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In this paper, the operating mechanism of proposed bandpass filters with a single multimode resonator loaded with branches is
introduced. Based on the design procedure, the center frequencies of the proposed bandpass filters can be controlled due to the
design freedom. Meanwhile, the proposed bandpass filters (BPFs) feature compact sizes and small insertion loss. To validate the
design and analysis, a prototype was fabricated and measured with six passbands centered at 1.23/1.76/2.38/4.24/5.23/6.75GHz.
*emeasured result of the fabricated filter agrees well with the simulation, which indicates that the proposed structure can serve as
a potential candidate for multiband BPF designs.

1. Introduction

In the modern multiservice wireless communication system,
developments in microwave multiband bandpass filters
(BPFs) have been gaining much attention for such as GPS,
WLAN, WiMAX, and RFID applications.

In the past, some research was conducted for the design
of multiband BPFs. In [1–6], different quad-band BPFs were
realized based on different approaches, Yan et al. used two
sets of short-stub-loaded E-Type resonators in [1], Bukuru
et al. investigated quad-mode stepped impedance resonator
(QMSIR) in [2], Li et al. realized novel quad-band bandpass
filters on a basis of the multimode resonator (MMR) using
SIRs loaded tapered-line (SIRTL) in [3], Kamma et al. used
T-shaped stubs loaded with a modified ring resonator
(MRR) in [4], Zhang et al. investigated three-layer stacked
structures in [5], Li et al. used two-/tri-section SIRs and
stepped impedance inverters in [6]. And in [7–9], some
quint-band BPFs were achieved using different structures, in
[7], W.Yang used multimode resonators, Liu et al. investi-
gated uniform impedance resonators (UIRs) in [8], Hsu et al.
realized a quint-band BPF using five tri-mode stub-loaded
SIRs in [9]. It is noted that some works were reported for the
case of sext-band application in [10–12], Chen used six pairs

of semilumped resonators to achieve a sext-band BPF in
[10], Hsu et al. used stepped-impedance resonators in [11],
and Ai et al. used a single multimode resonator in [12].
Besides, it is still a challenge to achieve high-performance
multiband BPFs with compact size, closely spaced pass-
bands, low insertion loss, high return loss, and sharp skirt to
satisfy the whole wireless communication system application
demands.

In this paper, miniaturized multiband bandpass filters
using a single multimode resonator loaded with branches are
proposed. To validate the design and analysis, a prototype
filter has been fabricated with six passbands centered at
1.23GHz for GPS, 1.76GHz for GSM, 2.38/5.23GHz for
WiFi, 4.23GHz for digital relay system, and 6.75GHz for RF.
*e proposed filter has a compact size, low insertion loss,
and adjustable frequency response.

2. Filter, Design, and Procedure

What is shown in Figure 1 should be given here. As shown in
Figure 1, θj (j� 1, p1, p2) corresponds to the equivalent
electrical length of the microstrip line, while the charac-
teristic impedance of the microstrip line is represented by Zi
(i� 1, p1, p2). Explain first the reason, then, give the
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conclusion⟶By increasing the length of the open branch
(Z1, θ1), more transmission zeros can be obtained within the
specified frequency range, and these transmission zeros can
be used to realize the multifrequency response of the BPFs.

*e characteristics of multimode resonators are analyzed
by the odd and even mode method. Figure 2(a) shows the
even mode equivalent circuit of symmetrical branch loaded
resonators, while the odd mode equivalent circuit of sym-
metrical branch loaded resonators is shown in Figure 2(b).
Since the transmission zeros are produced when the reso-
nance frequencies satisfy the transverse resonance condi-
tion, the symmetrical branch-loaded resonator needs to
satisfy the following formula:

Im Zl + Zr,e  � 0,

Im Zl + Zr,o  � 0,

Zl �
Zp1Zins cot θp1

jZins + Zp1 cot θp1
, Zins � −jZ1 cot θ1,

Zr,e � −jZp2 cot θp2 , Zr,o � jZp2 tan θp2 .

(1)

When the open branch (Z1, θ1) port produces a virtual
ground effect, the input impedance can meet the condition
Zins � 0. As a result, a set of out-of-band transmission zeros
can be obtained because the signals at the input end cannot
be directly transmitted to the output port and the signals are
all reflected.*e positions of these transmission zeros can be
calculated by (2). By adjusting the out-of-band transmission
zeros fzs of the BPF, the required number of passbands can be
obtained within a specified frequency range.

cot θ1 � 0,

fzs �
nπf0

2θ1
, n � 1, 3, 5....

(2)

Figure 3 presents the equivalent model of the sym-
metrical branch loaded resonator proposed in this paper.
Compared with Figure 1, a short-circuit branch (Zs, θs) is
introduced in the middle of the resonator with the purpose
of improving the S parameter of the multiband BPFs.

By adjusting the characteristic impedance and electrical
length of the microstrip line, three passbands of the BPF are
generated in the range of [0, 7 GHz] through three groups of
resonance points of even mode and odd mode: the first
passband is composed of the fundamental resonance fre-
quency fo1 and fe1, the second passband is composed of the

first harmonic resonance frequency fo2 and fe2, and the third
passband is composed of the first harmonic resonance
frequency fo3 and fe3.

Figure 4 shows the based tri-band equivalent trans-
mission line model for the proposed BPF. It consists of
transmission branches (Zp1, θp1) (Zp2, θp2), an open branch
(Z1, θ1), and a short branch (Zs, θs). *e proposed BPF
shown in Figure 4 can generate three passbands. *e center
frequencies of the three passbands are represented by f1, f2,
and f3, respectively. Ls represent the length of the short
branch (Zs, θs). It can be seen in Figure 5 that fe1, fe2, and fe3
all move to the lower frequency band with the increase of
parameter Ls, while the positions of fo1, fo2, and fo3 remain
unchanged, the passband bandwidth can be changed by
adjusting parameter Ls.

Similarly, in Figure 5(b), L1 represents the length of the
open branch (Z1, θ1). L1 is adjusted to get the center frequency
variation shown in Figure 5(b).With the increase of L1, fo1, fo2,
fo3, fe1, fe2, and fe3 all move to the lower frequency. *e fo3 and
fe3 in the higher frequency move to the lower frequency faster
than other resonance frequencies. *e center frequency can
be adjusted by the fact that the resonance frequency moves at
different rates with the change of L1. To validate the proposed
design flow, an example tri-band BPF is fabricated. As shown
in Figure 6, the measured performances show good agree-
ment with the simulated ones.

By increasing the number of symmetric open branches,
multiple sets of fundamental and higher harmonics can be
superimposed. *e proposed quad-band multimode reso-
nator based on the asymmetric tree structure is composed of
an open branch (Z2, θ2) cascaded in the previous tri-band
multimode resonator filter, as shown in Figure 7.

As shown in Figure 8, when the multimode resonator
has only the open stub1, the length of the open stub1 can
be adjusted to obtain a fundamental resonance at
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Figure 2: Symmetrical branch resonator equivalent circuit. (a)
Even mode circuit; (b) odd mode circuit.
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Figure 3: *e proposed equivalent model of symmetrical branch
loaded resonator.
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1.71 GHz and the center frequency of the first harmonic
passband at 5.14 GHz. When the multimode resonator has
only the open stub2, the length of the open stub2 can be
adjusted to obtain a fundamental resonance at 2.19 GHz
and the center frequency of the first harmonic passband at
6.44 GHz. When the multimode resonator includes both
the stub1 and the stub2, the four passband center fre-
quencies are 1.61 GHz, 2.37 GHz, 5.15 GHz, and
6.87 GHz.

To validate the proposed design flow, an example quad-
band BPF is fabricated. As shown in Figure 9, good
agreements between the measured and simulated perfor-
mances are also observed.

From the previous theoretical analysis, it can be
concluded that the obtained design method of the mul-
tiband BPFs is based on the coupling of fundamental and
high-order harmonics of different branches. For example,
the quad-band BPF is realized by the dual-band generated
by stub1 and the other dual-band generated by stub2. If

stub1 is used to realize tri-band and stub2 is used to realize
dual-band, the quint-band multimode resonator can be
obtained as the model shown in Figure 10.

Similarly, as shown in Figure 11, when the multimode
resonator has only stub1, adjusting the length of stub1 can
achieve the fundamental passband centered at 1.32GHz, the
first harmonic passband centered at 4.01GHz, and the
second harmonic passband centered at 6.54GHz. If there is
only stub2 in the multimode resonator, adjusting the length
of stub2 can obtain the fundamental passband centered at
1.71GHz and the first harmonic passband centered at
5.14GHz. When the multimode resonator includes both
stub1 and stub2, the center frequencies of the five passbands
are 1.27GHz, 1.80GHz, 4.01GHz, 5.31GHz, and 6.82GHz.

As shown in Figure 12, an example quint- band BPF is
fabricated, the measurement performances show good
agreements with the simulation.

Finally, the sext-band multimode resonator based on
the proposed asymmetric tree structure is composed of an
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Figure 4: *e based tri-band equivalent transmission line model for the proposed BPF.
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Figure 5: Variation of frequency with different Ls and L1.
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open branch (Z3, θ3) cascaded in the previous quint-band
multimode resonator filter, as shown in Figure 13.

3. Results and Comparisons

*e structure of the proposed sext-band BPF is shown in
Figure 14. An example sext-band BPF is fabricated on a Rogers
TMM10 (relative dielectric constant εr� 9.20, loss tangent
tanδ � 0.0022) substrate with a thickness of 1.00mm, as shown
in the inset of Figure 12.*e dimension values are summarized
as follows (all in mm): L1� 16.73, L2�12.57, L3� 21.10,
Lp1� 4.01, Lp2�1.99, Ls� 2.01,W� 0.10mm.*e overall size of
the circuit is approximately 0.08λg × 0.07λg, where λg repre-
sents the guided wavelength at the first passband.

Measurement of the fabricated filter is performed using
an Agilent E8363 B network analyzer. Figure 15 shows the
simulated and measured S-parameters of the sext-band BPF,
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Figure 6: Simulated and measured results of tri-band BPF.
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Figure 8:*e |S11| of the proposed BPF composed of stub1 and stub2.
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Figure 9: Simulated and measured results of quad-band BPF.
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and the photograph of the fabricated BPF is also demon-
strated in the inset of Figure 15. *e measured six passbands
are centered at 1.23/1.76/2.38/4.24/5.23/6.75GHz with 3 dB
fractional bandwidth of 29.27%/3.41%/3.78%/5.19%/3.06%/
4.45%. *e minimum insertion losses of each band are 1.52/
1.61/1.43/0.79/0.68/0.87dB.

*e band-to-band isolations are above 70 dB, which
generates sharp and deep rejections between the adjacent
passbands.

*e slight difference between the measured and simu-
lated results may result from the nonuniformity of the
relative permittivity of the substrate, the fabrication toler-
ance, and SMA connectors.

In order to better evaluate the achieved performance,
Table 1 presents a performance comparison of the proposed
sext-band BPF with some previously reported works. *e
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Figure 11: *e |S11| of the proposed BPF composed of stub1 and
stub2.
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Figure 12: Simulated and measured results of quint-band BPF.

Port1 Port2

Z p
1, 
θ p

1

Z p
1, 
θ p

1

(W
p1

, L
p1

)

(W
p1

, L
p1

)

(W1, L1) (W1, L1)

(W
s, 
L s

)

(Wp2, Lp2) (Wp2, Lp2)

Zp2, θp2

Z1, θ1

(W2, L2)

Z2, θ2

(W3, L3)

Z3, θ3

(W3, L3)

Z3, θ3

(W2, L2)

Z2, θ2

Z s
, θ

s

Z1, θ1

Zp2, θp2

Figure 13: *e equivalent transmission line model for the pro-
posed sext-band BPF.

50 Ω 50 Ω

via
Lp1

L1

Ls

L2

L3

Lp2

Figure 14: Structure of the proposed sext-band BPF.

|S11|

|S21|

-70

-60

-50

-40

-30

-20

-10

0

|S
11

| &
 |S

21
| (

dB
)

1 2 3 4 5 6 7 80
Frequency (GHz)

Simulation
Measurement

Figure 15: Simulated and measured results of sext-band BPF.

Discrete Dynamics in Nature and Society 5



proposed sext -band BPF in this paper exhibits compact size,
high selectivity, and a conveniently adjustable frequency
response.

4. Conclusions

*is paper presents miniaturized multiband BPFs by using a
single multimode resonator loaded with branches. *e
proposed multiband BPFs feature very high design freedom
for every single passband. *e simulated and measured
results have good agreement, which shows that the proposed
filters feature compact size and high selectivity. Owing to
these merits, the proposed structure could be a good can-
didate for multiband BPF design.
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