∈ s− type Uh and sr(X)≤ sr(Y), for all

r ∈N and X, Y ∈L(Ω,Λ), then (sr(X))
∞
r�0 ∈ s−

type Uh.

Proof. If IUh
is a mappings’ ideal.

(i) We have F(Ω,Λ) ⊂ IUh
(Ω,Λ). Hence, for all

X ∈ F(Ω,Λ), we have (sr(X))
∞
r�0 ∈ E. ,is gives

(sr(X))
∞
r�0 ∈ s − typeUh. Hence, E ⊂ s− type Uh.

(ii) ,e space IUh
(Ω,Λ) is linear over R. Hence, for

each λ ∈ R and X1, X2 ∈ IUh
(Ω,Λ), we have

X1 + X2 ∈ IUh
(Ω,Λ) and λX1 ∈ IUh

(Ω,Λ). ,is
implies

sr X1(  
∞
r�0 ∈ s − typeUh and sr X2(  

∞
r�0 ∈ s − typeUh⇒ sr X1 + X2(  

∞
r�0 ∈ s − typeUh,

λ ∈ R and sr X1(  
∞
r�0 ∈ s − typeUh⇒|λ| sr X1(  

∞
r�0 ∈ s − typeUh.

(46)

(iii) If A ∈L(Ω0,Ω), B ∈ IUh
(Ω,Λ) and

D ∈L(Λ,Λ0), thenDBA ∈ IUh
(Ω0,Λ0), whereΩ0

and Λ0 are arbitrary Banach spaces. ,erefore, since
(sr(B))

∞
r�0 ∈ s − typeUh, then

(sr(DBA))
∞
r�0 ∈ s − typeUh. Since

sr(DBA)≤ ‖D‖sr(B)‖A‖. By using condition 3, if
(‖D‖‖A‖sr(B))

∞
r�0 ∈ Uh, we have

(sr(DBA))
∞
r�0 ∈ s − typeUh. ,is means s − typeUh

is solid.

In view of,eorem 12 and,eorem 23, we conclude the
following properties of the s − type(cF

0(∇2p, τ))h space. □

Theorem 23. If s − type (cF
0(∇2p, τ))h: � z � (sr(X)) ∈

ω(F): X ∈L(Ω,Λ)and h(z)<∞}, then the following con-
ditions are verified:

(1) E ⊂ s− type (cF
0(∇2p, τ))h.

(2) Assume (sr(X1))
∞
r�0 ∈ s− type (cF

0(∇2p, τ))h and
(sr(X2))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h, then
(sr(X1 + X2))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h.
(3) If λ ∈ R and (sr(X))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h, then
|λ|(sr(X))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h.
(4) Je sequence space (cF

0(∇2p, τ))h is solid; that is, if
(sr(Y))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h and sr(X)≤ sr(Y),
for all r ∈N and X, Y ∈L(Ω,Λ), then
(sr(X))

∞
r�0 ∈ s− type (cF

0(∇2p, τ))h.

Theorem 24. Je space I
F

0(∇2p, τ) is not mappings’ ideal, if
the conditions (a) and (c) of Jeorem 7 are satisfied

Proof. If we choose m � 1, n � 1, zk � 1, yk � zk for k � 3s

or yk � 0, otherwise, for all s, k ∈N. We have |yk|≤ |zk|, for
all k ∈N, z ∈ (cF

0(∇2p, τ))h and y ∉ (cF
0(∇2p, τ))h. Hence, the

space (cF
0(∇2p, τ))h is not solid. □

5. Kannan Contraction Mapping on cF
0(=2

p, τ)

In this section, we look at how to configure (cF
0(∇2p, τ))h

with different h so that there is only one fixed point of
Kannan contraction mapping. We construct the existence
of a fixed point of Kannan contraction mapping acting on
this space and its associated pre-quasi ideal. Interestingly,
several numerical experiments are presented to illustrate
our results.

Definition 13. An operator V: Uh⟶ Uh is said to be a
Kannan h-contraction, if one gets α ∈ [0, 1/2) with
h(Vy − Vz)≤ α(h(Vy − y) + h(Vz − z)), for all y, z ∈ Uh.

An element y ∈ Uh is called a fixed point of V, when
V(y) � y.

Theorem 25. If the conditions ofJeorem 7 are satisfied, and
V: (cF

0(∇2p, τ))h⟶ (cF
0(∇2p, τ))h is Kannan h-contraction

Discrete Dynamics in Nature and Society 11



mapping, where h(y) � supq[ρ(|∇2p|yq||, 0)]τq/K, for all
y ∈ cF

0(∇2p, τ), then V has a unique fixed point.
Proof. If y ∈ cF

0(∇2p, τ), one has Vpy ∈ cF
0(∇2p, τ). As V is a

Kannan h-contraction mapping, one gets

h V
l+1

y − V
l
y ≤ α h V

l+1
y − V

l
y  + h V

l
y − V

l− 1
y  ⇒

h V
l+1

y − V
l
y ≤

α
1 − α

h V
l
y − V

l− 1
y ≤

α
1 − α

 
2
h V

l− 1
y − V

l− 2
y ≤ · · · ≤

α
1 − α

 
l

h(Vy − y).

(47)

So, for all l, m ∈N with m> l, one gets

h V
l
y − V

m
y ≤ α h V

l
y − V

l− 1
y  + h V

m
y − V

m− 1
y  ≤ α

α
1 − α

 
l− 1

+
α

1 − α
 

m− 1
 h(Vy − y). (48)

,en, Vly  is a Cauchy sequence in (cF
0(∇2p, τ))h. As the

space (cF
0(∇2p, τ))h is pre-quasi Banach space. One has

z ∈ (cF
0(∇2p, τ))h with liml⟶∞Vly � z to prove that Vz � z.

Since h verifies the Fatou property, one obtains

h(Vz − z)≤ supi inf
l≥i

h V
l+1

y − V
l
y ≤ supi inf

l≥i

α
1 − α

 
l

h(Vy − y) � 0. (49)

,en, Vz � z. So, z is a fixed point of V to show the
uniqueness. Let y, z ∈ (cF

0(∇2p, τ))h be two not equal fixed
points of V. One has

h(y − z)≤ h(Vy − Vz)≤ α(h(Vy − y) + h(Vz − z)) � 0.

(50)

So, y � z. □

Corollary 2. If the conditions of Jeorem 7 are satisfied, and
V: (cF

0(∇2p, τ))h⟶ (cF
0(∇2p, τ))h is Kannan h-contraction

mapping, where h(y) � supq[ρ(|∇2p|yq||, 0)]τq/K, for all
y ∈ cF

0(∇2p, τ), one has unique fixed point z of V so that
h(Vly − z)≤ α(α/1 − α)l− 1h(Vy − y).

Proof. In view of,eorem 26, one has a unique fixed point z

of V. So

h V
l
y − z  � h V

l
y − Vz ≤ α h V

l
y − V

l− 1
y  + h(Vz − z)  � α

α
1 − α

 
l− 1

h(Vy − y). (51)

□
Example 8. assume V: (cF

0(∇2p, (2q + 3/q+ 2)))h⟶
(cF

0(∇2p, (2q + 3/q + 2)))h, where h(z) � supq[ρ(|∇2p|zq||,

0)]2q+3/2q+4, for every z ∈ cF
0(∇2p, (2q + 3/q + 2)) and

V(z) �

z

4
, h(z) ∈ [0, 1),

z

5
, h(z) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(52)

As for each x, y ∈ (cF
0(∇2p, (2q + 3/q + 2)))h with

h(x), h(y) ∈ [0, 1), one has

h(Vx − Vy) � h
x

4
−

y

4
 ≤

1
��
274

√ h
3x

4
  + h

3y

4
   �

1
��
274

√ (h(Vx − x) + h(Vy − y)). (53)

12 Discrete Dynamics in Nature and Society



For all x, y ∈ (cF
0(∇2p, (2q + 3/q + 2)))h with

h(x), h(y) ∈ [1,∞), one has

h(Vx − Vy) � h
x

5
−

y

5
 ≤

1
��
644

√ h
4x

5
  + h

4y

5
   �

1
��
644

√ (h(Vx − x) + h(Vy − y)). (54)

For all x, y ∈ (cF
0(∇2p, (2q + 3/q + 2)))h with

h(x) ∈ [0, 1) and h(y) ∈ [1,∞), we get

h(Vx − Vy) � h
x

4
−

y

5
 ≤

1
��
274

√ h
3x

4
  +

1
��
644

√ h
4y

5
 ≤

1
��
274

√ h
3x

4
  + h

4y

5
  

�
1
��
274

√ (h(Vx − x) + h(Vy − y)).

(55)

Hence, V is Kannan h-contraction as h satisfies the Fatou
property. From,eorem 26, one has V holds one fixed point
ϑ∈ (cF

0(∇2p, (2q + 3/q + 2)))h.

Definition 14. pick up Uh be a pre-quasi-normed (cssf),
V: Uh⟶ Uh and z ∈ Uh. ,e operator V is called h-se-
quentially continuous at z, if and only if, when
limq⟶∞h(yq − z) � 0, then limq⟶∞h(Vyq − Vz) � 0.

Example 9. suppose that V: (cF
0(∇2p, (q + 1/2q+

4)))h⟶ (cF
0(∇2p, (q + 1/2q + 4)))h, where h(z) �

supq[ρ(|∇2p|zq||, 0)]4q+4/2q+4, for every
z ∈ (cF

0(∇2p, (q + 1/2q + 4)))h and

V(z) �

1
18

b0 + z , z0(t) ∈ 0,
1
17

 ,

1
17

b0, z0(t) �
1
17

,

1
18

b0, z0(t) ∈
1
17

, 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

V is clearly both h-sequentially continuous and discontin-
uous at 1/17b0 ∈ (cF

0(∇2p, (q + 1/2q + 4)))h.

Example 10. assume that V is defined as in Example 8.
Suppose z(n) ⊆(cF

0(∇2p, (2q + 3/q + 2)))h is such that

limn⟶∞h(z(n) − z(0)) � 0, where z(0) ∈ (cF
0(∇2p, (2q+

3/q + 2)))h with h(z(0)) � 1.
As the pre-quasi-norm h is continuous, we have

limn⟶∞h Vz
(n)

− Vz
(0)

  � limn⟶∞h
z

(n)

4
−

z
(0)

5
 

� h
z

(0)

20
 > 0.

(57)

,erefore, V is not h-sequentially continuous at z(0).

Theorem 26. If the conditions ofJeorem 7 are satisfied with
τ0 > 1, and V: (cF

0(∇2p, τ))h⟶ (cF
0(∇2p, τ))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]τq , for all y ∈ cF
0(∇2p, τ), then we

suppose that

(1) V is Kannan h-contraction mapping.
(2) V is h-sequentially continuous at z ∈ (cF

0(∇2p, τ))h.
(3) Jere is y ∈ (cF

0(∇2p, τ))h with Vly  has Vlj y 

converging to z.

Jen, z ∈ (cF
0(∇2p, τ))h is the only fixed point of V.

Proof. If we assume that z is not a fixed point of V, one has
Vz≠ z. From parts (2) and (3), we get

limlj⟶∞h V
lj y − z  � 0,

limlj⟶∞h V
lj+1

y − Vz  � 0.
(58)
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As V is Kannan h-contraction, one obtains

0< h(Vz − z) � h Vz − V
lj+1

y  + V
lj y − z  + V

lj+1
y − V

lj y  

≤ 22supiτi− 2
h V

lj+1
y − Vz  + 22supiτi− 2

h V
lj y − z  + 2supiτi− 1α

α
1 − α

 
lj− 1

h(Vy − y).

(59)

As lj⟶∞, one has a contradiction. ,en, z is a fixed
point of V to show that the uniqueness. Let
z, y ∈ (cF

0(∇2p, τ))h be two not equal fixed points of V. One
obtains

h(z − y)≤ h(Vz − Vy)≤ α(h(Vz − z) + h(Vy − y)) � 0.

(60)

Hence, z � y. □

Example 11. assume that V is defined as in Example 8. Let
h(z) � supq[ρ(|∇2p|zq||, 0)]2q+3/q+2, for all z ∈ (cF

0(∇2p,

(2q + 3/q + 2)))h. Since for all x, y ∈ (cF
0(∇2p, (2q+

3/q + 2)))h with h(x), h(y) ∈ [0, 1), one gets

h(Vx − Vy) � h
x

4
−

y

4
 ≤

2
��
27

√ h
3x

4
  + h

3y

4
   �

2
��
27

√ (h(Vx − x) + h(Vy − y)). (61)

For all x, y ∈ (cF
0(∇2p, (2q + 3/q + 2)))h with

h(x), h(y) ∈ [1,∞), one gets

h(Vx − Vy) � h
x

5
−

y

5
 ≤

1
4

h
4x

5
  + h

4y

5
   �

1
4

(h(Vx − x) + h(Vy − y)). (62)

For all x, y ∈ (cF
0(∇2p, (2q + 3/q + 2)))h with

h(x) ∈ [0, 1) and h(y) ∈ [1,∞), one gets

h(Vx − Vy) � h
x

4
−

y

5
 ≤

2
��
27

√ h
3x

4
  +

1
4

h
4y

5
 ≤

2
��
27

√ h
3x

4
  + h

4y

5
  

�
2
��
27

√ (h(Vx − x) + h(Vy − y)).

(63)

So, V is Kannanh-contraction and

Vp(z) �
z/4p

, h(z) ∈ [0, 1),

z/5p
, h(z) ∈ [1,∞).



Obviously, V is h-sequentially continuous at
ϑ∈ (cF

0(∇2p, (2q + 3/q + 2)))h and Vpz{ } holds Vlj z  con-
verges to ϑ. By ,eorem 27, the point
ϑ∈ (cF

0(∇2p, (2q + 3/q + 2)))h is the only fixed point of V.

Definition 15. An operator V: IUh
(Ω,Λ)⟶ IUh

(Ω,Λ) is
said to be a Kannan H-contraction, if one has α ∈ [0, 1/2)

with H(VT − VM)≤ α(H(VT − T) + H(VM − M)), for all
T, M ∈ IUh

(Ω,Λ).

Definition 16. An operator V: IUh
(Ω,Λ)⟶ IUh

(Ω,Λ) is
said to be H-sequentially continuous at M, where
M ∈ IUh

(Ω,Λ), if and only if, limr⟶∞H(Tr−

M) � 0⇒limr⟶∞H(VTr − VM) � 0.

Example 12. IfV: I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ)⟶
I(cF

0 (∇2p(2q+3/q+2)))h
(Ω,Λ),where H(T) � supq[ρ(|∇2psq(T)|,

0)]2q+3/2q+4, for every T ∈ I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ) and

V(T) �

T

6
, H(T) ∈ [0, 1),

T

7
, H(T) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(64)

Evidently, V is H-sequentially continuous at the zero
operator Θ ∈ I(cF

0 (∇2p,(2q+3/q+2)))h
(Ω,Λ). Let T(j) ⊆

I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ) be such that limj⟶∞

H(T(j) − T(0)) � 0, where T(0) ∈ I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ)
with H(T(0)) � 1. Since the pre-quasi-norm H is continu-
ous, one gets
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limj⟶∞H VT
(j)

− VT
(0)

  � limj⟶∞H
T

(0)

6
−

T
(0)

7
  � H

T
(0)

42
 > 0. (65)

,erefore, V is not H-sequentially continuous at T(0).

Theorem 27. the conditions of Jeorem 7 are satisfied and
V: I(cF

0 (∇2p,τ))h
(Ω,Λ)⟶ I(cF

0 (∇2p,τ))h
(Ω,Λ), then we assume

that

(i) V is Kannan H-contraction mapping.
(ii) V is H-sequentially continuous at an element

M ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ).

(iii) Jere are G ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ) such that the se-
quence of iterates VrG{ } has a Vrm G{ } converging to
M.

Jen, M ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ) is the unique fixed point of
V.

Proof. Let M be not a fixed point of V; hence, VM≠M. By
using parts (ii) and (iii), we get

limrm⟶∞H V
rm G − M(  � 0 and limrm⟶∞H V

rm+1
G − VM  � 0. (66)

Since V is Kannan H-contraction, one obtains

0<H(VM − M) � H VM − V
rm+1

G  + V
rm G − M(  + V

rm+1
G − V

rm G  

≤ 2H V
rm+1

G − VM  + 4H V
rm G − M(  + 4α

α
1 − α

 
rm − 1

H(VG − G).

(67)

As rm⟶∞, there is a contradiction. Hence, M is a
fixed point of V to prove that the uniqueness of the fixed
point M. We suppose that one has two not equal fixed points
M, J ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ) of V. So, one gets

H(M − J)≤H(VM − VJ)≤ α(H(VM − M)+ H(VJ− J)) �

0. ,en, M � J. □

Example 13. In view of Example 12. Since for all
T1, T2 ∈ I(cF

0 (∇2p,(2q+3/q+2)))h
(Ω,Λ) with H(T1), H(T2)

∈ [0, 1), we have

H VT1 − VT2(  � H
T1

6
−

T2

6
 ≤

1
���
1254

√ H
5T1

6
  + H

5T2

6
   �

1
���
1254

√ H VT1 − T1(  + H VT2 − T2( ( . (68)

For all T1, T2 ∈ I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ) with
H(T1), H(T2) ∈ [1,∞), we have

H VT1 − VT2(  � H
T1

7
−

T2

7
 ≤

1
���
2164

√ H
6T1

7
  + H

6T2

7
   �

1
���
2164

√ H VT1 − T1(  + H VT2 − T2( ( . (69)

For all T1, T2 ∈ I(cF
0 (∇2p,(2q+3/q+2)))h

(Ω,Λ) with
H[T1) ∈ [0, 1) and H(T2) ∈ [1,∞), we have

H VT1 − VT2(  � H
T1

6
−

T2

7
 ≤

1
���
1254

√ H
5T1

6
  +

1
���
2164

√ H
6T2

7
 ≤

1
���
1254

√ H VT1 − T1(  + H VT2 − T2( ( . (70)
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Hence, V is Kannan H-contraction and

Vr(T) �
(T/6r

), H(T) ∈ [0, 1),

(T/7r
), H(T) ∈ [1,∞).



Obviously, V is H-sequentially continuous at
Θ ∈ I(cF

0 (∇2p,(2q+3/q+2)))h
(Ω,Λ) and VrT{ } has a subsequence

Vrm T{ } converges to Θ. By ,eorem 28, Θ is the only fixed
point of G.

6. Applications

In this section, some successful applications to the existence
of solutions of nonlinear difference equations of fuzzy
functions are introduced.

Theorem 28. consider the summable equation

yq � Rq + 
∞

r�0
D(q, r)m r, yr( , (71)

which presented by Salimi et al. [35], and assume
V: (cF

0(∇2p, τ))h⟶ (cF
0(∇2p, τ))h, where the conditions of

Jeorem 7 are satisfied and h(y) � supq[ρ(|∇2p|yq||, 0)]τq/K,
for every y ∈ cF

0(∇2p, τ), defined by

V yq 
q∈N � Rq + 

∞

r�0
D(q, r)m r, yr( ⎛⎝ ⎞⎠

q∈N

. (72)

Je summable equation (4) has a unique solution in
(cF

0(∇2p, τ))h, if D: N2⟶ R, m: N × R[0, 1]⟶ R[0, 1],
R: N⟶ R[0, 1], z: N⟶ R[0, 1], there is ε so that
supqε

(τq/K) ∈ [0, 0.5), and for all q ∈N, we have


r∈N

D(q, r) m r, yr(  − m r, zr( ( 




≤ ε Rq − yq + 

∞

r�0
D(q, r)m r, yr( 




+ Rq − zq + 

∞

r�0
D(q, r)m r, zr( 




⎡⎣ ⎤⎦. (73)

Proof. One has

h(Vy − Vz) � supq ρ ∇2p Vyq − Vzq







, 0  
τq/K

� supq ρ ∇2p 
r ∈N

D(q, r) m r, yr(  − m r, zr( ( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq/K

≤ supqε
τq/Ksupq ρ ∇2p Rq − yq + 

∞

r�0
D(q, r)m r, yr( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq/K

+ supqε
τq/Ksupq ρ ∇2p Rq − zq + 

∞

r�0
D(q, r)m r, zr( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq/K

� supqε
τq/K(h(Vy − y) + h(Vz − z)).

(74)

By ,eorem 26, one gets a unique solution of equation
(4) in (cF

0(∇2p, τ))h. □

Example 14. suppose(cF
0(∇2p, (2q + 3/q + 2)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]2q+3/2q+4, for all y ∈ cF
0(∇2p,

(2q + 3/q + 2)). We consider the summable equation

yq � Rq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t

, (75)

with t> 0. Let V: cF
0(∇2p, (2q + 3/q + 2))⟶

cF
0(∇2p, (2q + 3/q + 2)) defined by

V yq  � Rq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t

⎛⎝ ⎞⎠. (76)

Obviously,



∞

r�0
(− 1)

q
yq

q2 + r2 + 1
 

t

(− 1)
r

− (− 1)
r

( 





≤ ε Rq − yq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t



+ Rq − zq + 

∞

r�0
(− 1)

q+r
zq

q2 + r2 + 1
 

t



⎡⎣ ⎤⎦.

(77)
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By ,eorem 29, the summable equation (75) has a
unique solution in cF

0(∇2p, (2q + 3/q + 2)).

Example 15. suppose (cF
0(∇2p, (q + 3/2q + 4)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]q+3/2q+4, for all y ∈ cF
0(∇2p,

(q + 3/2q + 4)). We consider the summable equation

yq � Rq + 

∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

, (78)

with t> 0. Let V: cF
0(∇2p, (q + 3/2q + 4))⟶

cF
0(∇2p, (q + 3/2q + 4)) defined by

V yq  � Rq + 

∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

⎛⎝ ⎞⎠. (79)

Obviously,



∞

r�0
e

q
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

e
r

− e
r

( 





≤ ε Rq − yq + 
∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t



+ Rq − zq + 

∞

r�0
e

q+r
z5

q

z3
q + z2

r + 1
⎛⎝ ⎞⎠

t




⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(80)

By ,eorem 29, the summable equation (75) has a
unique solution in cF

0(∇2p, (q + 3/2q + 4)).

Example 16. suppose (cF
0(∇2p, (2q + 3/q + 2)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]2q+3/2q+4, for every
y ∈ cF

0(∇2p, (2q + 3/q + 2)). We consider the nonlinear dif-
ference equations:

yq � Rq + 

∞

l�0
(− 1)

q+l
y

r
q− 2

y
w
q− 1 + l

2
+ 1

, (81)

with r, w> 0, y− 2(t), y− 1(t)> 0, for all t ∈ R, and assume
V: cF

0(∇2p, (2q + 3/q + 2))⟶ cF
0(∇2p, (2q + 3/q + 2)), de-

fined by

V yq 
∞
q�0 � Rq + 

∞

l�0
(− 1)

q+l
yr

q− 2

yw
q− 1 + l2 + 1

⎛⎝ ⎞⎠

∞

q�0

. (82)

Evidently,



∞

l�0
(− 1)

q
y

r
q− 2

y
w
q− 1 + l

2
+ 1

(− 1)
l
− (− 1)

l
 





≤ ε Rq − yq + 
∞

l�0
(− 1)

q+l
y

r
q− 2

y
w
q− 1 + l

2
+ 1




+ Rq − zq + 

∞

l�0
(− 1)

q+l
z

r
q− 2

z
w
q− 1 + l

2
+ 1





⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(83)

By ,eorem 29, the nonlinear difference (81) have a
unique solution in cF

0(∇2p, (2q + 3/q + 2)).

Theorem 29. consider the summable equation (4) and as-
sume V: (cF

0(∇2p, τ))h⟶ (cF
0(∇2p, τ))h is defined by (5),

where the conditions of Jeorem 7 are satisfied with τ0 > 1
and h(y) � supq[ρ(|∇2p|yq||, 0)]τq , for every y ∈ cF

0(∇2p, τ).

Je summable equation (4) has a unique solution
z ∈ (cF

0(∇2p, τ))h, if the following conditions are satisfied:

(1) If D: N2⟶ R, m: N × R[0, 1]⟶ R[0, 1],
R: N⟶ R[0, 1], z: N⟶ R[0, 1], there is ε so
that 2K− 1supqε

τq ∈ [0, 0.5), and for all q ∈N, we
have


r∈N

D(q, r) m r, yr(  − m r, zr( ( 





≤ ε Rq − yq + 
∞

r�0
D(q, r)m r, yr( 




+ Rq − zq + 

∞

r�0
D(q, r)m r, zr( 




⎡⎣ ⎤⎦.

(84)
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(2) V is h-sequentially continuous at z ∈ (cF
0(∇2p, τ))h.

(3) Jere is y ∈ (cF
0(∇2p, τ))h with Vly  has Vlj y 

converging to z.

Proof. One has

h(Vy − Vz) � supq ρ ∇2p Vyq − Vzq







, 0  
τq

� supq ρ ∇2p 
r ∈N

D(q, r) m r, yr(  − m r, zr( ( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq

≤ 2K− 1supqε
τqsupq ρ ∇2p Rq − yq + 

∞

r�0
D(q, r)m r, yr( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq

+ 2K− 1supqε
τqsupq ρ ∇2p Rq − zq + 

∞

r�0
D(q, r)m r, zr( 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τq

� 2K− 1supqε
τq (h(Vy − y) + h(Vz − z)).

(85)

By ,eorem 27, one gets a unique solution
z ∈ (cF

0(∇2p, τ))h of (4). □

Example 17. suppose(cF
0(∇2p, (2q + 3/q + 2)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]2q+3/q+2, for all y ∈ cF
0(∇2p,

(2q + 3/q + 2)). We consider the summable equation

yq � Rq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t

, (86)

with t> 0. Let V: cF
0(∇2p, (2q + 3/q + 2))⟶

cF
0(∇2p, (2q + 3/q + 2)) defined by

V yq  � Rq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t

⎛⎝ ⎞⎠. (87)

We assume V is h-sequentially continuous at
z ∈ (cF

0(∇2p, τ))h, and there is y ∈ (cF
0(∇2p, τ))h with Vly 

has Vlj y  converging to z. Obviously,



∞

r�0
(− 1)

q
yq

q2 + r2 + 1
 

t

(− 1)
r

− (− 1)
r

( 





≤ ε Rq − yq + 
∞

r�0
(− 1)

q+r
yq

q2 + r2 + 1
 

t



+ Rq − zq + 

∞

r�0
(− 1)

q+r
zq

q2 + r2 + 1
 

t



⎡⎣ ⎤⎦.

(88)

By ,eorem 29, the summable equation (86) has a
unique solution z ∈ cF

0(∇2p, (2q + 3/q + 2)).

Example 18. suppose (cF
0(∇2p, (5q + 3/q + 1)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]5q+3/q+1, for all y ∈ cF
0(∇2p,

(5q + 3/q + 1)). We consider the summable equation

yq � Rq + 
∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

, (89)

with t> 0. Let V: cF
0(∇2p, (5q + 3/q + 1))⟶

cF
0(∇2p, (5q + 3/q + 1)) defined by

V yq  � Rq + 
∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

⎛⎝ ⎞⎠. (90)

We assume that V is h-sequentially continuous at
z ∈ (cF

0(∇2p, τ))h, and there is y ∈ (cF
0(∇2p, τ))h with Vly 

has Vlj y  converging to z. Obviously,



∞

r�0
e

q
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t

e
r

− e
r

( 





≤ ε Rq − yq + 
∞

r�0
e

q+r
y5

q

y3
q + y2

r + 1
⎛⎝ ⎞⎠

t



+ Rq − zq + 

∞

r�0
e

q+r
z5

q

z3
q + z2

r + 1
⎛⎝ ⎞⎠

t




⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(91)
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By ,eorem 29, the summable equation (89) has a
unique solution z ∈ cF

0(∇2p, (5q + 3/q + 1)).

Example 19. suppose (cF
0(∇2p, (2q + 3/q + 2)))h, where

h(y) � supq[ρ(|∇2p|yq||, 0)]2q+3/q+2, for every
y ∈ cF

0(∇2p, (2q + 3/q + 2)). We consider the nonlinear dif-
ference equation:

yq � Rq + 
∞

l�0
(− 1)

q+l
y

r
q− 2

y
w
q− 1 + l

2
+ 1

, (92)

with r, w> 0, y− 2(t), y− 1(t)> 0, for all t ∈ R, and assume
V: cF

0(∇2p, (2q + 3/q + 2))⟶ cF
0(∇2p, (2q + 3/q + 2)), de-

fined by

V yq 
∞
q�0 � Rq + 

∞

l�0
(− 1)

q+l
yr

q− 2

yw
q− 1 + l2 + 1

⎛⎝ ⎞⎠

∞

q�0

. (93)

We suppose that V is h-sequentially continuous at
z ∈ (cF

0(∇2p, τ))h, and there is y ∈ (cF
0(∇2p, τ))h with Vly 

has Vlj y  converging to z. Evidently,



∞

l�0
(− 1)

q
y

r
q− 2

y
w
q− 1 + l

2
+ 1

(− 1)
l
− (− 1)

l
 





≤ ε Rq − yq + 
∞

l�0
(− 1)

q+l
y

r
q− 2

y
q
q− 1 + l

2
+ 1




+ Rq − zq + 

∞

l�0
(− 1)

q+l
z

r
q− 2

z
w
q− 1 + l

2
+ 1





⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(94)

By ,eorem 29, the nonlinear difference equation (18)
has a unique solution z ∈ cF

0(∇2p, (2q + 3/q + 2)).
In this part, we search for a solution to nonlinear matrix

(81) at D ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ), where Ω and Λ are Banach
spaces, the conditions of ,eorem 7 are satisfied, and
Ψ(G) � supq[ρ(|∇2p|sq(G)||, 0)]τq/K, for all

G ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ). We consider the summable equation

sa(G) � sa(P) + 
∞

m�0
A(a, m)f m, sm(G)( . (95)

And we suppose that W: I(cF
0 (∇2p,τ))h

(Ω,Λ)⟶
I(cF

0 (∇2p,τ))h
(Ω,Λ) is defined by

W(G) � sa(P) + 
∞

m�0
A(a, m)f m, sm(G)( ⎛⎝ ⎞⎠I. (96)

Theorem 30. Je summable equation (18) has one solution
D ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ), if the following conditions are

satisfied:

(a) A: N2⟶ R, f: N × R[0, 1]⟶ R[0, 1],
P ∈L(Ω,Λ), T ∈L(Ω,Λ), and for every a ∈N,
there is κ so that supaκτa ∈ [0, 0.5), with


m∈N

A(a, m) f m, sm(G)  − f m, sm(T)  





≤ κK
sa(P) − sa(G) + 

m∈N
A(a, m)f m, sm(G) 




+ sa(P) − sa(T) + 

m∈N
A(a, m)f m, sm(T) 




⎡⎣ ⎤⎦.

(97)

(b) W is Ψ-sequentially continuous at a point
D ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ).

(c) Jere is B ∈ I(cF
0 (∇2p,τ))h

(Ω,Λ) so that the sequence of
iterates WaB{ } has a subsequence Wai B{ } converging
to D.

Proof. suppose the settings are verified. We consider the
mapping W: I(cF

0 (∇2p,τ))h
(Ω,Λ)⟶ I(cF

0 (∇2p,τ))h
(Ω,Λ) de-

fined by (19). We have
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Ψ(WG − WT) � supa ρ ∇2p 
m ∈N

A(a, m) f m, sm(G)  − f m, sm(T)  








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τa/K

≤ supaκ
τasupa ρ ∇2p sa(P) − sa(G) + 

m ∈N
A(a, m)f m, sm(G) 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τa/K

+ supaκ
τasupa ρ ∇2p sa(T) − sa(G) + 

m ∈N
A(a, m)f m, sm(T) 








, 0⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

τa/K

� supaκ
τa (Ψ(WG − G) + Ψ(WT − T)).

(98)

In view of ,eorem 27, one obtains a unique solution of
equation (18) at D ∈ I(cF

0 (∇2p,τ))h
(Ω,Λ). □

Example 20. We assume the class
I(cF

0 (∇2p,(a+1/a+2)∞a�0))h
(Ω,Λ), where Ψ(G) �

supa[ρ(|∇2p|sa(G)||, 0)]a+1/a+2, for all
G ∈ I(cF

0 (∇2p,(a+1/a+2)∞a�0))h
(Ω,Λ).

We consider the nonlinear difference equations:

sa(G) � e
− (2a+3)

+ 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr
sa− 2(G)




sinhq
sa− 1(G)


 + sinma + 1

, (99)

where a≥ 2 and r, q> 0 and let W: I(cF
0 (∇2p,

(a + 1/a + 2)∞a�0))h(Ω,Λ)⟶ I(cF
0 (∇2p,(a+1/a+2)∞a�0))h

(Ω,Λ) be
defined as

W(G) � e
− (2a+3)

+ 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr
sa− 2(G)




sinhq
sa− 1(G)


 + sin ma + 1

⎛⎝ ⎞⎠I. (100)

We suppose W is Ψ-sequentially continuous at a point
D ∈ I(cF

0 (∇2p,(a+1/a+2)∞a�0))h
(Ω,Λ), and there is

B ∈ I(cF
0 (∇2p,(a+1/a+2)∞a�0))h

(Ω,Λ) so that the sequence of

iterates WaB{ } has a subsequence Wai B{ } converging to D. It
is easy to see that



∞

m�0

cosh(3m − a)cosr sa− 1(G)




sinhq sa− 1(G)


 + sinma + 1
(tan(2m + 1) − tan(2m + 1))





(a+1)/(a+2)

≤
1
5

e− (2a+3) − sa(G) + 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr sa− 2(G)




sinhq sa− 1(G)


 + sinma + 1





(a+1)/(a+2)

+
1
5

e− (2a+3) − sa(T) + 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr sa− 2(T)




sinhq sa− 1(T)


 + sinma + 1





(a+1)/(a+2)

.

(101)

By ,eorem 30, the nonlinear difference (99) has one
solution D ∈ I(cF

0 (∇2p,a+1/a+2∞a�0))h
(Ω,Λ).

Example 21. assume the class I(cF
0 (∇2p,(2a+3/a+2)∞a�0))h

(Ω,Λ),
where Ψ(G) � supa[ρ(|∇2p|sa(G)||, 0)]2a+3/2a+4, for all

G ∈ I(cF
0 (∇2p,(2a+3/a+2)∞a�0))h

(Ω,Λ). We consider the nonlinear
difference equation (20) and let W: I(cF

0 (∇2p,(2a+3/a+2)

∞
a�0))h(Ω,Λ)⟶ I(cF

0 (∇2p,(2a+3/a+2)∞a�0))h
(Ω,Λ) be defined as

(21). Suppose W is Ψ-sequentially continuous at a point
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D ∈ I(cF
0 (∇2p,(2a+3/a+2)∞a�0))h

(Ω,Λ), and there is

B ∈ I(cF
0 (∇2p,(2a+3/a+2)∞a�0))h

(Ω,Λ) so that the sequence of

iterates WaB{ } has a subsequence Wai B{ } converging to D. It
is easy to see that



∞

m�0

cosh(3m − a)cosr sa− 2(G)




sinhq sa− 1(G)


 + sinma + 1
(tan(2m + 1) − tan(2m + 1))





(2a+3)/(2a+4)

≤
1
25

e− (2a+3) − sa(G) + 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr sa− 2(G)




sinhq sa− 1(G)


 + sinma + 1





(2a+3)/(2a+4)

+
1
5

e− (2a+3) − sa(T) + 
∞

m�0

tan(2m + 1)cosh(3m − a)cosr sa− 2(T)




sinhq sa− 1(T)


 + sinma + 1





(2a+3)/(2a+4)

.

(102)

By ,eorem 30, the nonlinear difference (99) has one
solution D ∈ I(cF

0 (∇2p,(2a+3/a+2)∞a�0))h
(Ω,Λ).

7. Conclusion

In this paper, we have explained sufficient settings of the
space cF

0(∇2p, τ) equipped with definite function h to be pre-
quasi Banach. ,e Fatou property of various pre-quasi-
norms h on cF

0(∇2p, τ) has been investigated. ,e geometric
and topological structures of the mappings’ ideal by this
space and extended s− fuzzy functions have been explained.
We construct the existence of a fixed point of Kannan
contraction mapping acting on this space and its associated
pre-quasi ideal. Interestingly, several numerical experi-
ments are presented to illustrate our results. Additionally,
some successful applications to the existence of solutions of
nonlinear difference equations of fuzzy functions are in-
troduced. As a future project, we can build the domain of
second-order quantum backward difference in Nakano
sequences of fuzzy functions space and look at its
properties.
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