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�e infection of human immunode�ciency virus (HIV) is a serious and potentially incurable infection. �ere is no cure for HIV
and is a public health issue around the world. �at is why, it is valuable to investigate the intricate phenomena of HIV infection
and provide some control interventions to lessen its economic burden. In this research work, the dynamics of HIV via fractional
calculus to conceptualize the intricate phenomena of this viral infection has been formulated and conceptualized. We have shown
the rudimentary concept of fractional calculus in Atangana–Baleanu framework. A novel numerical technique is presented for the
chaotic and dynamic behaviour of the proposed model. �e oscillatory and chaotic phenomena of the system have been shown
with the �uctuation of di�erent input factors of the system. Furthermore, we have shown the a�ect of fractional order on the
proposed system of HIV infection. Most critical input parameters are highlighted through numerical simulations and suggested
control intervention to the policy makers. Finally, we have shown the stability result and the convergence condition for the
proposed numerical scheme.

1. Introduction

Mathematics and Biology are extricable linked in di�erent
research areas. Genetics, environmental science, population
dynamics, medical science, and other �elds all bene�t from
mathematical biology. Mathematics is used to conceptualize,
understand, and visualize intricate biological phenomena
[1, 2]. It is well known that the development of theoretical
principles for biology is referred to theoretical biology while
investigation of biological phenomena or processes through
mathematical tools is known to be mathematical biology.
�is implies that mathematics plays an important role to
interrogate a biological system. When traditional lab tests
are either unfeasible or too di�cult to answer a research
topic, biologists turn to mathematics to create models that
highlight the key factors of transmission process of an in-
fection. Scientists can use these approaches to forecast the
likelihood of certain outcomes while simultaneously �ne-
tuning their research subjects. Di�erent biological events

and processes can be described mathematically in terms of
delay, impulsive, stochastic [3], fractional and ordinary
di�erential equations, and so on [4]. In formulating these
mathematical models, various assumptions, laws, and ax-
ioms that govern these processes are used to demonstrate the
complex dynamics of biological events. HIV infection is a
serious public health concern worldwide, having claimed
about 33 million lives to date, and a slew of mathematical
models for the human immune system has been created to
depict the complete spectrum of infection.�e interaction of
human immunode�ciency (HIV) and immune system has
been described. HIV has been reported to be an e�ective
agent in achieving immunode�ciency syndrome (AIDS)
which impairs the capability of the body to fend against
various illnesses. HIV infection is an incurable fatal disease
that has killed the lives of about 44, 200, 000 people. It is
reported in 2020 that 37.6million people are infected byHIV
around the world and 1.5 million people are newly infected.
However, therapy that works, caring, assessment, as well as
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protection of HIV has led to people living longer and
healthier lives with HIV. When the HIV virus penetrates a
healthy individual’s body, it propagates rapidly and causes
CD4+ T-cells destruction that act on the immune system.

'e symptoms and signs of HIV infection in its initial
phases include the flu, nighttime cravings, coughing, losing
weight, a headache, diarrhoea, sunburn, body aches and
joint pain, tonsillitis, as well as a dry mouth. 'e process is
still in its initial phases, the virus carries more weight into
the bloodstream, and the HIV infection spreads more easily
through the body than at other stages. In addition, HIV-
infected viruses are spread through body fluids (blood,
tears, urine, saliva, and so on) and infect the uninfected
person. It is really obvious that CD4+ T-cells have the
fighting ability against infections; additionally, those same
CD4+ T-cells play a significant role as in immune system’s
modification, so their precession would have a wide range
of consequences which can entirely disrupt its immune
system’s functioning. Because the retention time of such
lymphocytes is utilized. 'erefore, we define the phase of
HIV infection, determining their importance using a
mathematical formulation becomes essential. For effective
illustration of the interaction of CD4+ T-cells and HIV-
infected viruses, a number of mathematical models were
developed.

Several scholars investigated the kinetics of HIV in-
fection using various assumptions. 'e authors in [5]
studied the interaction of CD4+ T-cells and HIV virus
through a mathematical model. Perelson and Nelson [6]
also developed a novel model of HIV incorporating the
following classes: late infection, constantly infected and
non-infected, and the HIV viral particle community.
Several recognized characteristics of AIDS were proven
their research clinically [6]. Following that, Culshaw and
Raun [7] formulated the dynamics of HIV infection and
studied HIV dynamics. Bushnaq et al. [8] performed re-
search in which they explored the stability and persistence
of HIV/AIDS model, as well as the role of recall throughout
the biomechanics with HIV infection, using formalized
paraphrasing and fractional differentiation. To highlight
the dynamic monitoring behaviours of HIV infection, the
authors used a range of methodologies to investigate HIV
dynamics [9, 10] while the researchers in [11, 12] com-
putationally interrogated the dynamics of HIV. 'e main
objective of this research work is to formulate the dynamics
of HIV infection using a variable term from source rather
than a fixed quantity for fresh CD4+ T-cells. In addition to
this, our objective is to visualize the role of input pa-
rameters on the output of the system and to investigate the
most critical factors of the system for the control of this
viral infection.

Non-integer models are famous due to their more
valuable, reliable, deeper, and precise knowledge in dif-
ferent areas of science and technology [13, 14]. Due to its
inherited characteristics and memory definition, fractional
systems [15] perform more accurately. It is also well known
that nonlocal behaviour of the system can easily be rep-
resented through fractional-calculus [16]. 'e fraction
calculus offered very precise information for such

phenomena, especially for the dynamics of infectious
diseases and engineering systems. In fraction calculus,
Caputo, Riemann–Liouville, Hilfer, and a few more op-
erations have core laws and have limitations in modeling
natural phenomena. Atangana and Baleanu developed a
new derivative in 2016 that extended the Mittag–Leffler
function to nonlocal and nonsingular cases [16]. 'is newly
developed has been successfully used in different areas of
science and engineering [17, 18]. 'erefore, the mathe-
matical biologists are interested to investigate the trans-
mission process of different infections through this novel
operator to provide accurate results and to conceptualize
the contribution of memory in the dynamical behaviour of
different diseases. 'e authors in [19] represented the
transmission phenomena of rubella disease through
Atangana–Baleanu operators. 'e transmission phenom-
ena of COVID-19 have been investigated through AB
operator in some African countries [20]. 'is novel op-
erator more accurately represents natural phenomena
rather than the previous operators. 'us, we opt to in-
vestigate the dynamics of healthy CD4+ T-cells, infected
CD4+ T-cells, and free viruses of HIV infection through
fractional-calculus via Atangana–Baleanu operator.

'e research work is structured as follows. 'e frac-
tional formulation of the HIV infection of CD4+ T-cells is
presented in Section 2 of this article. We introduced a new
numerical technique for the analysis of the proposed
fractional model in Section 3. In section four, we high-
lighted the chaotic and oscillatory concepts of the model
with fluctuation of different input parameters. Further-
more, the most critical scenario is visualized through these
numerical analyses. 'e proposed numerical scheme’s
convergence and stability findings have been demon-
strated. 'e last portion of the article contains the entire
work’s concluding remarks.

2. Structure of HIV Dynamics

'e most critical necessity for understanding HIV/AIDS
infections is to understand the interaction of HIV and CD4+

T-cells. It is reported that these cells are created throughout
the bone marrow and moved to the medulla and then went
through special differentiation for maturation into unin-
fected CD4+ T-cells. In the human body, the maximal weight
is achieved by thymus. 'e thymus in humans achieves its
maximal weight at maturation stage and then gradually
grows more complicated. 'e effect of thymic drainage from
adults is small even though the adult thymus is active and its
few lymphocytes function as recruits for T-cells and unin-
fected T-cells. 'e provided model focuses on CD4+ T-cells.
'e number of CD4+ T-cells that tell us more about the early
symptoms can be used to assess the persistence of HIV
infection.

'e current work is interested to interrogate the oscil-
latory and path tracking behaviour of the HIV dynamics.
'ese analyses detect the most critical factor and also help
the policy makers to identify input factor for the prevention
of infection. 'e assumptions in [11] give the following
mathematical descriptions:
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dT
dt

� s − μTT − kVT + rT 1 −
T + I

Tmax
 ,

dI
dt

� kVT − μII,

dV
dt

� NμII − μVV.

(1)

Here, the state variables T(t) and I(t) indicate the
concentration of healthy and infected while V(t) indicates
HIV virus freely available in the blood, respectively. In
Table 1, we have shown the initial conditions and all the
parameters with description. In the next section, we will
extend the model with a fractional framework.

2.1. HIV Infection’s Fractional Dynamics. Here, a constant
source term s introduced in [11] is replaced by the variable
s(V) � s exp(−κV) in the proposed model. 'e new source
term included the model indicating the amount of healthy
T-cells generated by thymus as a function of viral load
concentration. Because the greater viral load lowers the
generation of healthy T lymphocytes, the source term is seen
as a variable rather than a constant. Further explanation and
detail are given in the research [21–23]. 'en, the above
system of differential equation (1) in fractional framework
with our new assumptions is given by

ABC
0 D

ℓ
tT � s exp(−κV) − μTT + rT 1 −

T + I

Tmax
  − kVT,

ABC
0 D

ℓ
t I � kVT − μII,

ABC
0 D

ℓ
tV � NμII − μVV − kVT,

(2)

where ABC
0 Dℓ

t indicates the derivative of Atangana–Baleanu
in the Caputo sense of order ℓ. 'e following portion of the
study will go through the rudimentary knowledge of ABC
derivative, which will be used to analyze our HIV infection
model. 'is fractional derivative has been recently intro-
duced which is successfully utilized in different research
fields.

3. Results of Fractional Calculus

Fractional calculus theory is rich in applications and has
been applied to many problems in engineering, physics,
economics, biology, and many other areas of technology and
science. Recent research has shown that they provide more
accurate, precise, and reliable results [24, 25]. Here, we
introduce the basic idea of fractions for analyzing our system
of HIV. In the following, some basic results and concepts of
ABC fractional derivative are presented for analysis.

Definition 1. Let us take f such that g ∈ H1(p, q), p< q,
then ABC derivative with order ζ is given as follows:

ABC
p D

ζ
t g(t) �

B(ζ)

1 − ζ


t

p
g′(ζ)Eζ −ζ

(t − ξ)
ζ

1 − ζ
⎡⎣ ⎤⎦dξ, (3)

where ζ belongs to the closed interval [0, 1].

Definition 2. Assume f(t) be any given function, then the
integral of the abovementioned operator is indicated by
ABC
p I

ζ
t g(t) and is given by

ABC
p I

ζ
t g(t) �

1 − ζ
B(ζ)

g(t) +
ζ

B(ζ)Γ(ζ)


t

p
g(ζ)(t − ξ)

ζ− 1
dξ.

(4)

Here, as the fractional-order ζ approaches to 0, we
obtained the initial function.

Theorem 1 (see [16]). Let us take f such that f ∈ C[p, q]

where f is continuous, then the following holds true:

ABC
p D

ζ
t (g(t))

�����

�����<
B(ζ)

1 − ζ
‖f(t)‖, with ‖f(t)‖ � max

p≤t≤q
|g(t)|. (5)

Furthermore, it fulfills the following:

‖
ABC
p D

ζ
t g1(t)−

ABC
p D

ζ
t g2(t) < ϱ1

����
����g1(t) − g2(t)‖ , (6)

which is called Lipschitz condition.

Theorem 2 (see [16]). Let us take a fractional system of the
form as follows:

ABC
p D

ζ
t g(t) � u(t), (7)

the above system has the following unique solution:

g(t) �
1 − ζ
B(ζ)

u(t) +
ζ

B(ζ)Γ(ζ)


t

p
u(ζ)(t − ξ)

ζ− 1
dξ. (8)

ABC
0 D

ℓ
ty(t) � K(t, y(t)). (9)

4. Numerical Approach for
Fractional Derivative

Here is a numerical method that emphasises the fractional
model of HIV infection’s oscillatory behaviour and chaos.
Numerous numerical techniques have been developed and
described to visualize fractional order models. For the
fractional dynamics of HIV, we will use a new scheme
presented in [26] to describe the solution pathway in (2). To
derive the numerical schemes needed for our system (2), we
first adopt the following fractional system.

'en, by the theory of fractional calculus, we get

y(t) − y(0) �
1 − ℓ

ABC(ℓ)
K(t, y(t)) +

ℓ
ABC(ℓ)Γ(ℓ)


t

0
(t − τ)

ℓ− 1
K(τ, y(τ))dτ. (10)
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Here, we take the time t � tn, then the above implies that

y tn(  − y(0) �
1 − ℓ

ABC(ℓ)
K tn−1, y tn−1( (  +

ℓ
ABC(ℓ)Γ(ℓ)


tn

0
tn − τ( 

ℓ− 1
K(τ, y(τ))dτ, (11)

and for tn+1, we get

y tn+1(  − y(0) �
1 − ℓ

ABC(ℓ)
K tn+1, y tn+1( (  +

ℓ
ABC(ℓ)Γ(ℓ)


tn+1

0
tn+1 − τ( 

ℓ− 1
K(τ, y(τ))dτ. (12)

From the above, we can find the difference as follows:

y tn+1(  − y tn(  �
1 − ℓ

ABC(ℓ)
K tn, y tn( (  − K tn−1, y tn−1( (   +

ℓ
ABC(ℓ)Γ(ℓ)

,


tn+1

0
tn+1 − τ( 

ℓ− 1
K(τ, y(τ))dτ − 

tn

0
tn − τ( 

ℓ− 1
K(τ, y(τ))dτ.

(13)

'is further implies that

y tn+1(  − y tn(  �
1 − ℓ

ABC(ℓ)
K tn, y tn( (  − K tn−1, y tn−1( (   + Bℓ,1 − Bℓ,2, (14)

in which

Bℓ,1 �
ℓ

ABC(ℓ)Γ(ℓ)


tn+1

0
tn+1 − τ( 

ℓ− 1
K(τ, y(τ))dτ. (15)

'e next step is to get it using an approximation as
follows:

P(t) �
K tn, yn( 

h
t − tn−1(  −

K tn−1, yn−1( 

h
t − tn( . (16)

We take h � tm − tm−1 and obtain the following:

Table 1: Description of state-variables and input parameters with corresponding values.

Symbols Parameter and state-variable interpretation Values
V0 HIV virus concentration Assumed
Tmax Maximum number of healthy T-cells 1500mm− 3

N 'e quantity of virus generated by infected T-cells Assumed
μV Death rate of HIV virus 2.4 day− 1

μI Death rate of infected T-cells 0.3 day− 1

μT Death rate of healthy T-cells 0.02 day− 1

r Growth rate of healthy T-cells 3 day− 1

s Healthy T-cells supply rate from precursors 0.1mm− 3

I0 T-cells population with infection Assumed
T0 T-cells population in healthy form Assumed
k Infection rate of T-cells by free virus 2.4 × 10− 5 days− 1
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Bℓ,1 �
ℓ

ABC(ℓ)Γ(ℓ)


tn+1

0
tn+1 − τ( 

ℓ− 1 K tn, yn( 

h
t − tn−1(  −

K tn−1, yn−1( 

h
t − tn(  dτ

�
ℓ

ABC(ℓ)Γ(ℓ)


tn+1

0
tn+1 − τ( 

ℓ− 1 K tn, yn( 

h
t − tn−1(  −

K tn−1, yn−1( 

h
t − tn(  dτ,

(17)

which implies that

Bℓ,1 �
ℓK tn, yn( 

ABC(ℓ)Γ(ℓ)h
2ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
  −

ℓK tn−1, yn−1( 

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
 . (18)

In the same way, we can find

Bℓ,2 �
ℓK tn, yn( 

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n

ℓ
−

t
ℓ+1
n

ℓ + 1
  −

K tn−1, yn−1( 

ABC(ℓ)Γ(ℓ)h
. (19)

Next, we have the following:

y tn+1(  − y tn(  �
1 − ℓ

ABC(ℓ)
K tn, y tn( (  − K tn−1, y tn−1( (   +

ℓK tn, yn( 

ABC(ℓ)Γ(ℓ)h
2ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
 

−
ℓK tn−1, yn−1( 

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
  −

ℓK tn, yn( 

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n

ℓ
−

t
ℓ+1
n

ℓ + 1
 

+
K tn−1, yn−1( 

ABC(ℓ)Γ(ℓ)h
.

(20)

'e above gives us

y tn+1(  � y tn(  + K tn, yn( 
1 − ℓ

ABC(ℓ)
+

ℓ
ABC(ℓ)h

2ht
ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
 

−
ℓ

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n

ℓ
−

t
ℓ+1
n

ℓ + 1
  + K tn−1, yn−1( ×,

ℓ − 1
ABC(ℓ)

−
ℓ

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
+

t
ℓ+1

hABC(ℓ)Γ(ℓ)
  .

(21)

'e above approach is a two-step Adams–Bashforth
method for the ABC fractional derivative; this takes into
consideration the kernels nonlinearity, as well as the
Atangana–Baleanu operator’s exponential decay law. Fur-
thermore, we will discuss the convergence and stability of
the suggested numerical approach in the upcoming part. We

conducted numerous simulations for the better conceptu-
alization of the complicated phenomena of HIV infection.
For numerical simulation, the model parameter values and
state-variable initial values are shown in Table 1 which is
utilized for numerical calculations. Figures 1–4 depict the
time series analysis of all the three compartment of the
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proposed system with the variation of the index of memory
ℓ, i.e., ℓ � 0.4, 0.6, 0.8, 1.0 to show the dynamical behaviour
of HIV infection. It has been observed through numerical
outcomes that the parameter ℓ can be used as preventive
parameter. Figures 5–8 depict the chaotic behaviour of our
system (2) with various values of index of memory ℓ. We
noticed that the index of memory ℓ can be also be utilized as
chaotic control parameter. Many scientific and engineering
applications rely heavily on the chaotic behaviour of the

system. It is well known that there is indeed a strong in-
clination to conceive and depict chaotic system behaviour.
'e chaotic modeling validates the feasibility and scalability
of the suggested mathematical model, which can then be
applied towards the novel chaos systems. We showed that
perhaps ℓ had a considerable contribution and may be
utilized as an effective parameter for preventative actions.
Furthermore, we have shown the impact of several input
factors on the dynamics of the system in Figures 9–11.
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Figure 1: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.4.
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Figure 2: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.6.
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Simulations reveal that the suggested numerical scheme is
simple to implement and quick to execute. However, more
study will be required to investigate the effectiveness of this
technique in terms of consistency, accuracy, and computing
cost. In the next step, we will discuss convergence and stability
result of the above numerical method.'e convergence result
of the above method has been given as follows.

Theorem 3. Assume that g be a continuous and bounded
function and x(τ) be the solution of the fractional system as
follows:

ABC
0 D

ϑ
τx(τ) � g(τ, x(τ)), (22)

then the solution of x(τ) is as follows:
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Figure 3: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.8.
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Figure 4: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 1.0.
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Figure 5: Graphical view analysis of the dynamical behaviour of the fractional model (2) to represent its chaotic plot with the index of
memory ϑ � 0.35.
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Figure 6: Graphical view analysis of the chaotic phenomena of the suggested fractional model (2) of HIVwith the index ofmemory ϑ � 0.55.
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Figure 7: Graphical view analysis of the suggested fractional model (2) of HIV to represent its chaotic plot with the index of memory
ϑ � 0.75.
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Figure 8: Graphical view analysis of the time series of the suggested fractional model (2) of HIV to represent its chaotic plot with the index of
memory ϑ � 0.95.
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Figure 9: Graphical view analysis of the suggested fractional model (2) of HIV with the variation of r, i.e., r� 3.0, 3.5, 4.0.
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Figure 10: Graphical view analysis of the time series of the suggested fractional model (2) of HIV with the variation of s, i.e., s� 1.0, 4.0, 7.0.
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in which ‖Hϑ‖∞ <N. Proof. To prove the required result, we proceed in the
following manner:
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Figure 11: Illustration of the time series of the suggested fractional model (2) of HIV with the variation of μI, i.e., μI � 0.2, 0.25, 0.30.
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which is the required result. □

Theorem 4. Assume that g fulfills Lipschitz condition, then
the stability condition for the above numerical scheme in

Atangana–Baleanu fraction framework in Caputo sense is
given by

g τn, xn(  − g τn−1, xn−1( 
����

����∞⟶ 0, (29)
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in which
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As a result, we obtain
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which implies that |g(τn, xn) − g(τn−1, xn−1)| goes to zero as
n goes to∞ and as h tends to zero, then Mn!hn/4ϑ tends to
zero, where M � maxτ∈[0,τn+1]|g(τ, x(τ))|. □

5. Concluding Remarks

HIV/AIDS has a significant impact on economic growth by
limiting the availability of human capital. AIDS is killing a
high number of people in underdeveloped nations due to a
lack of effective prevention, treatment, health care, and
nutrition. 'erefore, it is significant to interrogate the
transmission pathway of HIV to identify the role of different
input factors on the output of infection. In this work, we
structured the dynamics of CD4+ T-cells in HIV infection
through fractional calculus. We presented the proposed
model through Atangana–Baleanu derivative in the Caputo
sense.'e rudimentary properties of fractional calculus have
been introduced for the examination of the system. We
provided a new numerical scheme for addressing the
Atangana–Baleanu fractional derivative to conceptualize the
dynamics of HIV. 'e oscillatory and chaotic plots have
been presented with the variation of different input pa-
rameters. It has been shown that fractional order has an
influence on the chaotic behaviour of the suggested model.
'e memory index ℓ is expected to improve the system and
may have been used as a control parameter. We illustrated
the impact of input parameters r, s, and μI on the con-
centration level of healthy and infected CD4+ T-cells. On the
basis of our results, the most critical factors of the system are
highlighted. We highlighted the influence of different input

parameter on the dynamics of HIV infection. Furthermore,
the convergence and stability result of the system have been
shown. In future research work, we opt to highlight the
influence of time delay on the infection of HIV infection to
highlight the importance of time delay for the control and to
validate our results through experimental data.
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