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In the article, we apply complex-valued neural networks (CVNNs) to differential-algebraic neural networks (DANNs) and
establish a new type of differential-algebraic complex-valued neural network (DACVNN) with delay (DDACVNN). First of all,
the focus of existence and uniqueness of the solution to DDACVNN is addressed. Additionally, a theorem of global exponential
stability (GES) of DDACVNN is investigated. In particular, in the discussion of this article, there is no restriction on whether the
activation function requires that the real and imaginary parts can be dissociated. Finally, we will give two examples, namely, the
activation function can separate the real and imaginary parts, and the activation function cannot separate the real and imaginary
parts, both of which can confirm the truth of the effectiveness of theoretical results.

1. Introduction

Due to the various applications of artificial neural networks
(ANNs) in graphics processing, combinatorial optimization,
signal processing, and intelligent control, especially, in re-
cently years, as artificial intelligence develops, the research
on neural networks has received growing concern. When
designing neural networks to solve application problems, it
is crucial to guarantee the stability of the model under
consideration. In the hardware implementation of neural
networks, since the transmission of signals is delayed over
time, delays inevitably occur, which may lead to network
instability. Hence, the research on time-delay systems is
meaningful and necessary. Also many research results can be
seen in [1, 2] and its references.

During the past period, due to the diverse applications in
multitudinous engineering and technical territories, such as
pattern recognition, associative memory, and hole filling,
complex-valued neural networks (CVNNs) are becoming
increasingly needed in applications, as in [3]. Hence, it can
be found initially from [4–6] that numerous CVNNs have
been put forward and discussed.

As we all know, the state variables, activation functions,
and connection weights of complex-valued systems are all
defined in the complex number domain, and the analysis
method is very different from that of real-valued systems.
Actually, CVNNs have more superior characteristics than
real-valued neural networks in complex signal processing
and can solve more complex problems. For example, a
single real-valued neuron cannot settle the XOR issue and
the unearthing symmetry issue, and the application of
complex-valued neurons can solve these problems (see [7]).
For CVNNs, the staple difficulty is to look for an opposite
activation function. Judging by Liouville’s theorem,
CVNNs cannot select a smooth and bounded function as
the activation function, so how to choose a suitable acti-
vation function for research also needs to be paid attention
to the problem. With the wide application of the neural
network, the development of neural network models that
can handle complex-valued problems is needed in sundry
fields, so the research on CVNNs is meaningful. At present,
many researchers have studied the stability of CVNNs, and
a large number of related results have been reported (see
[8]).
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Differential-algebraic systems depend on a combination
of differential equations and algebraic equations. Compared
with the differential equation system, the differential-alge-
braic system, as a mathematical model, is more perfect in
practical application, such as economic system, chemical
process system, and robot system, all of which belong to
differential-algebraic systems. Over the past two decades, it
has been evidenced that the differential-algebraic (different
from the accepted differential geometry) methods could lead
to a clearer comprehension of some control concepts and
their interrelationships, such as observability, reversibility,
decoupling and controller specification form, and observ-
ability, existence, and uniqueness of minimal implementa-
tions. In [9], the control method problem of a nonlinear
differential-algebraic system is considered. In [10], the
stability analysis of nonlinear differential-algebraic systems
is solved using tools from classical control theory. In [11], a
new type of differential-algebraic neural network with delay
(DDANN) is proposed. And, one kind of novel mathe-
matical expression combining differential equation and al-
gebraic equation is designed in [12]. In addition to a large
number of differential-algebraic systems directly proposed
in various disciplines and engineering practices, the theo-
retical study of differential-algebraic systems also provides
new ideas and methods for the study of certain problems in
normal systems. For example, optimal control of normal
systems, control of specified outputs, and singular pertur-
bations can all be reduced to problems in the theory of
differential-algebraic systems. *erefore, the theoretical
study of differential-algebraic systems has a wide range of
practical engineering background and profound theoretical
value. It is important to note that, however, the analysis of
differential-algebraic neural networks (DANNs) is still in its
early stages.

Based on the above-mentioned argumentation, the
target of this article is to investigate a new type of differ-
ential-algebraic complex-valued neural network
(DACVNN) with delay (DDACVNN). An essential conse-
quent on the global existence and uniqueness of the solution
is first proposed. It also shows that under some simple
assumptions, we can obtain the unique solution of the
system under the compatible initial-value problem. We then
derive the global exponential stability of this system.
Studying a complex differential-algebraic system has always
been a more challenging subject. Approximately stated, the
novelties of this article include as follows:

(1) Apply CVNNs to DANN and establish a new type of
DDACVNN. In particular, in the discussion in this
article, there is no restriction on whether the real and
imaginary parts of the activation function are re-
quired to be clearly separated.

(2) *e sufficient conditions to ensure the existence and
uniqueness of DDACVNN solutions are expressed,
in terms of Picard existence and uniqueness
theorem.

(3) An innovative approach is offered to discuss the
stability of DDACVNN; that is, under the present

system, global exponential stability (GES) is equiv-
alent to global exponential self-synchronization
(GESS), which we also rigorously prove in Lemma 1.
*us, a theorem of GES of DDACVNN is
investigated.

*e structure of the article is as follows. Section 2
provides the preliminaries, the model description about a
DACVNN model, a necessary assumption, and a useful
lemma. *e main results are given in Section 3. Two il-
lustrative examples are discussed in Section 4 to show the
feasibility of the results. At last, some conclusions are
dedicated in Section 5.

2. Preliminaries, Model Description,
and Hypothesis

2.1. Notation. In the whole article, i signifies the imaginary
unit, which is i �

���
− 1

√
. For complex number z � x + iy, the

notation |z| �
������
x2 + y2

􏽰
means the module of z. R and Rn

stand, respectively, the set of real numbers and all n-di-
mensional real-valued vectors. C, Cn, and Cn×m represent,
respectively, the set of all complex numbers, the set of all
n-dimensional complex-valued vectors, and the set of all n ×

m complex-valued matrices. For z � (z1, z2, . . . zn)T ∈ Cn,
let |z| � (|z1|, |z2|, · · · |zn|)T and ‖z(t)‖ �

����������

􏽐
n
k�1|zk(t)|2

􏽱

. For
A ∈ Cn×n or ∈Rn×n, A � (aij)n×n, we define |A| � (|aij|). *e
matrix A � (aij)n×n is called a nonnegative matrix if aij ≥ 0
for all i and j. We use rk(A) to denote k th row sum of
A � (aij)n×n and let ‖A‖∞ to be infinity norm of a matrix A

with ‖A‖∞ � max1≤k≤nrk(|A|). We use λmax(A) to denote the
maximum eigenvalue of a A ∈ Rn×n. For A ∈ Cn×n, ‖A‖

denotes a matrix norm defined by ‖A‖ �
����
A∗A

√
, where A∗

shows the conjugate transpose of complex-valued matrix A.

2.2. Model Description. *is section presents a DACVNN
model, introduces some functional conceptions, and con-
cludes with a basic hypothesis and two lemmas.

In the first place, a complex-valued singular neural
network with time delay can be considered as

A
dv(t)

dt
� − Bv(t) + DF(v(t)) + EG(v(t − τ)) + I, (1)

where matrix A ∈ Rn×n may be singular (0< rank(A) � r<
n); τ > 0 is the time delay; v(t) � (v1(t), . . . , vn(t))T ∈ Cn

stands for the complex-valued neuron state vector;
B � diag b1, . . . bn􏼈 􏼉 signifies state feedback coefficient ma-
trix, which bk > 0(k � 1, 2, . . . , n); D ∈ Cn×n and E ∈ Cn×n

correspond to, respectively, the complex-valued connection
weight matrix and the complex-valued delayed connection
weight matrix; F(v) and G(v) denote complex-valued
neuron activation functions; I ∈ Cn infers an external
complex-valued input signal.

More generally, let A �
Ir 0
0 0􏼠 􏼡. Next, system (1) can

compile a DDACVNN indicated as follows:
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dz(t)

dt
� − B1z(t) + D11F1(z(t)) + D12F2(w(t))

+E11G1(z(t − τ)) + E12G2(w(t − τ)) + I1,

0 � − B2w(t) + D21F1(z(t)) + D22F2(w(t))

+E21G1(z(t − τ)) + E22G2(w(t − τ)) + I2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where τ > 0 is the time delay; z(t) � (z1(t), . . . , zr(t))T ∈ Cr

and w(t) � (w1(t), . . . , wn− r(t))T ∈ Cn− r; B1 � diag b11, . . .􏼈

b1r}, B2 � diag b21, . . . b2r􏼈 􏼉, bij are the positive constants;
D11 ∈ Cr×r, D12 ∈ Cr×(n− r), D21 ∈ C(n− r)×r, and D22 ∈
C(n− r)×(n− r); E11 ∈ Cr×r, E12 ∈ Cr×(n− r), E21 ∈ C(n− r)×r, and
E22 ∈ C(n− r)×(n− r); F1(z) � (F11(z1), . . . , F1r(zr))

T, and
F2(w) � (F21(w1), . . . , F2(n− r)(wn− r))

T; G1(z) � (G11(z1),

. . . , G1r(zr))
T, and G2(w) � (G21(w1), . . . ,

G2(n− r)(wn− r))
T; I1 � (I11, . . . , I1r)

T and I2 � (I21, . . . ,

I2(n− r))
T.

We define a Banach space Cr
τ � C([− τ, 0],Cr), which

consists of all continuous complex-valued functions
η : [− τ, 0]⟶ Cr. zt ∈ Cr

τ denotes zt(s) � z(t + s) with
regard to s ∈ [− τ, 0]. Towards c ∈ Cr, we donate c ∈ Cr

τ ,
which signifies c(s) ≡ c in [− τ, 0]. Let ‖η(s)‖τ ������������

􏽐
n
k�1 |ηk(s)|2τ

􏽱

for η ∈ Cr
τ , where |ηk(s)|τ � sups∈[− τ,0]|ηk(s)|.

Furthermore, we proceed to consider the initial condi-
tions of DDACVNN (2) listed as follows:

zt0
� η ∈ C

r
τ , wt0

� θ ∈ C
n− r
τ . (3)

*e initial conditions (3) of DDACVNN (2) are known
as compatible; the necessary and sufficient condition is

0 � − B2θ(0) + D21F1(η(0)) + D22F2(θ(0))

+ E21G1(η(− τ)) + E22G2(θ(− τ)) + I2,
(4)

where (ηT, θT)T ∈ Cr
τ × Cn− r

τ is known as compatible initial
value (CIV).

About CVNNs, the foremost difficulty is to look for an
opposite activation function. Judging by Liouville’s theorem,
CVNNs cannot choose a smooth and bounded function as
the activation function, so how to choose a suitable acti-
vation function for research also needs to pay attention to
the problem.*erefore, in order for the following to proceed
smoothly, we need to make the following hypothesis:

Hypothesis 1. F1i(z), F2j(w), G1i(z), and G2j(w)(i � 1, . . . ,

r; j � 1, . . . , (n − r)) satisfy the Lipschitz continuity con-
dition in the complex domain, and there exist positive di-
agonal matrices 􏽢F1 � diag 􏽢F11, . . . , 􏽢F1r􏽮 􏽯, 􏽢F2 � diag 􏽢F21,􏽮

. . . , 􏽢F2n− r}, 􏽢G1 � diag 􏽢G11, . . . , 􏽢G1r􏽮 􏽯, and 􏽢G2 � diag 􏽢G21, . . . ,􏽮

􏽢G2n− r} such that

F1i(z) − F1i(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽢F1i|z − z|,

G1i(z) − G1i(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽢G1i|z − z|,

⎧⎨

⎩ (5)

and

F2j(w) − F2j(w)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽢F2j|w − w|,

G2j(w) − G2j(w)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽢G2j|w − w|,

⎧⎪⎨

⎪⎩
(6)

for any z, z ∈ Cr and w, w ∈ Cn− r.

Remark 1. In the discussion of the article, we merely require
that the complex-valued activation functions globally
Lipschitz.

It is worth noting that, in [13, 14], the activation function
is required to be manifested by severing the real and
imaginary parts as

fj zj􏼐 􏼑 � fj
R

xj, yj􏼐 􏼑 + ifj
I

xj, yj􏼐 􏼑, j � 1, . . . , n, (7)

where zj � xj + iyj, xj, yj ∈ R, fj
R(xj, yj) (or fj

R) and
fj

I(xj, yj) (or fj
I) demonstrate, respectively, the real and

imaginary parts of fj(zj)(j � 1, . . . , n). Hypothesis 1 in-
dicates that the model discussed in this article is suitable for
both the case where the activation function can separate the
real and imaginary parts, and the case where it cannot be
clearly separated. For instance, fj(zj) � 1 − e− zj /1 + e− zj ,
j � 1, . . . , n.

Finally, an important lemma is offered, which will be
applied in the following sections.

Lemma 1. Let matrix A � (aij)n×n have nonpositive off-di-
agonal elements (i.e., aij ≤ 0, i≠ j); then, each of the following
conditions is equivalent to the statement that A is a non-
singular M matrix.

(1) All the leading principal minors of A are positive
(2) *ere are n positive constants ξ1, ξ2, . . . , ξn such that

ξiaii − 􏽘
n

j�1,j≠i
ξj aji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> 0, 1≤ i≤ n. (8)

(3) *ere are n positive constants ζ1, ζ2, . . . , ζn such that

ζ iaii − 􏽘
n

j�1,j≠i
ζj aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> 0, 1≤ i≤ n. (9)

(4) *e diagonal elements of A are all positive and there
exists a positive vector θ such that Aθ> 0 or ATθ > 0.

3. Main Results

3.1. <e Issue of Existence and Uniqueness of Solutions.
*e purpose of this subsection is to discuss the existence and
uniqueness of the solution with the CIV problem (2) and (3).

First, we discuss the following DACVNN:

dz(t)

dt
� − B1z(t) + D11F1(z(t)) + D12F2(w(t)) + l1(t),

0 � − B2w(t) + D21F1(z(t)) + D22F2(w(t)) + l2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)
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where the functions l1: [t0, +∞)⟶ Cr and l2: [t0, +∞)

⟶ Cn− r are the continuous and differentiable functions.
We consider the initial conditions of DACVNN (10) as

follows:

z t0( 􏼁 � z0 ∈ C
r
, w t0( 􏼁 � w0 ∈ C

n− r
. (11)

*e initial conditions (11) are considered to be com-
patible; the necessary and sufficient condition is

0 � − B2w0 + D21F1 z0( 􏼁 + D22F2 w0( 􏼁 + l2 t0( 􏼁. (12)

Theorem 1. We assume that Hypothesis 1 is satisfied, and
B2 − |D22|

􏽢F2 is a M matrix. Afterward, for every CIV con-
dition (11) and (12), there is a unique solution
(zT(t), wT(t))T on interval [t0, t+) of DACVNN (10), where
t0 < t+ ≤ +∞.

Proof. First, we define a function g: R × Cn⟶ Cm such
that

0 � − B2g(t, z) + D21F1(z) + D22F2(g(t, z)) + l2(t), (13)

for any t≥ t0 and z ∈ Cr.
In order to achieve the above effect, without loss of

generality, we only need to show that, for every t≥ t0 and
z ∈ Cr, there exists a z ∈ Cn− r, of (13) such that

0 � − B2w + D21F1(z) + D22F2(w) + l2(t). (14)

Let Dij � (dijkl). On the basis of Lemma 1, there exist
ξs > 0(s � 1, 2, . . . , n − r) such that

ξkB2k − 􏽘
n− r

j�1
d22kjξj

􏽢F2j > 0, k � 1, . . . , n − r, (15)

as B2 − |D22|
􏽢F2 is a M matrix. *us, we can get

rmax Ξ
− 1

B
− 1
2 D22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽢F2Ξ􏼐 􏼑< 1, (16)

where Ξ � diag ξ1, ξ2, . . . , ξn− r􏼈 􏼉.
We define an operator

T(α) � Ξ− 1
B

− 1
2 D21F1(z) + D22F2(Ξα) + l2(t)􏼂 􏼃, (17)

where α ∈ Cn− r.
According to the definition of the operator T(α), we can

get

|T(β) − T(α)|≤Ξ− 1
B

− 1
2 D22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽢F2Ξ|β − α|, (18)

regarding whichever β, α ∈ Cn− r. By calculating the in-
finity norm in (18), we can get

‖T(β) − T(α)‖∞ ≤ ]‖β − α‖∞, (19)

where

] � rmax Ξ
− 1

B
− 1
2 D22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽢F2Ξ􏼐 􏼑< 1. (20)

*rough (19), we can readily find that T is a contraction
operator on Cm. Based on the contraction mapping prin-
ciple, there exists a unique α∗ ∈ Cn− r so that T(α∗) � α∗,
which is

B2Ξα
∗

� D21F1(z) + D22F2 Ξα
∗

( 􏼁 + l2(t). (21)

Let w � Ξα∗, thus (14) satisfies. *erefore, there is a
function g(t, z) such that (14) satisfies.

According to (14) and Hypothesis 1, one has

‖g(t, β) − g(t, α)‖≤ B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏽨 􏽩
− 1

D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1

�����

�����‖β − α‖,

(22)

which shows that the function g(t, β) is continuous in
R × Cn− r.

Furthermore, from (14) and DACVNN (10), we see that

dz(t)

dt
� − B1z(t) + D11F1(z(t)) + D12F2(g(t, z(t))) + l1(t).

(23)

Picard existence and uniqueness theorem ensures exis-
tence and uniqueness of the solution z(t) of system (23)
considered on interval [t0, t+) for any initial value z0 ∈ Cn.
Furthermore, let w(t) � g(t, z(t)), and so there exists a
unique solution (zT(t), wT(t))T on interval [t0, t+) of the
DACVNN (10), with the CIV (zT

0 , gT(t0, z0))
T.

Furthermore, we consider the extension of t from [t0, t+)

to [t0, +∞). □

Theorem 2. We presume that Hypothesis 1 is satisfied, if
B2 − |D22|

􏽢F2 is a M matrix; afterward, for every CIV
(ηT, θT)T, DDACVNN (2) has a unique solution (zT(t),

wT(t))T on [t0, +∞).

Proof. For t ∈ [t0, t0 + τ], DDACVNN (2) with CIV
(ηT, θT)T can be restated as DACVNN (10), in which

l1(t) � E11G1(η(t − τ)) + E12G2(θ(t − τ)) + I1,

l2(t) � E21G1(η(t − τ)) + E22G2(θ(t − τ)) + I2.

⎧⎨

⎩ (24)

*rough *eorem 1, we can know that DDACVNN (2),
which is DACVNN (10), has a unique solution on [t0, t0 + τ].
Progressively, we are able to prove that there exists a unique
solution on [t0, t0 + kτ] for any k≥ 1 of DDACVNN (2).

*e existence and uniqueness of the solutions of com-
plex-valued differential-algebraic systems is one of the most
basic problems, and it is the premise and basis for discussing
the system. *erefore, it is very important and necessary to
study the existence and uniqueness of the solution of this
system. For these reasons, this article considers the funda-
mental concepts of the solution of complex-valued differ-
ential-algebraic systems via Picard’s theorem. □

3.2. Global Exponential Stability. We will consider the
globally exponential stability (GES) and globally exponential
self-synchronization (GESS) of DDACVNN (2) in this
section.

*e (z∗ T, w∗ T)T ∈ Cr × Cn− r is an equilibrium point of
DDACVNN (2) if and only if

4 Discrete Dynamics in Nature and Society



0 � − B1z
∗

+ D11F1 z
∗

( 􏼁 + D12F2 w
∗

( 􏼁

+E11G1 z
∗

( 􏼁 + E12G2 w
∗

( 􏼁 + I1,

0 � − B2w
∗

+ D21F1 z
∗

( 􏼁 + D22F2 w
∗

( 􏼁

+E21G1 z
∗

( 􏼁 + E22G2 w
∗

( 􏼁 + I2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

Definition 1. If regarding any t≥ t0, and regarding any
solution (zT(t), wT(t))T of DDACVNN (2) corresponding
to the CIV (ηT, θT)T, there exists an equilibrium point
(z∗ T, w∗ T)T ∈ Cr × Cn− r satisfying

z(t) − z
∗����
���� + w(t) − w

∗����
����≤K η − z

∗����
���� + θ − w

∗����
����􏽨 􏽩e

− 〉 t− t0( ),

(26)

where K≥ 1 and ϱ > 0 are constants, then DDACVNN (2) is
called GES.

Definition 2. If for any t≥ t0, and for any solutions
(zT(t), wT(t))T and (zT(t), wT(t))T of the DDACVNN (2)
corresponding to the two CIVs (ηT, θT)T and (ηT, θ

T
)T,

there are two constants K≥ 1 and ϱ > 0 satisfying

‖z(t) − z(t)‖ +‖w(t) − w(t)‖≤K[‖η − η‖ +‖θ − θ‖]e
− 〉 t− t0( ),

(27)

then DDACVNN (2) is called GESS.

Remark 2. Generally speaking, exponential stability and
exponential self-synchronization are two completely dif-
ferent concepts. Evidently, exponential stability implies
exponential self-synchronization but not vice versa. How-
ever, under DDACVNN (2), we have the following claim:
GESS can deduce GES.

Lemma 2. GESS is equivalent to GES in DDACVNN (2).

Proof. We only need to show that GES can be deduced by
GESS. Firstly, let Φ � (ηT, θT)T , ut(Φ) � (zT(t), wT(t))T

signify a solution of DDACVNN (2) with CIV ut0
� Φ ∈ Cn

τ .
Suppose DDACVNN (2) is GESS, namely,

ut(Φ) − ut(Ψ)
����

����≤K ‖Φ − Ψ‖e
− 〉 t− t0( ), (28)

for any Φ,Ψ ∈ Cn
τ and t≥ t0, where K≥ 1 and ϱ > 0 are

constants.
We define an operator Γ: Cn

τ⟶ Cn
τ with Γ(Φ) � us(Φ),

where s≥ t0 so that σ � Ke− ϱ(s− t0) < 1. By (14), one has

‖Γ(Φ) − Γ(Ψ)‖≤ σ‖Φ − Ψ‖, (29)

so we can get that Γ is a contraction. *en, through the
Banach contraction principle, it can be obtained that Γ has a
unique fixed point Φ∗ ∈ Cn

τ , which is the equilibrium point
of DDACVNN (2).

After giving the above lemma, we next introduce the
following two lemmas. *e introduction of these two
lemmas plays a key role in the testimony of the next
theorem. □

Lemma 3 (see [15]). Let x: [t0 − τ, +∞)⟶ [0, +∞) and
J: [t0, +∞)⟶ [0, +∞) satisfying

dx(t)

dt
≤ − cx(t) + δx(t − τ) + J(t), (30)

for t≥ t0, where c, δ, τ > 0, then

􏽥x(t)≤ 􏽥x t0( 􏼁 + 􏽚
t

t0

e
α s− t0( )J(s)ds􏼠 􏼡e

α t− t0( ), (31)

for t≥ t0, where α is a constant sufficing α − c1 + c2e
ατ ≤ 0 and

􏽥x(t) � supθ∈[− τ,0]x(t + θ).

Lemma 4 (see [11]). Let x, y: [t0 − τ, +∞)⟶ [0, +∞).
x(t) and y(t) are, respectively, continuously differentiable
and continuous functions, sufficing

dx(t)

dt
≤ − c1x(t) + c2x(t − τ) + α1y(t − τ),

y(t) ≤ δ1x(t) + δ2x(t − τ) + α2y(t − τ).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

For t≥ t0, where there are positive real numbers
c1, c2, δ1, δ2, α1, and α2. And x(t)⟶ 0 and y(t)⟶ 0 as
t⟶∞ if λmax(Λ)< 1, where

Λ �

e
− βτ α1

β

δ1e
− βτ

+ δ2
δ1α1 + βα2

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (33)

where β> 0 is a constant satisfying β − c1 + c2e
βτ ≤ 0,

􏽥x(t) � supθ∈[− τ,0]x(t + θ), and 􏽥y(t) � supθ∈[− τ,0]y(t + θ). In
addition, if there exists φ> 0 satisfying

e
− βτ

+ φ δ1e
− βτ

+ δ2􏼐 􏼑 � σ1 < 1,

α1
βφ

+
δ1α1 + βα2

β
� σ2 < 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

then

x(t) + y(t)≤Kσmax 􏽥x t0( 􏼁 + 􏽥y t0( 􏼁( 􏼁e
− 〉 t− t0( ), (35)

for t≥ t0, where K � max 1,φ􏼈 􏼉/min 1,φ􏼈 􏼉, σmax � max
σ1, σ2􏼈 􏼉, and ϱ � − 1/τlnσmax.
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Theorem 3. We assume that hypothesis 1 holds and B2 −

|D22|
􏽢F2 is a M matrix. Let

δ1 � max
1≤l≤m

rl D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
,

δ2 � max
1≤l≤m

rl E21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
,

α2 � max
1≤l≤m

rl E22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
,

c1 � rmin B1 − D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑 − rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ1,

c2 � rmax E11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ2,

α1 � rmax E12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑α2,

(36)

and

Λ �

e
− βτ α1

β

δ1e
− βτ

+ δ2
δ1α1 + βα2

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (37)

where β> 0 is a constant sufficing β − c1 + c2e
βτ ≤ 0. <en, if

λmax(Λ)< 1, DDACVNN (2) is GES.

Proof. On the basis of Lemma 1, we only need to certify that
DDACVNN (2) is able to achieve GESS.

For any two different solutions (zT(t), wT(t))T and
(zT(t), wT(t))T of DDACVNN (2), let Z(t) � z(t) − z(t)

and W(t) � w(t) − w(t). In line with DDACVNN (2), we
can obtain that

d

dt
‖Z(t)‖ �

d

dt
‖z(t) − z(t)‖ �

d

dt

���������������

􏽘

n

k�1
zk(t) − zk(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽶
􏽴

,

(38)

and

B2‖W(t)‖ � B2‖w(t) − w(t)‖ � B2k

����������������

􏽘

m

k�1
wk(t) − wk(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽶
􏽴

.

(39)

Let |zi(t) − zi(t)| � max
1≤k≤n

|zk(t) − zk(t)|􏼈 􏼉 and |wl(t)−

wl(t)| � max
1≤k≤n

|wk(t) − wk(t)|􏼈 􏼉, then

d

dt
‖Z(t)‖ ≤

�
n

√ d

dt
zi(t) − zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ −
�
n

√
B1i Zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

m

j�1
d11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 F1j zj(t)􏼐 􏼑 − F1j zj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

+ 􏽘
m

j�1
d12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 F2j wj(t)􏼐 􏼑 − F2j wj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
n

j�1
e11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 G1j zj(t − τ)􏼐 􏼑 − G1j zj(t − τ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎫⎪⎬

⎪⎭

+
�
n

√
􏽘

m

j�1
e12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 G2j wj(t − τ)􏼐 􏼑 − G2j wj(t − τ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

≤ − B1i Zi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
d11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F1j Zj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
m

j�1
d12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F2j Wj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘
n

j�1
e11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G1j Zj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘

m

j�1
e12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G2j Wj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎫⎪⎬

⎪⎭
,

(40)

and
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B2‖W(t)‖≤
��
m

√
B2l Wl(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

��
m

√
􏽘

n

j�1
d21lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F1j Zj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

+ 􏽘
m

j�1
d22lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F2j Wj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘
n

j�1
e21lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G1j Zj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
m

j�1
e22lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G2j Wj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎫⎪⎬

⎪⎭
.

(41)

Let x(t) � |zi(t) − zi(t)| and y(t) � |wl(t) − wl(t)|.
*us, one has

d

dt
x(t)≤ − B1i􏼈 + 􏽘

n

j�1
d11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F1j􏽯x(t)

+ 􏽘
m

j�1
d12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F2jy(t) + 􏽘
n

j�1
e11ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G1jx(t − τ)

+ 􏽘
m

j�1
e12ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G2jy(t − τ)

≤ − rmin B1 − D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑x(t) + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑y(t)

+ rmax E11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑x(t − τ) + rmax E12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢G2􏼐 􏼑y(t − τ),

(42)

and

y(t)≤
1

b2l − 􏽐
m
j�1 d22lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F2j

􏽘

n

j�1
d21lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽢F1jx(t)
⎧⎪⎨

⎪⎩

+ 􏽘
n

j�1
e21lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G1jx(t − τ)

+ 􏽘
m

j�1
e22lj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽢G2jy(t − τ)
⎫⎪⎬

⎪⎭

≤
rl D21

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
x(t)

+
rl E21

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
x(t − τ)

+
rl E22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
y(t − τ)

≤ δ1x(t) + δ2x(t − τ) + α2y(t − τ).

(43)

By (42) and (43), it follows that

dx(t)

dt
≤ − c1x(t) + c2x(t − τ) + α1y(t − τ),

y(t) ≤ δ1x(t) + δ2x(t − τ) + α2y(t − τ).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(44)

According to Lemma 1 for the reason that Im − Λ is a M

matrix since λmax(Λ)< 1. According to Lemma 2, we can
deduce that there exists φ> 0 so that

e
− βτ

+ φ δ1e
− βτ

+ δ2􏼐 􏼑 � σ1 < 1,

α1
βφ

+
δ1α1 + βα2

β
� σ2 < 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(45)

According to Lemma 2, and by (44) and (45), one has

x(t) + y(t)≤Kσmax􏽥x t0( 􏼁 + 􏽥y t0( 􏼁􏼁e
− 〉 t− t0( ), (46)

for t≥ t0, where K � max 1,φ􏼈 􏼉/min 1,φ􏼈 􏼉, σmax � max
σ1, σ2􏼈 􏼉, and ϱ � − (1/τ)lnσmax. From (46), one has

‖z(t) − z(t)‖ +‖w(t) − w(t)‖≤K′[‖η − η‖ +‖θ − θ‖]e
− 〉 t− t0( ), (47)

where K′ � Kmax
�
n

√
,

��
m

√
􏼈 􏼉, ‖η − η‖≥ 􏽥x(t0) and ‖θ − θ‖

≥ 􏽥y(t0), which signifies that DDACVNN (2) is GESS. In
accordance with Lemma 1, DDACVNN (2) is GES. □

Remark 3. In this article, we innovatively combine complex
values with DANN and do not study complex-valued in real-
valued methods (i.e., divide complex values into real and
imaginary parts). And the requirements for the activation
function are also reduced a lot (only the condition of global
Lipschitz needs to be satisfied), so many restrictions on the
activation function are eliminated, making the results of this
article more effective.

Remark 4. Above, we propose a new paradigm and skill to
discuss the stability of DDACVNN (2). It is strictly proved
that, in Lemma 1, the DDACVNN (2) is GES if it can achieve
GESS, which is able to reduce the argument of exponential
stability in DDACVNN (2). Using a differential-algebraic
inequality introduced, the GESS problem is studied, and the
GES theorem of DDACVNN is given. Finally, in*eorem 1,
it is successfully studied whether DDACVNN (2) can
achieve GESS and thus achieve GES.
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Remark 5. On the basis of this article, we can also discuss the
case of time-varying delays. In fact, in the case where the time
delays is time-varying delays, the results of this article still hold.
We will continue to consider this issue in future research.

Remark 6. In addition, we can also consider nonlinear dif-
ferential-algebraic systems. Objectively speaking, there are
many essential differences between nonlinear differential-al-
gebraic systems and ordinary differential equations and linear
differential-algebraic systems. *e most fundamental differ-
ence is that of nonzero exponents. In general, in an exponential
sense, ordinary differential equations can be thought of as zero-
exponential systems, a special case of differential-algebraic
systems. *e differential-algebraic system we mentioned,
generally, refers to the nonzero exponential system, and the
transition from the zero-exponential system to the nonzero
exponential system is a leap, just like the transition from finite-

dimensional space to infinite-dimensional space in mathe-
matical analysis. *erefore, it will inevitably lead to qualitative
changes in many issues. All the above have led to the very slow
development of the research on nonlinear differential-algebraic
systems.

4. Examples

At last, two numerical examples are proposed to demon-
strate the above achievements in this section. Respectively,
the activation function can separate the real and imaginary
parts, and the other is that they cannot be clearly separated.

Example 1. We consider DDACVNN (2), taking r � 1 and
n � 3. We allow τ � 0.1, I1 � 1 + i and I2 � (0, 0)T; F1k(θ) �

G1k(θ) � F2j(θ) � G2j(θ) � 0.5x + i0.5y where θ � x + iy,
for k � 1 and j � 1, 2,

D11 � (1 + i)1×1, E11 � (i)1×1, D12 � (− i, 0)1×2, E12 � (0, 2 + i)1×2,

D21 �
1 − i

0
􏼠 􏼡

2×1
, E21 �

1 − i

2 − i
􏼠 􏼡

2×1
,

D22 �
1 − 3i 2 + i

− 1 + i 3 + i
􏼠 􏼡

2×2
, E22 �

1 + 2i 0

− 1 + i 3 − i
􏼠 􏼡

2×2
.

(48)

B1 � (10
�
2

√
) and B2 � diag 8

��
10

√
, 8

��
10

√
􏼈 􏼉. We obviously see that Hypothesis 1 holds and 􏽢F1 � 􏽢G1 �

(0.5) and 􏽢F2 � 􏽢G2 � diag 0.5, 0.5{ }. By calculation, we have

D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � (
�
2

√
), E11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (1), D12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (1, 0), E12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (0,

�
5

√
),

D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

�
2

√

0
􏼠 􏼡, E21

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

�
2

√

�
5

√􏼠 􏼡, D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

��
10

√ �
5

√

�
2

√ ��
10

√􏼠 􏼡, E22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

�
5

√
0

�
2

√ ��
10

√􏼠 􏼡.
(49)

And

B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2 �

15
��
10

√

2
−

�
5

√

−
�
2

√ 15
��
10

√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (50)

which is a M matrix. On the basis of *eorem 1, we can
conclude that for any CIV (ηT, θT)T ∈ C1

τ × C2
τ , DDACVNN

(2) has a unique solution.
Moreover, we can continue to calculate the following:

δ1 � max
1≤l≤m

rl D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.0317,

δ2 � max
1≤l≤m

rl E21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.0501,

α2 � max
1≤l≤m

rl E22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.1343,

c1 � rmin B1 − D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑 − rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ1 � 13.4192,

c2 � rmax E11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ2 � 0.5159,

α1 � rmax E12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑α2 � 1.6852,

(51)
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and

Λ �

e
− βτ α1

β

δ1e
− βτ

+ δ2
δ1α1 + βα2

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0.3263 0.1505

0.0604 0.1391
⎛⎝ ⎞⎠,

(52)

where β � 11.2> 0 such that β − c1 + c2e
βτ � − 0.6380< 0;

then, λ(Λ) � 0.3663, 0.0991, λmax(Λ) � 0.3663< 1.

In the example, all the conditions of *eorem 2 are fully
satisfied, so in the light of *eorem 2, DDACVNN (2) is
GES.

Numerical simulations of Example 1 are exhibited in
Figure 1.

Example 2. We consider DDACVNN (2), taking r � 1 and
n � 3. We allow τ � 0.1, I1 � 1 + i and I2 � (0, 0)T; F1k(θ) �

G1k(θ) � F2j(θ) � G2j(θ) � 1 − e− |θ|/1+|θ|/1 + e− |θ|/1+|θ|, for
k � 1 and j � 1, 2,

D11 � (1 − i)1×1, E11 � (1 − i)1×1, D12 � (i, 0)1×2, E12 � (0, 2 + i)1×2,

D21 �
1 + i

− i
􏼠 􏼡

2×1
, E21 �

1 + 2i

1 − i
􏼠 􏼡

2×1
,

D22 �
3 + i 0

− 1 + i 1 + 3i
􏼠 􏼡

2×2
, E22 �

1 + 3i − 1 + i

0 2 − i
􏼠 􏼡

2×2
.

(53)

B1 � (10
�
2

√
) and B2 � diag 10

��
10

√
, 9

��
10

√
􏼈 􏼉. We obviously see that hypothesis 1 holds and 􏽢F1 � 􏽢G1 �

(0.5) and 􏽢F2 � 􏽢G2 � diag 0.5, 0.5{ }. By calculation, we have

D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � (
�
2

√
), E11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (

�
2

√
), D12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (1, 0), E12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (0,

�
5

√
),

D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

�
2

√

1
􏼠 􏼡, E21

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

�
5

√

�
2

√􏼠 􏼡, D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

��
10

√
0

�
2

√ ��
10

√􏼠 􏼡, E22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

�
1

√
0

�
2

√

0
�
5

√􏼠 􏼡.
(54)

And

B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2 �

19
��
10

√

2
0

−
�
2

√ 17
��
10

√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (55)

which is a M matrix. On the basis of *eorem 1, we can
conclude that for any CIV (ηT, θT)T ∈ C1

τ × C2
τ , DDACVNN

(2) has a unique solution.
Moreover, we can continue to calculate the following:

δ1 � max
1≤l≤m

rl D21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.1664,

δ2 � max
1≤l≤m

rl E21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.0744,

α2 � max
1≤l≤m

rl E22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑

rl B2 − D22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑
� 0.4985,

c1 � rmin B1 − D11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F1􏼐 􏼑 − rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ1 � 13.3518,

c2 � rmax E11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G1􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑δ2 � 0.7443,

α1 � rmax E12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢G2􏼐 􏼑 + rmax D12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽢F2􏼐 􏼑α2 � 1.3673,

(56)
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and

Λ �

e
− βτ α1

β

δ1e
− βτ

+ δ2
δ1α1 + βα2

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0.3325 0.1242

0.1297 0.5192
⎛⎝ ⎞⎠,

(57)

where β � 11.01> 0 such that β − c1 + c2e
βτ � − 0.1036< 0;

then, λ(Λ) � 0.2683, 0.5834, λmax(Λ) � 0.5834< 1.
In the example, all the conditions of *eorem 2 are fully

satisfied, so on the basis of *eorem 2, DDACVNN (2) is
GES.

Numerical simulations of Example 2 are exhibited in
Figure 2.

Remark 7. In the above, we have obtained that the activation
function of the system considered in the article is feasible
regardless of whether the real and imaginary parts can be
departed, and the above two examples also prove the cor-
rectness of the derived conclusions.

5. Conclusion

Looked through the article, we establish a new type of
DDACVNN. First, the existence and uniqueness of the
DDACVNN solution is addressed. In addition, the GES
theorem of DDACVNN is also studied. In particular, we
verify that our activation function does not have the re-
striction that the real and imaginary parts must be separated.
Finally, we also give two examples to confirm the validity of
the theoretical results.
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Figure 1: Curves of the real and imaginary parts of z(t) and w(t) in example 1.
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Figure 2: Curves of the real and imaginary parts of z(t) and w(t) in Example 2.
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For the sake of simplicity, we only consider a simpler
form of the differential-algebraic system. And studying a
more complex differential-algebraic system has always been
a more challenging subject. For example, we can conduct a
series of studies similar to traditional neural networks on
differential-algebraic systems, such as multiple stability,
synchronicity, and periodic oscillations. At the same time,
we can also study a differential-algebraic system with a high
degree of exponential, or a differential-algebraic system with
variable delays. In addition, we can also consider nonlinear
differential-algebraic systems. And these issues will be
considered in the future.
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