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Tra�c �ow is chaotic due to nonstationary realistic factors, and revealing the internal nonlinear dynamics of chaotic data and
making high-accuracy predictions is the key to tra�c control and inducement. Given that high-quality phase space reconstruction
is the foundation of predictive modeling. Firstly, an improved C-Cmethod based on the fused norm search domain is proposed to
address the issue that the C-C method in the phase space reconstruction algorithm does not meet the Euclidean metric accuracy
and reduces the reconstruction quality when the in�nite norm metric is used. Secondly, to address the problem of insu�cient
learning ability of traditional convolutional combinatorial modeling for complex phase space laws of chaotic tra�c �ow, the high-
dimensional phase space features are extracted using the layer-by-layer pretraining mechanism of convolutional deep belief
networks (CDBNs), and the temporal features are extracted by combining with long short-term memory (LSTM). Finally, an
improved probabilistic dynamic reproduction-based genetic algorithm (PDRGA) is proposed to address the problem of the
hybrid model falling into a local optimum when learning the phase space law. Experiments are conducted in three aspects: phase
space reconstruction quality analysis, comparison of optimization algorithm convergence, and prediction model performance
comparison.�e experimentation with two data sets demonstrates that the improved C-Cmethod combines the advantages of the
high accuracy metric of the L2 norm with the low operational complexity of the in�nite norm, achieving a balance between
reconstruction quality and algorithm e�ciency. �e proposed PDRGA optimization algorithm is a lightweight improvement of
the traditional genetic algorithm (GA) and solves the problem that the model tends to fall into a local optimum by optimizing the
initial weights of CDBN. Meanwhile, the �ve error evaluation indexes of the proposed PDRGA-CDBN-LSTM hybrid model are
lower than those of the baseline model, providing a new modeling idea for chaotic tra�c �ow prediction.

1. Introduction

With the expansion of car ownership in cities, the contra-
diction between the limited urban tra�c road network re-
sources and the increasing tra�c demand of inhabitants is
becoming more pronounced, which can potentially lead to
road congestion, poor transportation e�ciency, and high
fuel consumption. Analyzing the characteristics of tra�c
�ow data and making predictions is one of the most e�ective
ways to mitigate such issues, as it can provide suggestions for
route planning and tra�c control for travelers and tra�c
management, and is a crucial step in promoting the de-
velopment of smart transportation systems in urban areas.
Tra�c �ow data are considered to have three types of terms,
namely link �ow, path �ow, and node pair demand (O/D)

[1], with link �ow being in�uenced by road network
structure, real-time road conditions, and uncertainty events
and exhibiting nonlinear chaotic dynamics [2]. �e char-
acterization and prediction of link tra�c �ow data with
chaotic features has been one of the most popular study
issues in the �eld of transportation.

�e research on chaotic link tra�c �ow prediction
consists of two major phases: the chaoticity analysis phase
and the tra�c �ow prediction phase. First, the analysis of the
chaotic dynamics of tra�c �ow is an important foundation
for tra�c �ow prediction, and the crucial step is the chaotic
phase space reconstruction operation, which can fully ex-
pand the chaotic attractors collapsed in the original time
series data into a new data organization [3], so as to more
intuitively demonstrate the chaotic nature of the data. �en,
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following the completion of the chaotic characterization of
the data, a traffic flow predictionmodel suited for the chaotic
phase space data feature extraction is created.*e prediction
of traffic flow should take into account not only the training
capability, prediction accuracy, and robustness of the se-
lected prediction model but also the feature extraction ca-
pability of the model for chaotic phase space data
organization, so that the model can extract rich dynamical
information from chaotic data, thereby enhancing its
nonlinear fitting performance. *erefore, the research on
predicting chaotic traffic flow focuses on two aspects: the
chaotic phase space reconstruction operation of traffic flow
data and the selection of traffic flow prediction models.

*e phase space reconstruction of chaotic traffic flows is
based on Takens’ theorem [4], which finds the orderly
pattern from the seemingly disordered random-like data
distribution and reorganizes the data form by the phase
space reconstruction method, so that the attractors in the
traffic flow are expanded in the high-dimensional space as
the phase space, which facilitates the extraction of chaotic
features in subsequent prediction models. *e embedding
dimension and delay time, according to this theorem, are the
two key reconstruction parameters for phase space recon-
struction of traffic flow data [5]. Currently, there are two
types of methods for phase space reconstruction. One type of
algorithm calculates the embedding dimension and delay
time of phase space reconstruction parameters indepen-
dently, such as the false nearest neighbor method, G-P
method, and minimum description length method [6–8] for
calculating the embedding dimension and the mutual in-
formation method and autocorrelation method [9] for
calculating the delay time. *e other type assumes that the
two reconstruction parameters do not follow an indepen-
dent identical distribution [10], and can find the correlation
between the two parameters using the embedding window
theory to calculate the two reconstruction parameters si-
multaneously with higher efficiency, such as the C-Cmethod
[11]. *e operation of traffic flow phase space reconstruction
provides a database for the research of prediction models. In
this study, the phase space is reconstructed using the C-C
method, which has the properties of simple calculation and
high efficiency.

*e construction of a traffic flow model is the primary
technical method for predicting traffic flow, and it is also the
embodiment of the application value of traffic flow char-
acteristics analysis. *ere are three primary phases in the
study of models for predicting traffic flow: statistical models,
classical machine learning models, and deep learning
models. Earlier, statistical models were often used to predict
traffic flow time series with simpler characteristics, such as
the autoregressive model, the moving average model, the
Kalman filter model, and the Autoregressive integrated
moving average model (ARIMA) [12, 13], among which the
ARIMA model has strong forecasting ability, and the sea-
sonal ARIMA (SARIMA) [14] performs better in the fore-
casting task with seasonal adjustment to tap into the periodic
similarity pattern in the traffic flow time series based on
ARIMA. Nonetheless, when dealing with data with more
complex characteristics, it is difficult for statistical models to

capture effective traffic flow evolution patterns. Hence,
machine learning algorithms with stronger nonlinear fitting
capabilities, such as linear regression, k-nearest neighbor,
and neural networks [15–17], have received more attention.
As an important branch of machine learning, neural net-
work models, including artificial neural networks (ANN),
fuzzy neural networks (FNN), and radial basis neural net-
works (RBFNN), are equipped with a multinode network
memory function to extract more complex nonlinear feature
information from the historical traffic flow. Deep learning
models deepen the hierarchical structure of neural networks
[18, 19], and this multi-hidden layer network improves the
value density of feature information in the process of
multilevel parameter transfer, abstracts the low-level feature
distribution into high-level feature information, and
strengthens the feature representation ability of the model in
comparison to traditional neural networks, which can learn
the deeper traffic flow evolution laws. Deep belief networks
(DBNs) [20] expand the network depth by multilayer
stacking based on restricted Boltzmann machines, whose
hidden layer units are trained to capture the correlation of
higher-order data exhibited at the visual layer, thereby
enabling the network to more closely approximate the real
system energy state of the data.*e LSTM [21] model, on the
other hand, utilizes a multiunit depth gating mechanism to
improve the model’s ability to retain the data’s evolving
attributes over time. *e outstanding fitting capacity of the
deep learning model serves as a significant guide for the
model’s construction.

*is study proposes a method for predicting connection
traffic flow data with chaotic characteristics. First, an im-
proved phase space reconstruction C-C method is used to
demonstrate the chaotic dynamics of the data. Second, a
hybrid deep learning model architecture applicable to
chaotic phase space data is used to extract the data features
from the phase space data, and an improved intelligent
algorithm component is installed on the model to optimize
its parameters. *e remainder of the paper is structured as
follows: Section 2 describes the current state of the research
field and the paper’s contribution; Section 3 introduces the
data chaos analysis process with an emphasis on the im-
proved phase space reconstruction principle; Section 4 de-
scribes the main framework of the hybrid deep learning
model; In Section 5, experiments are conducted and ana-
lyzed in terms of phase space reconstruction quality analysis,
comparison of convergence performance of optimization
algorithms, and comparison of prediction model perfor-
mance; Finally, conclusions are drawn in Section 6.

2. State of Art

Chaotic link traffic flow prediction necessitates consider-
ation of the problems that exist in each of the two phases,
specifically the limited computational accuracy and effi-
ciency of the phase space reconstruction algorithm used in
the chaos analysis phase and the poor learning ability of the
model constructed in the traffic flow prediction phase for the
evolutionary laws of chaotic data. Consequently, the re-
search follows two approaches: the reconstruction
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performance enhancement problem of the phase space re-
construction algorithm and the deep learning prediction
model construction problem of chaotic traffic flow.

In the first approach, a succession of improvement
schemes for enhancing the reconstruction quality and re-
ducing the algorithm’s computational complexity have been
developed. Among the methods to calculate the embedding
dimension and delay time of reconstruction parameters
independently, Zhang et al. [22] incorporated the saturation
judgment parameter into the Cao method and applied the
complementary criterion to jointly compute the saturation
reference, thereby reducing the subjectivity of embedding
dimension assessment. Li et al. [23] applied the density
clustering algorithm and the particle swarm algorithm to the
G-P algorithm to establish an optimization model for the
automatic identification of scale-free zones, which com-
pensates for the deficiency that the definition of scale-free
zones used for embedding dimension determination is
overly dependent on human experience. Jiang et al. [24]
utilized the probability distribution matrix to determine the
number of distribution points in each edge region, which
simplifies the calculation of delay time in response to the
complex criterion for determining the number of intervals of
equal edge distribution in the mutual information method.
*e C-C method based on the embedding window theory
can calculate the two reconstruction parameters concur-
rently with higher efficiency. However, the L2 normmeasure
used in the C-C method to measure the high-dimensional
phase point spacing conforms to the definition of Euclidean
distance without metric error, but its calculation logic is
more complicated and generates more redundancy. Wang
and Chen [25] substituted the infinite norm phase point
spacing metric for the L2 norm while calculating the phase
space reconstruction parameters based on the topological
equivalence theory. In comparison to the L2 norm, the
infinite norm metric is easier to calculate and can effectively
improve computational efficiency. However, due to the
difference between its metric principle and the definition of
Euclidean distance, there are inevitable metric errors that
affect the algorithm’s accuracy. Lu et al. [26] introduced
adjustable parameters to trade-off speed and accuracy based
on an infinite norm in order to increase the accuracy of delay
time selection while decreasing the operational cost.
However, the problem of metric bias of the infinite norm in
the Euclidean phase point space still exists, and the spacing
of high-dimensional phase points cannot be correctly de-
scribed, indicating that the efficiency of the infinite norm is
enhanced at the expense of their accuracy. In view of this, to
achieve the goal of high-quality phase space reconstruction,
the idea of improving the reconstruction parameters of the
C-C method with accuracy tending toward the L2 norm and
efficiency tending toward the infinite norm needs to be
investigated. In light of this, the concept of enhancing the
reconstruction parameters of the C-C method with accuracy
tending toward the L2 norm and efficiency tending toward
the infinite norm needs to be investigated in order to achieve
high-quality phase space reconstruction.

In the second approach, numerous deep learning al-
gorithms have been applied to traffic flow prediction tasks in

recent years. Zhang et al. [27] estimated the data time lag and
data volume using a feature selection method and a con-
volutional neural network (CNN) to discover the charac-
teristics of traffic flow. Fu et al. [28] used a multiunit LSTM
and gated recurrent unit (GRU) for short-term traffic flow
prediction and compared it to an ARIMA model to validate
the deep learning model’s nonlinear fitting performance.
Despite the fact that the hierarchical structure of the deep
learning model can explore the deeper feature patterns of the
data to learn the true representation of the data, due to the
chaotic nature of the link traffic flow, the deep learning
model trained by gradient descent is prone to be sparse when
extracting the complex arrangement of the phase points of
chaotic data, and the update parameters containing feature
information are easily sparse during the long distance be-
tween layers, which leads to the phenomenon of gradient
dispersion. Moussa and Owais [29] used pretrained deep
convolution neural networks (DCNNs) to perform the
prediction task and let the model adopt the previous training
results through transfer learning.*is method of cumulative
learning avoids the time-consuming process of learning data
from scratch and the potential training issues it may gen-
erate. Subsequently, Moussa et al. [30, 31] used the model
feature of the deep residual neural network (DRNN) that can
bypass some network layers to reduce the transmission
distance of feature information, and the model shortcut
connection approach substantially diminishes the training
difficulties caused by the excessive number of network layers.
Huang et al. [32] introduced a multitask regression layer to
DBN to predict traffic flow, and the layer-by-layer greedy
pre-training mechanism employed in DBN provides com-
plete network parameter adjustments at each layer to pre-
vent the long-distance transfer of feature information. Due
to the complexity of the features contained in the chaotic
link traffic flow data, not only does the overall data exhibit
chaotic dynamics but also the time dependence in the data
evolution process. *erefore, the single modeling strategy is
inadequate for traffic flow feature extraction. Zheng et al.
[33] developed a multimodel combination construction
idea, utilizing deep embedding components to capture and
identify feature information, CNN to learn traffic flow data
characteristics, and LSTM to maintain long-term time re-
liance on historical data. Huang et al. [34] predicted chaotic
systems in the form of a combined CNN and LSTM ar-
chitecture, and the two models were utilized to learn the
chaotic and temporal features of the system, which enabled a
more comprehensive understanding of the system dynamics.
In light of this, the selection of deep learning models must
take into account the applicability of complex chaotic phase
space data trained by multilevel neural networks, while the
multifeature extraction perspective of the hybrid model
building concept can extract the complex data characteristics
of chaotic link traffic flow more thoroughly, which can be
used as an important modeling reference.

In addition, intelligent algorithmic components are
frequently applied in the field of transportation. Owais et al.
[35] used a genetic algorithm (GA) with good adaptability
and extensibility to solve the bus network design problem. In
2018, this author further considered bus station design [36]
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and selected GA as a complete hierarchical solution for the
bus network design problem, while multiobjective nature
problems are also solved in this approach.*e GA algorithm
is also frequently employed in traffic flow model optimi-
zation problems. Zhang et al. [37] used GA to optimize the
filter weights and parameters of the temporal convolutional
neural network (TCN) to find the optimal adaptation of
traffic flow prediction models, thereby enhancing their ac-
curacy. Using GA, Zhou et al. [38] optimized critical pa-
rameters such as penalty parameters of support vector
regression in the hybrid traffic flow prediction model to
improve the merit-seeking capability during model training.
*e application of GA components in model parameter
optimization strategy is very informative, but the restricted
convergence efficiency of GA will additionally increase the
training cost of the combined model, and the convergence
accuracy of the algorithm also needs to be enhanced.

*e main contributions of this paper, which are further
explored in light of the aforementioned literature, are
summarized as follows: (1). At the stage of chaotic analysis of
link traffic flow data, the idea of phase space reconstruction
based on the C-C method with an improved fusion norm
search domain is proposed to ensure the accuracy of re-
construction parameter calculation while reducing the
complexity of the operation, and a game balance is achieved
between the quality of the phase space reconstruction and
the efficiency of the algorithm. (2). In the stage of prediction
model construction, the PDRGA-CDBN-LSTM hybrid deep
learning model adaptable to complex feature processing of
chaotic link traffic flow is constructed. *e combination of
CDBN and LSTM can learn the chaotic dynamics and time-
dependent relationship of link traffic flow from multiple
perspectives, allowing for more comprehensive data feature
extraction and enhancedmodel prediction performance. (3).
On the basis of the hybrid model, an intelligent algorithm
parameter optimization strategy is further incorporated to
realize the lightweight improvement of GA through the
probabilistic dynamic reproduction operation (i.e., the
PDRGA method), and it is used to assist the optimization of
the initial weight parameters of the hybrid model to solve the
problem that the initial solution space of the model is
randomly distributed, resulting in a tendency to fall into a
local optimum during training.

3. Chaotic Phase Space Reconstruction of Link
Traffic Flow

Due to the interference of external uncertainties, the actual
measured traffic flow data will invariably exhibit various
types of noise. It thus affects the quality of the training data
and even causes the chaotic nature to degenerate into
randomness [39], causing the subsequent prediction process
to fail. Figure 1 depicts the processing of chaotic traffic flow
data, in which the chaotic traffic flow is first smoothed by the
wavelet transform denoising method to remove noise while
retaining the original data’s local key features. *e denoised
high-quality measured traffic flow sequence is the input
vector for the improved C-C method based on the fused
norm metric, which is reconstructed in phase space [40] to

expand the attractor structure in high-dimensional space to
better show the internal nonlinear law of chaotic data for the
chaotic feature extraction task of the hybrid model, and
finally, the small data sets method [41, 42] is used to validate
the data chaos and normalize it [43] in order to generate the
chaotic phase space tensor Tand the traffic flow time series S
required for the hybrid model.

3.1. Wavelet Transform Denoising Preprocessing.
Commonly employed in signal processing, the wavelet
transform denoising method has high operational efficiency
and outstanding smoothing performance, and its adaptive
time-frequency window permits time-frequency localiza-
tion, which keeps the data’s essential characteristics while
reducing noise. Given that the essence of the chaotic signal
wavelet transform is the projection process of a phase space
singular attractor to filter vector space [44, 45], its trans-
formation is comparable to phase space reconstruction
topology [46] without compromising the data’s chaotic
nature rule.

*e specific algorithm flow of wavelet transform
denoising is depicted in Figure 2. Initially, wavelet de-
composition is performed on the original traffic flow data to
separate the high-value density traffic flow time series signal
from the noise signal. Subsequently, the wavelet coefficients
are obtained after selecting the Haar wavelet basis and
determining the number of decomposition layers. Finally,
the reconstruction of wavelet inversion is carried out to
produce the smoothed traffic flow time series.

3.2. *e Fundamentals of Phase Space Reconstruction C-C
Method. *e majority of the research on the internal chaos
of denoised traffic flow time series is conducted in high-
dimensional space by reconstructing the phase space to
enable the system to more precisely depict the structure of
chaotic attractors [47, 48]. Due to its low computing
complexity, robustness, and ability to get two types of phase
space reconstruction parameters concurrently, the C-C
method of the reconstruction algorithm is widely used, and
it is more suitable for the volume of the observed traffic flow
sequence in this research.

*e C-C method, which is based on Takens’ recon-
struction theory, first calculates the correlation dimension
[49, 50] as follows:

C(m, N, r, t) �
2

M(M − 1)


1≤ i< j≤M

θ r − dij(P) ,

dij(P) � Xi − Xj







(P)
,

(1)

where m and t represent the phase space embedding di-
mensions and time delays, X and M represent the phase
points and the number of phase points, r and dij(P) represent
the distance between phase points under the search radius
and P norm metrics, respectively, θ(x) is the Heaviside
function, and P is the adopted norm. To reduce the pseu-
dotemporal correlation, the test statistic is defined using an
average chunking strategy.
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S(m, N, r, t) �
1
t



t

i�1
Ci m,

N

t
, r, t  − C

m
i 1,

N

t
, r, t  . (2)

When n� 1, the definition of the extreme difference
statistic is as follows: N⟶∞

ΔS(m, t) � max S(m, r, t){ } − min S(m, r, t){ }. (3)

Together with the BDS statistical test and reasonable
estimates of m and r, calculate the statistic as follows:

S(t) �
1
16



5

m�2


4

j�1
S m, rj, t ,

ΔS(t) �
1
4



5

m�2
ΔS(m, t),

Scor(t) � ΔS(t) +|S(t)|.

(4)

*e optimal time delay τd is determined by the initial
local minimum of ΔS(t). According to the embedding
window theory, the embedding dimension m can be derived
from the global minimum of Scor(t).

3.3. Improved C-C Method Based on Fused Norm Search
Domain. In the traditional C-C method, accuracy and
computing complexity are in conflict. In calculating the
correlation dimension, the algorithm employs a non-
repetitive traversal of neighboring sites, wherein the phase

spacing is frequently measured using the L2 norm and the
infinite norm.*e L2 norm has the advantage of meeting the
requirements of the Euclidean distance metric and precisely
describing the distance between two phases, but its calcu-
lations are more complex and less efficient. *e infinite
norm offers the benefits of simple calculation and minimal
spatial and temporal complexity, but its metric principle
does not comply with the Euclidean law and contains certain
inaccuracies, which degrade the quality of the reconstruc-
tion. No matter which of the two-distance metrics is chosen,
it is impossible to achieve a compromise between metric
accuracy and computational efficiency. *e three norms are
given as follows:

L1 norm：dij(1) � d(1) Xi, Xj  � 
m− 1

l�0
xi+lt − xj+lt



,

L2 norm: dij(2) � d(2) Xi, Xj  �

���������������



m− 1

l�0
xi+lt − xj+lt 

2




,

Infinite norm：dij(∞) � d(∞) Xi, Xj 

� max xi+lt − xj+lt



 ,

(5)

where Xi、Xj is the phase point, 0≤ l≤m − 1. In order to
provide a more intuitive description of the search domain of
the three types of norms, the metric distances of the three
norms are unified in the three-dimensional case, and the
search domain function of each norm and its geometric
mapping are obtained as shown in Figure 3. Where
Δx,Δy,Δz is the difference in relative coordinates between
the two picture locations. From the distance definition,

Measured data
containing noise

Decomposition
coefficient

Minimaxi
threshold

calculation

Wavelet coefficient 
estimation Denoised data

Determination of wavelet bases
and decomposition layers

Wavelet
decomposition

Threshold
quantization 

Inverse wavelet
transform

Figure 2: Flowchart of the wavelet denoising algorithm.

Measured traffic flow time series

Wavelet transform method for denoising

Improved C-C method for 
reconstructing phase space 
based on fused norm search 

domain

Small data sets method to verify chaotic 
characteristics

Normalization operation

Traffic flow time 
series S

Chaotic phase space 
tensor T

Figure 1: Flowchart of chaotic traffic flow preprocessing.
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search domain, and geometric mapping of the aforemen-
tioned three types of norms, it can be determined that in
distance calculation, the L1 norm and infinite norm only use
addition and taking extremes, which are less complex than
the exponential operations of the L2 norm; in terms of
metric accuracy, only the search radius from the origin of the
sphere domain to the sphere boundary of the L2 norm is
required. Depending on the relative angle, the distance from
the origin to the search border of the L1 norm and the
infinite norm regular multicell domains varies. On this basis,
the formula for calculating distance in the fused norm search
domain is defined as follows:

dij � min ωa · dij(1),ωb · dij(∞) 

� min ωa · d(1) Xi, Xj ,ωb · d∞ Xi, Xj  

� min ωa · max xi+lt − xj+lt



 ,ωb · 

m− 1

l�0
xi+lt − xj+lt




⎧⎨

⎩

⎫⎬

⎭ ,

0≤ l≤m − 1,

(6)

where ωa、ωb are the weight parameters, and the values of
the other two variables must satisfy two requirements.

(1) In the high-dimensional situation, the relative re-
lationship between ωa and ωb should cause the
geometric mapping of the fused norm search domain
to have regular covariance in order to approach the
high-dimensional spherical domain of the L2 norm.
In this study, we define its geometric mapping as an
Archimedean body and obtain the equation (12).

l1 �
ωa − ωb

cos(π/4)
,

l2 �
ωa

cos(π/4)
−
ωa − ωb

sin(π/4)
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

(2) *e entire point-seeking volume of the fused norm
search domain must be kept within an acceptable
range. In this study, the search volume of the ad-
vanced search domain and the L2 norm are held
constant in order to obtain the equation (13).

Vimprove �
256
675

�
5

√
ω3

a,

Vl2
� 

2π

0

dθ

π

0

sinϕdϕ 

r(ϕ,θ)

0

r
2
dr,

Vimprove � Vl2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Obtaining the parameter weights ωa,ωb and con-
structing the fused norm search domain, whose search
domain function and 3D geometric mapping are depicted in
Figure 4.

It is straightforward to determine that the fusion norm
metric employs simple polarization and addition and sub-
traction operations in the calculating distance, which has less
spatial and temporal complexity and more computational
efficiency than the L2 norm. *e Archimedean body
mapping domain of the fusion norm search domain is more
similar to the sphere mapping domain of the L2 norm in
terms of metric accuracy, and the metric error is less than
that of the L1 norm and infinite norm. *e algorithmic flow
of the improved C-C method based on the fused norm
search domain is summarized in algorithm 1.

To further analyze from a theoretical perspective the
performance of point finding accuracy in the fused norm
search domain, the theoretical relative polarity evaluation
index is defined as follows:

S(P) �
maxd(P) − mind(P)

r(P)

, (9)

where P represents the accepted norm metric, r is the unit
length, and maxd(P), mind(P) are, respectively, the greatest
and lowest Euclidean distances for each norm search radius.
*e L2 norm and Euclidean distance metrics have been
unified, so the theoretical relative range is 0.

*e theoretical relative range of the enhanced search
domain is lowered by 80.9% relative to the L1 norm and by
88.8% relative to the infinite norm, as shown in Table 1. *e
preceding analysis demonstrates that the proposed fused

L1 norm : rL1 (Xi, Xj) = |Δx + Δy + Δz|

x

y

z

(a)

L2 norm : rL2 (Xi, Xj) = √Δx2 + Δy2 + Δz2

x

y

z

(b)

Infinite norm : rinf (Xi, Xj) = max {Δx, Δy, Δz}

x

y

z

(c)

Figure 3: Search domain functions and geometric mappings of each paradigm: (a) the l1 normmetric; (b) the l2 normmetric; (c) the infinite
norm metric.
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norm search domain improves the metric accuracy com-
pared to the L1 norm and infinite norm while ensuring the
simplicity of the operation.*e computational efficiency and
metric accuracy of the fused norm search domain will be
evaluated experimentally.

3.4. Discrimination of Chaotic Characteristic. On the basis of
the phase space reconstruction of the measured traffic flow,
the small data sets method is utilized to validate the chaotic
character of the measured link traffic flow sequences and to
offer support for future chaotic time series prediction
modeling. First, each phase point in the phase space is
traversed, and the transient separation is constrained.

dj(0) � min Xi − Xj

�����

�����, |i − j|>P, (10)

where di(0) is the minimum distance between the reference
phase point Xi and the evolving phase point Xj , and P is the
sequence’s average time period. Sato et al. propose that the
maximum Lyapunov exponent λ can be determined from
the average divergence rate of the nearest neighbors of each
point in the phase point orbit.

ln di(k) � lnCi + λ(kΔt), i � 1, 2, . . . , M, (11)

where M represents the phase point count. Using the least
squares method, the regression line y(k) of the preceding
equation was fitted.

y(k) �
1

q · Δt


q

i�1
ln di(k), (12)

where q is the number of nonzero di(k) and the slope of the
regression line is the maximum Lyapunov exponent λ,
When λ> 0, the chaotic dynamics of the measured link
traffic flow data can be proved.

4. Hybrid Chaotic Traffic Flow
Prediction Model

In this section, the hybrid prediction model is built from the
perspective of chaotic traffic flow characteristics. Consid-
ering that the spatial distribution of phase points in the
phase space tensor of traffic flow follows the law of attractor
evolution and that the phase space tensor is reconstructed
from the traffic flow temporal vectors, which have both
temporal laws [51, 52], the chaotic feature extraction module
and the temporal feature extraction module are constructed
to evolve the chaotic and temporal characteristics of traffic

Input: Traffic flow time series after denoising X � (x1, x2, . . . , xN)

Initialization: Maximum chunking volume of average chunking strategy dmax � 80;
BDS statistical test conclusion m � 2, 3, 4, 5, ri � j · σ/2, j � 1, 2, 3, 4;
Variance of the time series σ � 

N
i�1 (xi − x)2/N;

Number of phase points M � N − (m − 1)τ;
for t � 1, 2, . . . , dmax do
*e statistic S(m, N, r, t) is sequentially cut into mutually disjoint t subseries: S1(m, N/1, r, 1), S2(m, N/2, r, 2), . . . , St(m, N/t, r, t) ;

for m � 2, 3, 4, 5do
for j � 1, 2, 3, 4do
Reconstructs the subsequence as a phase space: X � Xi | Xi � (xi, xi+t, . . . , xi+(m− 1)t), i � 1, 2, . . . , N − (m − 1)τ 

for i � 1, 2, . . . , Mdo
*e distance of phase points in phase space is measured using the fused norm search domain:
d

i,i
� min ωa · max |xi+lτ − xi+lτ

| ,ωb · 
m− 1
l�0 |xi+lτ − xi+lτ

| , 0≤ l≤m − 1;

Statistical domain phase points with θ function and solving the correlation integral Ct(m, N/t, r, t), Cm
t (1, N/t, r, t) ;

Calculate the mean statistic and the extreme difference statistic S(m, r, t),ΔS(m, t);
end

end
end

end
Calculate the statistic S(t),ΔS(t), Scor(t) and plot its variation with time delay t;
Determine the optimal time delay τd and embedding window τw based on the curve pattern;
Calculating the embedding dimension m � (τw/τd) + 1。
Output: the optimal time delay τd and the embedding dimension m

ALGORITHM 1: Improved C-C method based on a fused norm search domain.

x

y

z

Fusion norm : rfusion (Xi, Xj) =
min {ωa · max {∆x + ∆y + ∆z}, ωb · |∆x + ∆y + ∆z|}

Figure 4: Search domain function and geometric mapping of the
fused norm.
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flow, respectively. *e complex nonlinear rules of the
chaotic phase space and the sensitivity to beginning values
make it easy for the model to reach a local optimum during
training, resulting in an issue with prediction performance
decline. In this study, the model optimization module was
developed to increase the prediction accuracy and learning
capability of the model by lowering the parameter discovery
error.

Figure 5 illustrates the construction of the hybrid
PDRGA-CDBN-LSTM traffic flow prediction model devel-
oped in this paper, whose primary structures are as follows:

(1) Data preprocessing: initially, wavelet denoising is
performed on chaotic traffic flow to improve the
value density of the traffic flow data, followed by the
phase space reconstruction to fully expand the
attractor structure, and finally, the chaotic charac-
teristics of traffic flow are distinguished and nor-
malized to obtain the phase space tensor T and the
traffic flow time series S.

(2) Chaotic feature extraction module: the spatial
characteristics of the phase space tensor T are
extracted using the layer-by-layer pretraining pro-
cess of CDBN and fed into the connection layer for
fusion with the traffic flow time series S.

(3) Temporal feature extraction module: *e tensor
generated from the fusion of the connection layer is
fed into the LSTM to extract temporal features based
on the spatial features of the phase space [53] in
order to acquire more comprehensive spatio-tem-
poral aspects of the chaotic traffic flow.

(4) Intelligent algorithm optimization module: the ini-
tial weights of CDBN are optimized using a

lightweight modified PDRGA in order to prevent the
CDBN from falling into a local optimum when
processing a complex high-dimensional phase space
tensor.

4.1. Chaotic Feature Extraction Module. When the model
extracts the chaotic phase space features, the phase point
dimension is typically high, resulting in extremely complex
evolutionary features. A neural network with a few layers has
a limited ability to fit its complex nonlinear dynamics fea-
tures. *erefore, a deep network structure is necessary to
extract the high-level distribution patterns. In gradient
descent, the deep convolutional model learns features
through gradient feedback, and its gradient values con-
taining feature information are weakened during back
propagation with long-distance transmission between net-
work layers, resulting in insufficient extraction of chaotic
features of the traffic flow by the model, which affects the
accuracy of the prediction.

*e system energy function of CDBN is given as follows:
CDBN is a restricted Boltzmann machine (CRBM)

stacked multiconvolutional deep learning model. CDBN
only updates one layer of parameters in each training until
the next layer is trained, and the parameter updating process
is not affected by the depth of the network, so it can learn the
chaotic nonlinear law within the measured traffic flow more
thoroughly and precisely and extract the high-dimensional
phase point space features of the chaotic phase space tensor
more efficiently. Figure 6 illustrates the layer structure of
CDBN, in which the CRBM layers are indirectly coupled and
each layer is subject to convolution and probabilistic
maximum pooling operations.

E(v, h) � − 
K

k�1


NH

i,j�1


NW

r,s�1
h

k
ijw

k
rsvi+r− 1,j+s− 1 − 

K

k�1
bk − c 

Nv

i,j�1
vi,j � − 

K

1
h

k
· W

k ∗ v  − 
K

k�1
bk 

NH

i,j

h
k
ij − c 

Nv

i,j

vij, (13)

where v and h are the values of the explicit and implicit layer
cells, w is the value of the convolution kernel weights, b and c

are the bias values of the hidden layer cells, h and the visible
layer cells v, and W

k is the summation operation of the K

sets of convolution kernels over the elements in the data
matrix.

On the basis of the energy function, the joint probability
distribution of the explicit hidden layer can be determined as
follows:

P(v, h) �
exp(− E(v, h))

Z
, (14)

where Z is the function of collocation. *e conditional
probability distribution function for the activation of explicit
hidden layer cells is expressed as follows:

P h
k
ij � 1 | v  �

1

1 + exp − W
k ∗ v 

ij
+ bk  

,

P vij � 1 | h  �
1

1 + exp − kW
k ∗ h

k
 

ij
+ c  

.

(15)

*e posterior probabilities of node weights and back
propagation of the next layer can be derived based on the

Table 1: *eoretical relative ranges of each norm metric.

L1 norm metric (%) Infinite norm metric (%) Fused norm metric (%)
*eoretical relative range S (%) 42.3 73.2 8.1
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bidirectional transportability and conditional probability
distribution of CDBN, and the parameters of the explicit and
implicit layers can be updated by continuous round-trip
sampling between the explicit and implicit layers using
Gibbs block sampling. *e probabilistic maximum pooling

operation maximizes the shared distribution of high-di-
mensional phase space data and the Gibbs sampling out-
comes of lower-level cells. *e conditional probability of
pooling units’ activation is expressed as follows:

P h
k
ij � 1|v  �

exp I h
k
i,j  

1 + (i,j)∈Bα
exp I h

k
i,j  

, s.t. (i, j) ∈ Bαh
k
i,j ≤ 1,∀k, a,

P p
k
α � 0|v  �

1
1 + (i,j)∈Bα

exp I h
k
i,j  

, s.t. (i, j) ∈ Bαh
k
i,j ≤ 1,∀k, a,

(16)

where I(hk
i,j) is the activation probability of the hid-

den layer unit’s information parameter and Bα is the
pooling layer mapping block. In order to complete the

update of CDBN parameters, the network is then
trained using the k-steps contrastive divergence (CD-k)
algorithm.

NP P (pooling layer)

N

NH

NV

c

pkα

ω

hki,j

Wk

H (hidden layer)

V (visible layer)

Measured traffic flow 
phase space tensor

Spatial characteristics of 
phase points in phase space

Convolution
operation

Probabilistic maximum 
pooling operation

Input Data

Next CRBM unit

CRBM 3

CRBM 2

CRBM 1

Fully
connected

layer

Figure 6: Hierarchy diagram of the CDBN network.
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Figure 5: Structure diagram of the PDRGA-CDBN-LSTM hybrid model.
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Δwi,j � 

NV

i�1


NH

j�1
P hi � 1|v

0
 v

0
j − P hi � 1|v

k
 v

k
j ,

Δbj � 

NH

j�1
v
0
j − v

k
j ,

Δci � 

NV

i�1
P hi � 1|v

0
  − P hi � 1|v

k
  ,

(17)

where Δwi,j,Δbj,Δci represents the amount of parameter
adjustment during each iteration for network weight value
wi,j and bias values bj, ci for the visible and hidden layers.

4.2. Temporal Feature Extraction Module. In the chaotic
phase space tensor, not only does the spatial distribution of
high-dimensional phase points adhere to the law of attractor
change, but so does the temporal evolution of phase points.
*erefore, further mining the time-dependent relationship
based on the spatial characteristics of phase points can
provide a more comprehensive understanding of the macro
and microvariations of traffic flow. Commonly used RNN
networks for temporal feature extraction are trained with
gradient values that are susceptible to gradient disappear-
ance or explosion due to multiple cumulative multiplication
operations during the propagation process, making it dif-
ficult for the model to learn the long-time dependence of the
data [54]. As a special RNN, the LSTM cell state may be
propagated between layers using only linear summation
[55], and gradient values do not degrade during the prop-
agation process, which enhances the model’s capacity to
extract long-term features and improves its accuracy per-
formance compared to RNN. *e LSTM consists of three
fundamental elements: the forgetting gate, the input gate,
and the output gate. Figure 7 depicts the cell structure of the
LSTM, and the present cell state of the LSTM is also
depicted.

As indicated in the picture, σ and tanh represent the
sigmoid activation function and the hyperbolic tangent
activation function, respectively. *e forget gate ft selects
the memory of the previous moment’s information based on
the input values xt and ht− 1, while the input gate it controls
the information update of the current cell state St based on
the cell state update value St, and the output gate ot controls
the information content of the next moment’s cell output
based on the current cell state St. *e following is how the
LSTM is computed:

ft � σ Wf ht− 1, xt  + bf ,

it � σ Wi ht− 1, xt  + bi( ,

ot � σ Wo ht− 1, xt  + bo( ,

Ct � tan h WC ht− 1, xt  + bC( ,

Ct � ft · Ct− 1 + it · Ct,

ht � ot tan h Ct( ,

(18)

where W and b are the weights and bias values, respectively,
of each gating unit.

4.3. Model Optimization Module. GA [56] is a model for
optimizing population viability by computer simulations of
natural selection and genetic reproduction mechanisms of
biological evolution, and its three core steps of genetic
manipulation [57] achieve iterative population renewal by
eliminating backward individuals and recombining chro-
mosomal coding and gene mutation. Sometimes, the highly
adaptive chromosomal gene fragments of superior indi-
viduals are broken down at the breakpoint, and their off-
spring fail to inherit high-quality genes, resulting in low
individual evaluation. Meanwhile, the fixed population
variation rate lacks the differentiated consideration of the
richness requirements for seeking superiority at different
iterations. All of these factors reduce the convergence effi-
ciency of GA, resulting in additional iterations and higher
training costs in the pursuit of precision.

To reduce the training cost of the algorithm, this paper
proposes an improved PDRGA based on probabilistic dy-
namic reproduction, which allows the selection of break-
points in the crossover operation based on the probability of
the fitness of one parent in the total fitness of the two
parents, so as to retain the high fitness gene fragments of the
best individuals and accelerate convergence speed, while the
variation rate is dynamically adjusted with the number of
individuals. *e variation rate is dynamically altered based
on the number of iterations to accommodate the varying
requirements of global and local search abilities at various
iteration stages. Figure 8 depicts the detailed algorithmic
procedure.

Let each iteration’s population size be n, after the al-
gorithm completes the selection operation in the iteration
process, the remaining individuals are sorted by fitness
value, and the fitness threshold condition ft is set to further
divide the population into a high fitness population A and a
low fitness population B. *e threshold condition ftft is
defined as follows:

tanh

St

σ *

tanh

ht

ht

St-1

ht-1

*
Ot

ft it

Xt

+

Ŝt

σ

σ

σ

*

Figure 7: Structure diagram of the LSTM unit.
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ft �


n
i�1 fi

n
, (19)

where fi represents the individual’s fitness value for the
population crossover operation, the probability p of one
parent’s fitness relative to the overall fitness of both parents
is calculated and used to determine the position of the gene
breakpoint cbreak.

p �
fi

fi + fi

, i ∈ [1, n], j ∈ (i, n],

cbreak � p · ngene,

(20)

where fi and fj are, respectively, the fitness values of the
two parents, and ngene is the number of genes on one
chromosome. *is breakpoint strategy produces progeny
groups A and B containing, respectively, more and less
adaptable gene segments. *e variation rates vAi and vBi for
offspring are set as follows:

vi �
gimax

gmax
 ,

vAi � 0.7vi,

vBi � 1.3vi,

(21)

where vi represents the baseline variation rate, gmax rep-
resents the maximum number of iterations, and gi repre-
sents the current number of iterations. vi controls the total
level of variation among the children, which can be reduced
dynamically as the number of repetitions increases. A larger
overall variation rate at the start of the iteration can ac-
celerate convergence, whereas a lower overall variation rate
at the conclusion of the iteration can increase convergence
accuracy and prevent the algorithm from degrading into a
random search process. *e variation rates of populations A

and B are specified differently based on vi. *e former
variation rate can retain more high fitness gene fragments to
guide the general direction of the optimization search,
whereas the latter variation rate can increase population
randomness to avoid falling into the local optimum and
continue the new round of iterations until the optimization
is complete after obtaining the new population.

*e enhanced PDRGA can select the breakpoint location
probabilistically and dynamically adjust the variance rate
based on the number of iterations and individual evaluation,
which improves the convergence efficiency and the opti-
mization accuracy, achieves higher optimization accuracy
with fewer iterations, and realizes the lightweight en-
hancement of GA. In this paper, the initial weight values of
convolutional kernels in CDBN are optimized by using
PDRGA.
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Figure 8: Flowchart of the PDRGA optimization algorithm.
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5. Experiment Analysis and Discussion

*e code development platform for the experiment is Py-
thon 3.6; PyCharm is selected as the integrated development
environment; the CPU model of the computing device is
Intel Core i7-9750 2.60GHz; and the running memory is
16GB. *e link traffic flow data are obtained from two
measured datasets: the ITS dataset of the Hefei demon-
stration zone and the PeMSD8 dataset, and the measure-
ment tools are assumed to be accurate, so the error in
measurement is not considered.

In the Hefei city dataset, the traffic flow data from the
video traffic flow detection subdataset located at the inter-
section of Huangshan Road and Tianzhi Road are selected,
and the subdataset includes 2 road sections and 6 detectors;
in the PeMSD8 dataset, the traffic flow measurements col-
lected by Caltrans in the San Bernardino County subdataset
are selected, and the subdataset includes 8 road sections and
170 detectors. Both types of data selected are discrete time
slices of continuous vehicle flow collected by detectors
throughout the day, and the specific attributes of the data are
shown in Table 2.

5.1. Phase Space Construction Reconstruction Experiment.
To verify the accuracy and efficiency of the fused norm
search domain improvement C-C method, phase space
reconstruction experiments are conducted using the L2
norm metric, the infinite norm metric, and the fused norm
search domain metric. *e optimal time delay τd is deter-
mined as the first local minimum of Δ�S(t), whereas the
embedding window τw is determined as the global minimum
of Scor(t). Figures 9 and 10 depict the experimental results of
the phase space reconstruction for the Hefei demonstration
zone ITS dataset and PeMSD8 dataset, respectively.

Due to the different principles of each norm metric, the
range of the curve values and the overall trend under each
mode vary significantly. However, these differences have no
bearing on the choice of reconstruction parameters, which
must be determined based on the relative change law under
this type of mode. Given that the L2 norm is theoretically
free of Euclidean distance metric error and that the re-
construction parameters are reliably obtained, it can be
utilized as the accuracy measure of other norms.

Figure 9(a) depicts the statistical curve with the L2
norm metric for the Hefei city dataset. *e embedding
dimension m is calculated to be 7 and the optimal time
delay τd is 8.*ese parameters are the standard of reference
for subsequent norms. In Figure 9(b), the embedding di-
mension m of the infinite norm metric is 6, differing by 1
from the reference standard, and the optimal delay τd is 7,
differing by 3 from the reference standard. In Figure 9(c),
the evolution trend of the improved metric is closer to the
L2 norm, which reflects the geometric similarity of the
topological relationship between the two search domains;
consequently, the embedding dimension m of 7 and the
optimal time delay τd of 8 are identical to the reference
standard without deviation. Similarly, in the PeMSD8
dataset, Figure 10(a) obtains the reference standard by
taking the L2 norm metric with an embedding dimension
m of 5 and an optimal delay τd of 5. *e computation of
Figure 10(b) using an infinite norm metric provides an
embedding dimension m of 5, but the optimal delay τd is 7,
which deviates by 2 from the reference standard. Fig-
ure10(c) demonstrates that the computation of the two
reconstruction parameters of the improved metric is
identical to the reference standard.

As shown in Table 3, the method using the L2 norm
metric has the longest running time, but the number of
search domain seek points is theoretically error-free,
therefore the program’s output serves as the accuracy ref-
erence standard. *us, it is clear that the L2 norm com-
promises computing efficiency for precision. *e algorithm
with an infinite norm metric has the shortest running time;
however, there is a discrepancy between the number of
search domain seeks and the reference standard, 17.3% for
the Hefei demonstration zone ITS dataset and 17.8% for the
PeMSD8 dataset. *is indicates that there is a metric bias in
the infinite norm, which affects the quality of phase space
reconstruction, and the computational efficiency is en-
hanced at the expense of metric accuracy. *e running time
of the proposed improved algorithm and the infinite norm
remain at an approximate level, compared with the L2 norm.
*e operation time of the Hefei demonstration zone ITS
dataset is reduced by 937.82 seconds, the efficiency is in-
creased by 20.3%, the search domain point finding error is
only 3.1% compared with the reference standard, and the
point finding error is reduced by 14.2% compared with the

Table 2: Attributes of traffic flow data in the Hefei demonstration zone ITS dataset and PeMSD8 dataset.

Hefei demonstration zone ITS dataset PeMSD8 dataset

Data collection locations High-tech industrial demonstration zone in the Hefei,
Anhui, China.

Highway network in San Bernardino, California,
United States.

Acquisition device City road surveillance camera Caltrans performance measurement system
(PeMS) device

Number of selected detectors Htw001 S001
Time range of the collected
data From June 30, 2016, to July 29, 2016 From July 1, 2016, to August 29,2016

Data acquisition time interval
(min) 5 5

Length of data 8640 17280
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infinite norm search domain. *e time of the PeMSD8 data
set is reduced by 855.99 seconds, the efficiency is increased
by 17.0%, the point finding error in the search domain is
only 3.3% compared with the reference standard, and the
point finding error is reduced by 14.5% compared with the
infinite norm search domain. *e comprehensive analysis
demonstrates that the improved algorithm combines the
advantages of high efficiency of infinite norm calculation
and high accuracy of the L2 norm metric and reduces the
time complexity of the algorithm while ensuring the im-
provement of accuracy, achieving a balance between accu-
racy and efficiency.

*e chaotic discriminant algorithm is required to verify
the chaotic characteristic of the original link traffic flow data
after the phase space reconstruction, as well as to confirm the
reasonableness of the phase space reconstruction parameters
calculation, which cannot generate the incorrect parameters
to destroy the chaotic nature of the system. Using the small
data set method, the chaotic discriminant parameter Lya-
punov exponent is determined, and the results are presented
in Figure 11.

*e red dashed line in the graph is the fitted regression
line, and its slope value represents the greatest Lyapunov
exponent. *e exponents of the Hefei demonstration zone
ITS dataset and the PeMSD8 dataset are 0.0032 and 0.0095,
respectively, both of which are higher than 0. *is study
demonstrates that the measured link traffic flow data of the
two datasets contain chaotic dynamics and demonstrates
that the phase space reconstruction does not damage the
chaotic characteristics of the data.

5.2. Convergence Comparison Experiment of Optimization
Algorithm. In this study, the improved PDRGA algorithm is
utilized to optimize the initial weight parameters of CDBN
to prevent the model from sliding into a local optimum
when dealing with complex, high-dimensional phase space
tensors. *e algorithm optimization experiment is designed
to intuitively evaluate the advantages of PDRGA in terms of
convergence efficiency and precision.*e experiment brings
the population vector X closer to the target vector Z,
yielding the algorithm’s optimal solution, which is the vector
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Figure 9: Experimental results of the C-C algorithm under each measurement method: (a) the L2 normmeasurement; (b) the infinite norm
measurement method; and (c) the fused norm measurement.
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Figure 10: Experimental results of the C-C algorithm using the PeMSD8 dataset: (a) the L2 norm measurement; (b) the infinite norm
measurement method; and (c) the combined norm measurement.
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Figure 11: Evolution diagram of ln di(k) with k: (a) the Hefei demonstration zone ITS dataset; (b) the PeMSD8 dataset.
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X that is closest to the target vector Z. Where the fitness
value is the error evaluation of the population of individuals
with respect to the element of the target vector Z, and the
optimization aim is to identify the optimal solution vector
for the element of the target vector Z , the number of
populations is set to 10, the value of each element of the goal
vector Z is set to 10, and the termination condition of the
algorithm is set to 1000 iterations. *e trajectory of the
algorithm’s convergence error over time is depicted in
Figure 12, and Table 4 lists the running times of GA and
PDRGA when the GA reaches its final convergence
accuracy.

As demonstrated in the graph, compared to the tradi-
tional GA, PDRGA exhibits a faster convergence tendency at
the beginning of the iteration, and the error in the 100th
generation is 0.627, which is significantly less than the GA
error of 4,955. *e convergence error of PDRGA is always
less than that of the traditional GA as the number of iter-
ations increases. When the number of iterations is 235, the
convergence trend of PDRGA tends to level off and the error
decreases to 0.297, whereas the GA is still in the convergence
state and the error is 2.335. PDRGA reaches the optimal
convergence error of 0.233 after 403 iterations, while GA
reaches this error level after 764 iterations and PDRGA
reaches this error level after 91 iterations. Table 3 reveals that
the GA requires 3.047 seconds to reach the final convergence
error, whereas the PDRGA requires only 0.310 seconds to
reach the same error level after 91 iterations, indicating that
the lightweight improved PDRGA has a significant reduc-
tion in computation time compared to the traditional GA.
Experiments demonstrate that the PDRGA increases the
convergence speed and optimization accuracy of the
method, produces more search accuracy with reduced
training costs, effectively realizes the lightweight improve-
ment of the GA, and prevents the CDBN-LSTMmodel from
reaching a local optimum.

5.3. Experiments in Hybrid Model Prediction for Chaotic
Traffic Flow. *e suggested PDRGA-CDBN-LSTM and
other baseline models are utilized in traffic flow prediction
tests to evaluate the learning ability of each model with
respect to the chaotic law of the observed traffic flow. *e
normalized findings from the data preprocessing phase are
utilized as the research object. To standardize the data scales,
4320 data from the first 15 days were selected from each of
the two datasets for the experiment, and the test set and
training set are divided into the proportion of 80% to 20%.
As model evaluation metrics, the mean square error (MSE),
root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and

symmetric mean absolute percentage error (SMAPE) were
chosen, and the following formulas were calculated as
follows:
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where n represents the predicted length of the data, yi and y
⌢

i

represents the predicted and actual values, respectively.
*e baseline models are the hybrid CDBN-LSTM model

without GA optimization and the single CDBN and LSTM.
In addition, the PDRGA-CDBN-LSTM is trained with noisy
data in order to examine the impact of noise on model
training. Figures 13 and 14 depict the model predictions
using the Hefei demonstration zone ITS dataset and the
PeMSD8 dataset, respectively.

From the experimental results of the two aforemen-
tioned data sets, it can be determined that the calculation
results of reconstruction parameters under the infinite norm
metric deviate from those under the error-free L2 norm
metric, indicating that the inaccurate metric will harm the
calculation accuracy of reconstruction parameters and
thereby diminish the quality of phase space reconstruction.
*e proposed fused norm search domainmetric not only has
an evolution trend of the statistical curve that is closer to the
reference standard but also the calculation results are error-
free in comparison to the reference standard, proving the
reliability of the improved C-C algorithm in terms of metric
accuracy. *e algorithm’s running time and number of
metric search points are recorded in Table 3 to further
validate the accuracy of the improved algorithm and its
computational efficiency advantages.

Each model’s prediction curves exhibit a peak-and-
valley-like cyclical fluctuation pattern with the actual values.
From Figures 13(a) to 13(e), utilizing the Hefei demon-
stration zone ITS dataset, it is evident that CDBN has the

Table 3: Running time and search points of the C-C method under each measurement method.

Hefei demonstration zone ITS PeMSD8
Algorithm runtime (s) Searched points (n) Algorithm runtime (s) Searched points (n)

L2 norm metric 5118.2432 193167121 5026.7428 159985266
Infinite norm metric 4180.4203 226507968 4208.8855 188496293
Fused norm metric 4125.2575 199227006 4170.7513 165313922
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worst fitting performance, with significant fitting bias in
peak intervals such as (70, 100) and (180, 210). While LSTM
has the second-worst prediction performance, it outper-
forms CDBN in fitting both peaks and valleys. *e fit of the
CDBN-LSTM model is significantly better than that of the
single model, and the fit of the prediction curves to the true
values is better in the peak interval of (70, 210) and the valley
interval of (260, 370). *e proposed PDRGA-CDBN-LSTM
model has the greatest prediction performance among the
hybrid models. Compared to CDBN-LSTM, the peaks at
time slices 82 and 204 and the valleys at 321 correspond
more closely to the true value curve in terms of numerical
performance. Nonetheless, the overall performance of the
two curves is comparable and requires additional quanti-
tative study. *e proposed model trained with noise-con-
taining data exhibits a diminished approximation effect in
the high-volatility interval (80, 180). Similarly, in
Figures 14(a)–14(e) utilizing the PeMSD8 dataset, CDBN
has the worst fit, with fit deviations in the (50, 220) peak
interval and the (270, 330) valley interval, whereas LSTM has
a relatively better fit performance, but the fit curve in the (50,
190) peak interval is lower than the true value curve.
Compared to a single LSTMmodel, CDBN-LSTM has better
fitting precision in the peak interval. *e proposed PDRGA-
CDBN-LSTM has higher prediction accuracy than the
CDBN-LSTM in both the (50, 190) peak interval and the
(270, 330) valley interval, and it has the best-fit performance
among all models. *e PDRGA-CDBN-LSTM trained with
noisy data has a more volatile fit curve in the (50, 220) crest
interval and slightly lower fit accuracy than the model
trained with denoised data. To quantitatively evaluate the
performance of each model’s fit, additional analysis based on
the numerical performance of the error evaluation index is
necessary.

Tables 5 and 6 present the error evaluation metrics MSE,
RMSE, MAE, MAPE, and SMAPE for the two data sets
utilizing various prediction models. *e lower the error
between the projected and actual values, and the greater the
accuracy of the forecast, the smaller the values of the

aforementioned metrics. It is evident that the PDRGA-
CDBN-LSTM outperforms the other baseline models for all
five indexes, and the CDBN-LSTM has the second-best error
performance overall. Compared with CDBN-LSTM,
PDRGA-CDBN-LSTM reduces the best performing MAPE
index by 23.7% and the worst performing RMSE index by
6.7% in the Hefei demonstration zone ITS dataset; in the
PeMSD8 dataset, the best performing MAPE index is re-
duced by 26.0% and the worst performing RMSE index is
reduced by 13.1%, indicating that PDRGA enhances the
learning ability of the hybrid model for complex high-di-
mensional chaotic tensors to avoid training into local op-
timum. In all indexes, the CDBN-LSTMmodel outperforms
the individual CDBN and LSTM models. *e best per-
formingMSE index of the CDBN-LSTM is reduced by 45.8%
to the LSTM with lower error indexes in the single model,
and the worst performing MAPE index is decreased by
18.3% in the Hefei demonstration zone ITS dataset. Simi-
larly, the best performing MSE index was reduced by 19.6%,
while the worst performing MAPE index was reduced by
4.9% in the PeMSD8 dataset, demonstrating that the hybrid
model can learn more complete data laws from the multi-
angle feature extraction concept of chaotic dynamics
characteristics and time-series evolution laws, thereby
achieving the goal of improving the prediction accuracy. In
addition, the PDRGA-CDBN-LSTM with denoised data
performs better than the noisy data in all indexes, and the
largest reduction in the two data sets is 23.4% and 16.6% in
SMAPE, indicating that the wavelet denoising reduces the
impact of noise on the data value density and improves the
model’s ability to abstract data features.

Based on the analysis of the fitting curves and error
evaluation indexes of each model in both datasets, it can be
concluded that the fitting performance of LSTM in the single
model is better compared to that of CDBN, indicating that
the spatial arrangement of the phase space of chaotic data
alone is insufficient for mining the internal patterns of the
data. *e prediction performance of the hybrid CDBN-
LSTM model is superior to that of the individual model,
demonstrating that the multiangle feature extraction strat-
egy of the combined model architecture can discover more
comprehensive data patterns.*e best fitting performance of
the proposed model compared to all baseline models
demonstrates that the PDRGA prevents the model from
falling into local optimum, hence enhancing the model’s
ability to learn the high-dimensional phase space tensor.*e
reduced fitting effect of the model trained with noisy data
demonstrates that the noise in the measured data can have a
substantial effect on the prediction accuracy of the model
and that wavelet denoising can effectively increase the data
value density.

Figure 15 depicts the PDRGA-CDBN-LSTM and the
CDBN-LSTM training numbers versus error convergence
using two data sets. In experiments using the Hefei
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Figure 12: Comparison diagram of the convergence error of the
optimization algorithm.

Table 4: Optimization algorithm running time.

PDRGA GA
Algorithm runtime (s) 0.310 3.047
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demonstration zone ITS dataset, the proposed model con-
verged to a small error range on the 20th iteration, and its
curve trend was in a high convergence state at the start of the

first 10 iterations of the optimization search. After 25 it-
erations, the error drops gradually, the convergence state
stabilizes, and the training error is always lower than that of
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Figure 13: Prediction results of each model using the Hefei demonstration zone ITS dataset: (a) PDRGA-CDBN-LSTM; (b) CDBN-LSTM;
(c) CDBN; (d) LSTM; and (e) PDRGA-CDBN-LSTM (noisy data).
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the CDBN-LSTM. In the first 90 iterations, CDBN-LSTM
converges quickly, but after 100 iterations, the error level
stabilizes, the convergence speed slows, and the final con-
vergence error is greater. In the PeMSD8 dataset

experiments, the proposedmodel reached a low convergence
error on the 22nd iteration, whereas the first 8 iterations
belong to the curve’s rapid convergence period. *e fast
convergence stage of CDBN-LSTM consists of the first 129
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Figure 14: Prediction results of each model using the PeMSD8 dataset: (a) PDRGA-CDBN-LSTM; (b) CDBN-LSTM; (c) CDBN; (d) LSTM;
and (e) PDRGA-CDBN-LSTM (noisy data).
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iterations, and its convergence efficiency and final conver-
gence precision are inferior to those of the proposed model.
Experiments on the two data sets reveal that the training
error of CDBN-LSTM no longer declines considerably after
iterations and remains consistently greater than that of
PDRGA-LSTM, indicating that the model cannot discover
the global optimal solution and falls into a local optimum.
*e above analysis indicates that PDRGA optimizes the
model’s ability to extract features, allowing it to escape the
local optimum and reach a lower training error.

*e analysis of the integrated model prediction and
evaluationmetrics reveals that the wavelet denoising method
improves the value density of the data and enables the model
to learn more effective data patterns during training; the
lightweight improved PDRGA can enhance the learning
ability of themodel and prevent themodel from falling into a
local optimum; and the proposed PDRGA-CDBN-LSTM
has the best performance in the prediction task of the

measured chaotic traffic flow under five error metrics
compared with all the baseline models.

6. Conclusion

From the perspective of studying the internal chaotic dy-
namics of the observed traffic flow, this paper focuses on the
phase space reconstruction method of the chaotic data and
constructs a chaotic-influenced hybrid traffic flow prediction
model. In the phase space reconstruction stage, an improved
C-C method based on the fusion norm search domain is
proposed to reconstruct the phase space in order to assure
the accurate and efficient calculation of reconstruction pa-
rameters. In order to make the model applicable to the
complex nonlinear feature extraction law of chaotic traffic
flow, a hybrid PDRGA-CDBN-LSTM prediction model is
proposed to extract the spatial features of the chaotic phase
space by CDBN and the temporal features jointly with

Table 5: Error evaluation indicator of each model using the Hefei demonstration zone ITS dataset.

PDRGA-CDBN-LSTM CDBN-LSTM CDBN LSTM PDRGA-CDBN-LSTM (containing noise)
MSE 37.7831 43.3622 91.7154 80.0478 39.9624
RMSE 6.1468 6.5850 10.8682 8.9469 6.3216
MAE 4.1546 4.5865 7.8734 6.2781 4.4597
MAPE 0.1743 0.2284 0.3952 0.2798 0.2473
SMAPE 15.8289 19.8725 33.9259 27.5919 20.6687

Table 6: Error evaluation indicator of each model using the PeMSD8 dataset.

PDRGA-CDBN-LSTM CDBN-LSTM CDBN LSTM PDRGA-CDBN-LSTM (containing noise)
MSE 694.2836 919.2247 2319.6816 1143.7891 808.6719
RMSE 26.3492 30.3187 48.1630 33.8200 28.4371
MAE 19.0154 22.5588 34.8261 26.2578 21.7602
MAPE 0.0668 0.0903 0.1412 0.0950 0.0777
SMAPE 6.5958 8.6518 14.5699 9.2467 7.9117
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Figure 15: Relationship between iteration number and convergence error: (a) the Hefei demonstration zone ITS dataset; (b) the PeMSD8
dataset.
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LSTM, while the initial weight parameters of CDBN are
optimized by the improved PDRGA based on probabilistic
dynamic multiplication. Experiments on the phase space
reconstruction, convergence of the optimization algorithms,
and the model prediction performance comparisons dem-
onstrate the following:

(1) *e wavelet denoising method may efficiently
decrease data noise and enhance data value den-
sity, allowing the model to extract more high-
frequency critical data features defining the traffic
flow change pattern and so improving the pre-
diction accuracy.

(2) In phase space reconstruction experiments utilizing
the Hefei demonstration zone ITS dataset and the
PeMSD8 dataset, the C-C method based on the
improved fused norm search domain improves the
operation time by 20.3% and 17.0%, respectively,
compared with the L2 norm search domain and
reduces the point finding error by 14.2% and 14.5%,
respectively, compared with the infinite norm search
domain.*e algorithm is able to strike a compromise
between the quality of phase space reconstruction
and its efficiency by utilizing the high precision of the
L2 norm and the convenience of infinite norm
computation.

(3) *e PDRGA based on lightweight improvement has
a lower training cost; whereas the traditional GA
requires 764 iterations to achieve final convergence
accuracy, the PDRGA can reach the same error level
in only 91 iterations, resulting in a significant re-
duction in computing time and the ability to ef-
fectively prevent the model from falling into local
optimum.

(4) *e proposed PDRGA-CDBN-LSTM model can
effectively extract chaotic and temporal features from
measured link traffic flow data, and in experiments
on the Hefei demonstration zone ITS dataset and the
PeMSD8 dataset, the error evaluation index of
MAPE decreases by 23.7% and 26.0%, respectively,
compared to the best-performing combined CDBN-
LSTM model in the baseline. *e proposed model
outperforms the baseline model in terms of all error
indexes, providing a new approach to model con-
struction for link traffic flow prediction.
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