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University class scheduling problem is one of the most important and complex issues in the academic �eld. �is problem is
recognized as one of the NP-HARD issues due to its various limitations. On the contrary, genetic algorithms are commonly used
to solve NP-HARD problems, which is one of the decision-making problems and is basically one of the most fundamental classes
of complexity. �e university course planning includes severe constraints such as classroom, classroom curriculum, and faculty.
At the same time, some soft constraints should be considered, such as student and faculty preferences and favorite class time. In
this research, as a novel contribution, an integer model for scheduling university classes is presented. In this model, the
preferences of professors and students are in accordance with the satisfaction values obtained through questionnaires. Moreover, a
genetic algorithm has been developed to solve the model. �e results show that the classroom timeline by this algorithm goes well
during each run. Moreover, considering an exploratory search for the genetic algorithm can greatly improve the performance of
this algorithm.

1. Introduction

Curriculum planning and schedules are among the most
complex problems confronting colleges, schools, and edu-
cational institutions. In this regard, an attempt is made to
assign a collection of speci�c services, such as classrooms,
instructors, and courses, to a set of teaching hours under
speci�c conditions. Universities and schools have di�erent
requirements.�e allocation of units to classes and professors
to units is one of the most signi�cant disparities between
universities and colleges. In most colleges, the professor
assigned to a course is not speci�ed ahead of time [1, 2].

In other words, a professor can teach multiple courses,
while each course is listed in professor schools. In addition,

in colleges, the class assigned to each subject is unknown in
advance, while in schools, this is not the case [3].

To put it another way, there are lots of constraints to
providing appropriate planning for educational classes. One
of them is the availability of professors. Not all instructors
are available at all times and o�er their free time. Other
things like the number of classes and courses are provided.
�e number of classes, courses, the room’s availability, or the
class’s place must be considered for planning [1].

�e following constraint is the students’ preferences and
conditions. For example, top students �nish about four
semesters of their studies. In other words, they must pass
about 18 courses per semester on average. It is obvious that,
in the same semester, all the courses should be planned
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differently from one another so that the student can com-
plete the course without any overlapping plans. All these
courses are registered as a group. For a specific unit, the
number of students in a group becomes very large, and it is
impossible to plan them for a specific period in a class.
+erefore, holding a parallel class is likely to happen.
Suppose 100 students pass a specific course in the same
semester, and on the contrary, the capacity of a class is a
maximum of 30 students, so four parallel classes will be
opened for that course.

It should be noted that the program of that parallel class
is not necessarily the same. It depends on the instructor’s
availability. In addition, there are facilities for a specific
course where some classes are merged into one class.
Suppose a teacher can teach a number of courses.+is makes
the timetable more difficult. On the contrary, the timetable
of the university program includes several sections. Time-
table constraints in the first stage are 8 hours of classes per
day and five days per week. Secondly, there are two types of
lecturers, full-time and part-time lecturers.

In general, a maximum of 16 theory units per week is
planned for a part-time lecturer, while a maximum of 12
units is planned for a full-time lecturer. +ere is no par-
ticular limit for the room where the classroom is held.
However, for some specific courses, there is also a workshop
and laboratory modes, which have different schedules and
make the schedule more difficult[2, 4].

Researchers all around the world have assessed the
optimization of curriculum planning and course scheduling
in different universities. Cruz–Rosales et al. [3] created a
two-stage model in which they first considered a feasible
solution using novel approaches such as local search and
taboo search and then soft constraints using the simulated
annealing process. By simulated annealing (SA) algorithm
and graph coloring, they obtained a solvable solution. Next,
the SA algorithm then eliminates soft constraints, as well as
rearranges time intervals and moves courses between time
intervals [3].

A meta-innovative approach based on the forbidden
quest was presented by Aldeeb et al. [5]. Different neigh-
borhood structures are discussed in this study. +e problem
of scheduling courses at the university’s department of
statistics with four separate neighborhood structures was
solved, and the results were compared. Assi et al. [6] pro-
vided a model for scheduling the exams at Napier University
by removing unscheduled courses using an evolutionary
genetic algorithm and local search.

Muklason et al. [7] proposed an integer programming
model for the class schedule that ensured the constraints met
the requirements. +e objective function of this study is to
represent the desires of students and professors. Mokhtari
et al. [8] provided a study on the topic of nurses’ class
planning, which is comparable in terms of modeling to
educational planning. With the aid of mixed-integer pro-
gramming, a two-stage creative model was proposed to
improve the program’s user-friendliness and high versatility
in switching between nurses. Luo et al. [9] developed a
model to minimize professors’ working days and hours of
unemployment between the two groups, using simultaneous

linear programming of integers combined with real numbers
as a convergent approximation tool to the neighborhood.

After a complete review of the literature, the main
contribution of this research can be summarized as follows:

(i) Optimizing the university class scheduling problem
considering the preference of teachers

(ii) Optimizing the university class scheduling problem
considering the preference of students

(iii) Considering the deviation of ideal plans in opti-
mizing the studied problem

(iv) Proposing ametaheuristic algorithm to optimize the
proposed mathematical model

In the rest of the study and in Section 2, the method-
ology, including the proposed mathematical model and the
genetic algorithm, will be discussed. In Section 3, the nu-
merical results obtained from solving the model are pre-
sented, and in Section 4, the research summary is presented.

2. Methodology

2.1.ProposedMathematicalModel. In this section, an integer
linear programming model is presented. In this regard, the
principles of proposing a new mathematical model are in-
spired by [10–14]. Based on modeling from the subject
literature [15–17], the objective function of the model is
divided into two parts.+e first part is for professors, and the
second part is for students. Moreover, since it was required
to maximize the number of classes in a specific time period,
its negative deviations are minimized too. In the following,
variables, parameters, and sets are defined. Next, various
constraints of the model are presented, and then, the ob-
jective of the function and determination of the cost coef-
ficients are presented.

2.1.1. Indices and Sets. i: index of courses
j: index of courses’ code
l: index of professors
d: index of days
t: index of periods
S: index of student groups
l: the set of courses that must be presented
lv1: a set of one-unit courses (courses that require half a
session per week)
lv2: sets of two-unit courses (courses that require one
session per week)
lv3: three-unit course set (courses that require one and a
half sessions per week)
lv4: four-unit course set (courses that require two ses-
sions per week)
lLl : courses that can be presented by the L professor
lSs : courses in which the sth group of students is ap-
plying for registration
Ji: the codes that can be provided for the ith course
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Li: professors who can teach my course.
T: the set of time intervals, T � 0, 1, 2, . . .{ }

TE: set of even time intervals, T � 0, 2, 4, . . .{ }

TO: set of odd time intervals, T � 0, 1, 3, 5, . . .{ }

TK: set of time intervals of kth time packets

2.1.2. Decision Variables

Xijldt: binary variable takes 1 if the code of the class i is
provided at the hour t of day d, and is 0 otherwise
Xijldt s: binary variable takes 1 if the code j of the class i

is provided by the lth professor at the hour t of the day
d and the sth group of students participate in it, and 0
otherwise
yij: binary variable will take 1 if the code j of the three-
unit class i has two sessions in an odd week and one
session in an even week, and if it has one session in an
odd week and two sessions in an even week, it will take 0
ds+

dks, ds−
dks: positive and negative deviations of the

number of classes of the sth group of students in the tth
time block on the day d from the desired number of
classes
ys

dks: binary variable is equal to 1 if the sth group of
students in the kth time block has class, and 0 otherwise
di+

dks, di−
dks: positive and negative deviations of the

number of classes of teachers l in the kth time block on
the day d from the desired number of classes
yl

dks: binary variable is equal to 1 if a teacher l has a class
in kth time block on day d, and 0 otherwise
zijl: binary variable is equal to 1 if the teacher l teaches
the ith course, and 0 otherwise
wijs: binary variable is equal to 1 if group s of students
enrolls in code j of course i and 0 otherwise

2.1.3. Parameters

Ll: minimum number of hours that the professor l must
teach (for faculty members)
Ul: maximum number of hours that the lth professor
should teach (for professors who are not faculty
members)
ai: capacity of the ith class (the maximum number of
students who can enroll in the ith class)
ks: number of students in the sth student group
bdt: number of available rooms for class scheduling in
the tth interval from the dth day
mld: desired number of classes of the lth teacher in the
kth time package on the dth day
nks: desired number of classes of the sth student group
in the kth time block on the dth day
vi: number of units for the course i

cijldt: cost factor of the formation of the Jth class of the
ith class by the lth teacher at hour t of the day d

c’ijldt: coefficient of the cost of forming the class code J of
the ith class by the lth teacher at the hour t of the day d

and registering the sth group of students in it.
a1: importance of cost factor in the objective function
a2: importance of number of classes (negative devia-
tion) in the objective function
a3: importance of the number of classes (positive de-
viation) in the objective function
a3: importance of students’ preferences in the class
schedule
a4: importance of teachers’ preferences in the class
schedule

2.1.4. Hard Constraints

(1) One-Unit Courses. Constraint (1) has been presented for
one-unit courses, which specifies that one of the half-in-
tervals must take the value of one on different days and at
different time intervals:


d∈D


t∈T


l∈L

xijldt � 1 ∀i ∈ l
v
1, j ∈ Ji. (1)

(2) Two-Unit Courses. For two-unit courses, Constraints (2)-
(3) are used. Constraint (2) makes one of the even half-
intervals equal to one and is equivalent to the fact that the
first part of a class is formed in one of the even half-intervals,
and Constraint (3) equals the next half-interval. It places one
so that the continuation of the class is also formed exactly
after the first half of the class:


d∈D


t∈T


lεL

xijldt � 1 ∀i ∈ l
v
2, j ∈ Ji, (2)

xijldt � xijldt+1∀i ∈ l
v
2, j ∈ Ji, d ∈ D, t ∈ TE, lεLi.

(3)

(3) 4ree-Unit Courses. As the courses suggest, for the as-
signment of these courses, three half-intervals of onemust be
taken. +ere are two situations here: either two half intervals
of even and one half interval of odd value or two odd half
intervals and an even one are taken. Constraints (4)-(5) show
that if yij takes the value of one, we will have two even half-
intervals and one odd half-interval, and vice versa, if it takes
the value of zero:


d∈D


t∈TE


l∈L

xijldt � 1 + yij ∀i ∈ l
v
3, j ∈ Ji, (4)


d∈D


t∈TO


l∈L

xijldt � 2 − yij∀i ∈ l
v
3, j ∈ Ji. (5)
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Constraint (6) guarantees that two of the three half
intervals that are supposed to have a value of one are
consecutive so that it can be considered as a full session:

yij − 1≤xijldt − xijldt+1 ≤yij ∀lεLi, t ∈ TE, i ∈ l
v
3, ∈ Ji, d ∈ D. (6)

Constraint (7) guarantees that each course does not have
more than two half-periods (one session) per day:


t∈T

xijldt ≤ 2,∀d ∈ D, i ∈ l
v
3, j ∈ Ji, lεLi. (7)

(4) Four-Unit Method.+ere are four series of constraints for
four-unit courses. Constraint (8) makes two of the even half-
intervals equal to one, and it is equivalent to the fact that the
first part of a class is formed in two even half-intervals.
Moreover, Constraint (9) of their next half-interval is equal
to that (one) so that the continuation of the class is formed
exactly after the first half of the class:


t∈T

txijldt � 2,∀i ∈ l
v
3, j ∈ Ji, lεLi, d ∈ D, (8)

xijldt � xijldt t+1,∀i ∈ l
v
4lεLi, t ∈ TE, j ∈ Ji. (9)

Constraint (10) guarantees that each four-unit course
does not have more than half a period (one session) per
day:


t∈T

txijldt ≤ 2,∀i ∈ l
v
4, j ∈ Ji, lεLi, d ∈ D. (10)

2.1.5. Constraint of Professors. Constraint (11) guarantees
the noninterference of the courses related to each professor
in each time period:


i∈l


j∈Ji

xijldt ≤ 1,∀l ∈ L, d ∈ D, t ∈ T. (11)

Constraint (12) is related to theminimum andmaximum
teaching hours of professors, which are the minimum
teaching hours for faculty members and the maximum
teaching hours for some nonfaculty professors who set a
maximum time for teaching:

L≤ 
d∈D


t∈TE


l∈L


i∈li

xijldt ≤U,∀l ∈ L.
(12)

Constraints (13)-(14) guarantee that each code teaches
each course by one and only one professor. If the lth teacher
teaches the jth code of the ith course, the variables related to
that teacher can take values. +e first Constraint (13) makes
it possible to be scheduled in the timetable only when a
professor has taught the course code. Furthermore, Con-
straint (14) guarantees that each course code is taught by
only one professor:


i∈li


j∈lj


l∈L

xijldt ≤ vizijs,∀s ∈ S, i ∈ l
s
s.j ∈ J,

(13)


l∈Li

zijl � 1,∀i ∈ I, j ∈ Ji. (14)

2.1.6. Constraint of Students. Constraint (15) guarantees the
noninterference of courses related to each group of students
in each time period:


i∈Il


j∈Ji


l∈Li

xijldt ≤ 1,∀s ∈ S, d ∈ D, t ∈ T.
(15)

Constraint (16) shows that if a course is offered in a day
and hour, the number ai of students who apply for that
course should register in the code of that course:

aixijldt � 
s∈Si

ksxijldt s,∀i ∈ I, j ∈ Ji, d ∈ D, t ∈ T.
(16)

Constraints (17) and (18) guarantee that each student
group can register one and only one-course code, and if it is
registered, the variables related to that code can be set. In
fact, the following constraint shows that if course i was
presented with vi units for the students of group s, it will be
Wijs � 1, and the number vi of half the interval will be one.

+ese constraints guarantee that each group of students
can register in one and only one of the course codes they
want, and if they register, the variables related to that code
can be set. In fact, Constraint (17) shows that if course i of
code j is presented with vi units for students of the group s, it
will be Wijs � 1, and the number vi of half interval will be
one. Constraint (18) shows that each group of students must
register in one code for the courses they want. Moreover,
Constraint (19) shows the number of classes available in each
time period:


i∈Il


j∈Ji


l∈Li

xijldt ≤ viwijs,∀s ∈ S, i ∈ I
s
s, j ∈ Ji, (17)


j∈li

wijs � 1,∀s ∈ S, i ∈ I
s
s, (18)


i∈Il


j∈Ji


l∈Li

xijldt ≤ bdt,∀d ∈ D, t ∈ T.
(19)

2.1.7. Soft Constraints. +e soft constraints include the
following. Constraint (20) from the professors’ point of view
shows the minimum number of classes that professors want
to have in each time frame package:


i∈Il


j∈Ji


t∈Tk

xijldtd
l−
dkl − d

l+
dkl � mkly

l
kdl,∀l ∈ L, k ∈ K, d ∈ D. (20)
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Constraint (21), which is raised from the perspective of
students, shows the minimum number of classes that stu-
dents have in each time package:


i∈li


j∈l


l∈Li


t∈Tk

xijldt + d
s−
dkl − d

s+
dkl � nksy

s
kds,∀s ∈ S, k ∈ K, d ∈ D.

(21)

2.1.8. Objective Function.

Minz � a1 
i∈li


j∈l


l∈Li


d∈D


t∈T

cijldtxijldt

+ a2 
s∈S


d∈D


k∈K

d
s−
dks + a3 

s∈S

d∈D


k∈K

d
s+
dks

+ a4 
l∈L


d∈D


k∈K

y
l
dkl + +a5 

s∈S

d∈D


k∈K

y
s
dks.

(22)

Equation (22) shows the objective function of the
mathematical model. In general, the different parts of the
objective function are measured with coefficients a, and their
relative importance is determined. +e first part is for the
cost of forming a class, and the second part is the cost of
choosing a class of students.+e third and fourth sections try
to maximize the number of classes in the time package as
much as possible, so its negative deviations are minimized.
+e fifth section makes the class less time-bound.

2.2. 4e Structure of the Genetic Algorithm. +e genetic al-
gorithm (GA) is a classic metaheuristic algorithm based on
the evolutionary ideas of natural selection and genetics [18].
In this way, GA represents the intelligent use of a random
search algorithm to solve optimization problems. Although
genetic algorithms use random phenomena, it has an evo-
lutionary process to achieve the best possible solution [19].
+e main aspects of GA are designed in such a way that they
can simulate the processes necessary for evolution in natural
systems. Among the most important of these processes are
those that follow the laws that were first proposed by Charles
Darwin and named “Survival of the Fittest.” +e reason for
this is that, in nature, the competition between living or-
ganisms to obtain scarce resources leads to the dominance of
the fittest organisms over the weaker ones [20, 21].

In order to solve mathematical models using genetic
algorithms, it simulates the principle of fitness with an
encoding scheme. It produces several solutions as a “gen-
eration.” Each generation contains a population of strings of
characters that are similar to the chromosomes found in our
DNA. Each person (solution) will represent a point in the
search space and a possible solution. Next, the members of
each generation enter into a process similar to the process of
evolution of living organisms [22].

Genetic algorithms operate using specific principles,
such as the genetic structure and behavior of chromosomes
in a population of individuals [23]. +ese basics are

(i) Selecting a set of solutions and generating new
solutions using crossover and mutation

(ii) Members who are more successful in each com-
petition produce more offspring than members who
do not perform well

(iii) Genes from good-performing members spread
within the population, so good parents sometimes
produce offspring that are better than either parent

+erefore, each successive generation will be better
suited to live in its surroundings. A summary of the steps of
the genetic algorithm is presented in Figure 1.

To use a genetic algorithm, a population of individuals is
maintained within a search space. Each of these people is
actually a possible solution to the problem. Each member is
coded with a finite-length vector of components or variables
and with the help of special alphabets. +ese special al-
phabets are usually binary alphabets. To implement a genetic
algorithm structure, each member is interpreted as a
chromosome which is known as solution representation.
+erefore, a chromosome (a solution to the problem)
consists of several genes (variables). To show the abilities of
each member to compete with other members of the pop-
ulation, each possible answer is assigned a fitness score. +e
member with an optimal fitness score (or, more generally,
close to optimal) is our favorite [24, 25].+emain reason for
choosing GA for optimizing the proposed mathematical
model is its acceptable performance in the previous related
research items. +e flowchart of the proposed genetic al-
gorithm is illustrated in Figure 2.

2.3. SolutionRepresentation. +e encryption method used in
this study is permutation encryption. In this technique,
chromosomes are coded as integers. Each integer is a unique
gene for a specific period, and the sequence of integer genes
representing genes in a chromosome determines the order of
the sequence of periods to be programmed [25]. For ex-
ample, a five-gene chromosome represented by 4 3 2 1 5
means that the first period is programmed by the integer 4
for the first time. Next, subsequent courses are followed by
others in succession. +e length of courses is equal to the
total number of courses planned in a course group. If there
are four periods for planning, and each of them is planned
twice a week, the length of the chromosome is 8.

+e selection process is based on a short selection.
Chromosomes are classified according to their fitness
function value from largest to smallest. Some chromo-
somes, starting from the smallest fitness strands, are
replaced by new ones [26]. A new chromosome is ob-
tained by reversing the position of all bits in an old
chromosome. Unlike other selection methods, short se-
lection does not copy the best chromosome for the
population. For example, Table 1 contains the classified
chromosomes of five genes. If the selection probability is
0.4, it means that the number of old chromosomes to be
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replaced with new ones is 2 = 0.4 × 5. Chromosomes 1 2 5
3 4 are replaced by 4 3 5 2 1, while chromosomes 5 2 3 4 1
are replaced by 1 4 3 2 5.

2.4. Crossover Operator. In this research, a random-based
crossover is applied. In the operator, the multiplication of
chromosomes is performed based on population size and
rate of crossover. +e number of crossovers and the number

of mutations must be the same. An example of a crossover is
presented in Figure 3.

2.5. Mutation Operator. In this research, a random-based
mutation is applied. For the mutation operator, two cells are
selected randomly; then, the value of these cells are moved
with each other. An example of mutation is presented in
Figure 4.

2.6. Timetable Design. A schedule is actually a schedule that
various constraints must accompany. Constraints are almost
universally used by people with scheduling problems
[16, 18, 20]. Constraints, in turn, are roughly divided into
two categories: soft and hard constraints. A hard constraint
is a constraint in any work schedule; it does not create any
considerations. For example, a lecturer cannot be in two
places simultaneously [22, 23]. Soft constraints may be
broken, but their violation should be minimized. In addition
to constraints, a number of exceptions must be considered
when building an automatic scheduling system. For ex-
ample, each class should be scheduled exactly once, students’
classes should not have two instructors at the same time, and
reservations should not be made if the instructor is not
available.

On the contrary, some classes need special rooms. Some
classes must be held consecutively. While soft constraints for

Selection

String 1

String 2

String 3

String 4

String n

Current
Population

New
Population

String n

After
Selection

After
Crossover

String n String n

String 1

String 2

String 2

String 4

String 1

String 2

String 2

String 4

String 1

String 2

String 2

String 4

Crossover Mutation

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

Figure 1: +e main operators in genetic algorithm.

Start

Stop

Evaluation

Selection

Crossover

Mutation

Ranking

Initial
population

i=0

Stop
criteria i=i+1

Figure 2: +e flowchart of the proposed genetic algorithm.

Table 1: Selected chromosomes before crossover.

Chromosomes
1 4 5 2 3 1
3 5 2 1 4 0.95
2 4 5 1 3 0.7
1 2 5 3 4 0.5
5 2 3 4 1 0.3
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some professors prefer hours to be scheduled, most students
do not want to have empty courses on their schedule. +e
distance students have to travel should be kept to a mini-
mum. Classes should be evenly distributed throughout the
week, classrooms should be reserved close to their office or
home, and classrooms that are much larger than the stan-
dard classroom size should be reserved. In addition, there
are exceptional limits that have been considered. For ex-
ample, a part-time instructor can be scheduled for more than
six units, while for full-time, it is twelve units.

3. Numerical Results

Some tests are conducted to make sure how the system
works.+ere are four groups of courses from year 1 to year 4.
In experiments, we want to create a timeline for a particular
semester’s data. A certain number of courses and professors
are planned.

From Table 2, it can be concluded that n(M) � 7, n(T) �

3, n(L) � 9, n(C) � 2, n(D) � 5, and n(H) � 10, and all
chromosome genes include m1, t0, l1, m2, t0, l2, m3, t0, l2,
m4, t0, l3, m5, t0, l6, m6, t0, l5, m7, t1, l6, m7, t1, and l7.

+is means that there are 13 columns and 100 rows in
the target matrix after receiving the basic data, such as
what room can be used for a specific teacher in a limited
time and day, and also according to the capacity of that
room. +is system is run with ten chromosomes in a
population, and ten generations are set in the experiment.
Regardless of the probability of selection, crossover, and
mutation, the maximum of the best value of the fitness
function, i.e., 1, is obtained. +is means that less time is
needed to develop the program, and all courses can be
planned based on it.

+e timetable in which the class session will be held
should also be defined. +e system can define the available
room for it, so after assigning a room, the status of that room
is no longer available for that day and time.

3.1. Findings. As previously mentioned, the problem is
planned and solved in conjunction with real data taken from
the Faculty of Electrical Engineering of one of the inter-
national universities, which we will discuss below, to discuss
the findings of the proposed model. +is problem contains
five courses with three units, three courses with two units,
and one course with one unit, for a total of 39 units (39 half
intervals). Table 3 contains a list of courses with descriptions.
Furthermore, it has nine professors; each professor can teach
a few or no courses. Moreover, Table 4 includes information
on professors.+ese courses are available for twelve different
student classes (groups of ten).

Since each class has a capacity of 30 students, each class
must enroll three groups of students, as shown in Table 5. In
each section, there are between nine and eleven selected
units. Every week, we have three working days. It is also
considered, given that we have 39 credits and the institute’s
objectives of broadcasting activities in the classroom. +ere
are a few details in the model that is not included. +ere are
no minimum or maximum time constraints for professors,
for example. All objective coefficients are set to one since we
are just searching for a reasonably suitable response and
testing the model’s correctness. Two-time packages per day
(morning and evening) are considered, with at least three-
morning classes and four-evening classes.

+e problem’s outputs are provided using the GAMS
software. +e outputs are divided into three categories after
extracting and classifying the variables that take the value:

24351Parent 1:

15243Parent 2:

25341Child1:

14253Child2:

Figure 3: An illustrative example of the crossover operator.

15243Before mutation

12543After mutation

Figure 4: An illustrative example of the mutation operator.
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Table 3: +e available list of courses and their specifications.

Course
code Course title Code of professors who can

teach
Number of course

units
Groups of applicant

students
Number of codes

available
1 Electric car 3 1 and 6 3 11-9-8-5-4-3 2

2 Airline design and
project 1 3 1-5-10 1

3 Special electric
machines 2 and 8 3 12-10-9-6-5-1 2

4 Power system analysis 2 and 4 3 2-6-7-8-9-11 2
5 Special topics 4 and 5 3 2-3-4-6-7-12 2
6 Technical reporting 3 3 7-4-2 1
7 Digital systems 3 3 2 1-3-5-8-9-11 2

8 Numerical
calculations 7 2 2-3-7-4-10-12 2

9 Ethics 9 1 1-6-8-10-11-12 2

Table 4: List of students and their characteristics.

Elective course codes Collect unit
1 2-3-7-9 9
2 4-5-6-8 10
3 1-5-7-8 10
4 1-5-6-8 11
5 1-2-3-7 10
6 3-4-5-9 10
7 4-5-6-8 9
8 1-4-7-9 9
9 1-3-4-7 11
10 2-3-8-9 9
11 1-4-7-9 9
12 2-3-8-9 9

Table 5: List of available professors and their specifications.

Professors code Course codes Available time periods
1 1-2 Day 1 and morning of day 3
2 3-4 Day 3 and morning of day 2
3 4-5 Day 2
4 5 Morning of day 2 and morning of day 3
5 8 Day 1
6 3 Morning of day 1 and morning of day 2
7 9 Evening of day 3

Table 2: +e relation between all sets.

Course name Lecture Lab
A B units A B units

ICT (m1) Budi Berlinton (l1) 3 Monika (l8) Monika (l8) 2
Calculus 1 (m2) Nababan (l2) 2 Finela (l9) Finela (l9) 2Calculus 2 (m3) Nababan (l2) 2
IPE (m4) Sutrisno (l3) 4 Andree (l10) Andree (l10) 2
Discrete math (m5) Samuel (l4) 4
Statistics (m6) Gunawan (l5) 3 Gunawan (l5) 2
Reading skills (m7) Univ (l6) Univ (l7) 2 2
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the first category is the institution’s results, the second
category is the professors’ results, and the third category is
the students’ results. Table 6 will be used to display the
following results.

After converting the final solution to the schedule, we
reach the following schedule. It should be noted that there is
a break between 3 and 4 (two hours for lunch from 12 to 14).
+e results are presented in Tables 7 and 8.

4. Conclusion

+e scheduling problem is one of the issues that has been the
focus of many researchers in recent years. +is problem is
used in different fields in the real world. One of the practical
aspects in which the scheduling problem is used is the
scheduling problem of university courses, which is a com-
plex decision-making issue at the beginning of each aca-
demic semester for university teaching groups. Educational
groups in universities have always been in pursuit of pro-
viding courses and having a suitable timetable schedule

according to the needs and educational laws. +is issue has
received more attention in recent years, and today, it has
been raised as a decision-making issue. One of the most
challenging tasks for university administrators and planners
is scheduling university courses. +e presence of multiple
and overlapping constraints in planning is the primary cause
of these difficulties. On the one hand, students and pro-
fessors each have their own set of constraints. As an in-
fluential factor, university rules can impose constraints on
planning in this region.

+e proposed genetic algorithm and heuristic search are
able to solve the timetable scheduling problem in academic
institutions. +e main finding of this research is that using
the proposed approximate solution method can provide
some solutions that satisfy all constraints, including the
students’ and professors’ preferences. In this regard, in the
optimal solution, planning includes allocating the courses to
the available time periods which are achieved in a way that
student satisfaction is maximized. Although some entities,
such as class location, are not included in the target matrix,

Table 7: Schedule of the institution.

8–10 AM 10–12 AM 2–4 PM 4–6 PM 6–8 PM

Day 1 Numerical
calculations code 1 Special electric machines code 1 Electric car 3 code 1 Electric car 3 code 2 Airline design and

project code 1

Day 2 Operations research
code 1 (f )

Electric machines for code 2 (g)
special topics for code 1

Electricity generation
code 2

Electricity
generation code 1

Technical reporting
code 1

Day 3 Special topics code 2
(g) “Electric machines 3 code 2 (F) Code analysis of power

system code 2
Code analysis power

system 1 —

Table 8: Assignment of courses to professors.

Row Course Course code Course professor code Professor
1 Electric machine 3 Code 1 1 A
2 Electric machine 3 Code 2 1 A
3 Airline design and project Code 1 1 A
4 Special electric machines Code 1 8 B
5 Special electric machines Code 2 2 C
6 Power system analysis Code 1 2 C
7 Power system analysis Code 2 2 C
8 Special topics Code 1 5 D
9 Special topics Code 2 5 D
10 Technical reporting Code 1 3 E
11 Electricity generation Code 1 3 E
12 Electricity generation Code 2 3 E
13 Numerical topics Code 1 8 F
14 Numerical topics Code 2 8 F
15 Ethics Code 1 9 G
16 Ethics Code 2 9 G

Table 6: Schedule class variables.

0 1 2 3 4 5 6 7 8 9
Day 1 X 31812 X 11114 X 11115 X 12116 X 12117 X 21118 X 2119

Day 2 X 31820 X 52521 X 51522 X 32223 X 72324 X 72325 X 72326 X 71327 X 61328 X 61329
X 41220 X 42221 X 51523

Day 3 X 11130 X 51531 X 21133 X 12132 X 42234 X 422355 X 41236 X 41237
X 32230 X 32231 X 52533 X 52532
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the system is able to determine which room to use for a
specific cell in a timeline. If it is placed in the target matrix, it
is likely that instead of adding the number of columns, a
three-dimensional target matrix will be created.

On the other hand, there are limitations in this study that
will be solved as a problem in the future. First, each parallel
class of a subject group shown in a target matrix must be
scheduled for each period defined in that timetable. Sec-
ondly, a course is only possible if it has at least the number of
course units in the target matrix. If that period is divided into
two parts, the name of that period must be different, and it
can be assumed as two periods.+ird, the system’s main goal
is to maximize the number of successful units in planning.
Otherwise, it should be designed based on that definition.

On the contrary, using the proposed mathematical
modeling tools is suggested as an effective method for
scheduling university classes. +is model helps in the op-
timization of mathematical relationships in order to achieve
the best possible solution to a variety of problems. +e
results of this study show that the use of optimization tools
can create a straightforward program with all possible
constraints.

Data Availability

+e data used to support the findings of the study can be
obtained from the corresponding author upon request.
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