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/is paper investigates the passivity of multiple weighted coupled memristive neural networks (MWCMNNs) based on the
feedback control. Firstly, a kind of memristor-based coupled neural network model with multiple weights is presented for the first
time. Furthermore, a novel passivity criterion for MWCMNNs is established by constructing an appropriate Lyapunov functional
and developing a suitable feedback controller. In addition, with the assistance of some inequality techniques, sufficient conditions
for ensuring the input strict passivity and output strict passivity of MWCMNNs are derived. Finally, the validity of the theoretical
results is verified by a numerical example.

1. Introduction

Neural networks (NNs) have aroused widespread attention
since they have been applied in numerous fields including
machine learning, deep learning, and engineering data
prediction [1–3]. As the fourth two-terminal circuit element,
the memristor was predicted to exist by Chua in 1971, and
the prototype of memristor was obtained by the research
team of HP for the first time [4–6]. Memristor is considered
to be an excellent candidate for imitating biological synapses
in circuit implementation of NNs owing to its characteristics
of nanometer size, high storage capacity, and low energy
consumption [7]. /rough replacing the resistors with
memristors in NNs circuit implementation, a new type of
NN called memristive NN (MNN) has been successfully
introduced [8]. Recently, it is reported that MNNs have
many potential applications in face detection, bio-
engineering, pattern recognition, feature extraction, and
associative memory [9–11]. To our knowledge, these ap-
plications for MNNs were to a great extent from the dy-
namical behaviors of MNNs. Particularly, the stability as
a significant dynamical behavior for MNNs is one of the hot

research topics [12]. Zhang et al. [12] obtained several
sufficient conditions to insure the stability for MNNs.

/e theory of passivity is valid and robust when studying
the stability for nonlinear systems since passivity properties of
a system can keep the internal stability of the system [13–15].
Up to now, a lot of interesting results about passivity of
MNNs have been reported [16–18]. In [16], Meng and Xiang
conducted the passivity analysis for a kind of complex-
valued MNNs. Xiao et al. [17] obtained a new passivity
criterion by utilizing set-valued mapping as well as trans-
forming MNNs into traditional NNs. Based on the Lya-
punov–Krasovskii method, Wu and Zeng [18] acquired an
exponential passivity criterion for MNNs with mixed time-
varying delays.

Complex networks (CNs) have attracted more and more
interests of researchers in recent years, and CNs are ubiq-
uitous in our life, such as communication networks, met-
abolic system networks, and food networks. Coupled NNs
(CNNs) are a special class of CNs, which are composed of
many NNs through mutually coupling [19, 20]. Considering
the fact that the passivity of CNNs has been broadly applied
to many fields including chaos generators and brain science.
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Consequently, it is interesting to research the passivity for
coupled MNNs (CMNNs) [21]. In [21], Yue et al. in-
vestigated the passivity of delayed CMNNs with reaction-
diffusion terms with the aid of two pinning control schemes
and some inequality techniques.

It is well known that most of networks in the practical
world are supposed to be described as multiple weighted
CNs, such as human social networks and public transport
networks. However, only a few researchers have discussed
multiple weighted CNNs (MWCNNs) in recent years
[22]. Chen et al. [22] dealt with the dissipativity problem
of MWCNNs via dynamic event-triggered pinning con-
trol. It should be noted that the passivity of multiple
weighted CMNNs has only been discussed by few re-
searchers so far.

It is worth noticing that the passivity of MNNs usually
cannot be achieved on their own [23]. In consequence, it is
essential to make use of some control strategies to make
MNNs passive [24, 25]. To ensure exponential synchroni-
zation for MNNs, Lin et al. [24] developed a nonlinear
feedback controller. Zhang et al. [25] derived some sufficient
conditions for achieving finite time synchronization based
on the feedback control. To our knowledge, the problem of
passivity for multiple weighted CMNNs (MWCMNNs)
under the feedback control has never been considered.

Motivated by the above analyses, this paper considers the
passivity of MWCMNNs via the feedback control. /e
primary contributions of this paper are displayed as follows:

(1) A kind of memristor-based coupled neural network
model with multiple weights is firstly proposed.

(2) It is first time that the feedback control strategy is
adopted to ensure the passivity, output strict pas-
sivity, and input strict passivity of MWCMNNs.

(3) Several new passivity criteria are established
according to linear matrix inequalities that can be
checked through utilizing standard numerical
packages.

2. Preliminaries

Let N � 1, 2, . . . , N{ },N � 1, 2, . . .{ }, Rm×n be the set of real
matrices of order m × n. Rn×n∍Γ > 0 (Rn×n∍Γ< 0) stands for
that the matrix Γ is symmetric and positive (negative)
definite. Rn×n∍Γ⩾0 (Rn×n∍Γ⩽0) stands for that the matrix Γ
is symmetric and semipositive (seminegative) definite. ΓT
represents the transpose of matrix Γ. For any
χ(t) � (χ1(t), χ2(t), . . . , χn(t)) ∈ Rn, ‖χ(t)‖2 �

��������
χT(t)χ(t)

􏽱
.

λm(Γ) and λM(Γ) mean the minimal as well as the maximal
eigenvalue of matrix Γ, respectively.

Definition 1 (see [26]). A system with supply rateW(u, y) is
dissipative if there is a nonnegative storage function
V: [0, +∞)⟶ [0, +∞), such that

􏽚
tε

t0

W(u(t), y(t))dt ≥V tε( 􏼁 − V t0( 􏼁, (1)

for any t0, tε ∈ [0, +∞) and tε ≥ t0, where Rw∍y(t),
Rm∍u(t) are the output and input of the system,
respectively.

Definition 2 (see [27]). If a system is dissipative and
satisfying

W(u(t), y(t)) � y
T
(t)Zu(t), (2)

in which Z ∈ Rw×m is a constant matrix, the system can
achieve the passivity.

Definition 3 (see [27]). If a system is dissipative and
satisfying

W(u(t), y(t)) � y
T

(t)Zu(t) − y
T
(t)Φ1y(t) − u

T
(t)Φ2u(t),

(3)

in which Z ∈ Rw×m, 0≤Φ1 ∈ Rw×w, 0≤Φ2 ∈ Rm×m, and
λm(Φ1) + λm(Φ2)> 0, then the system can achieve the strict
passivity.

If 0≤Φ1, the system is output-strictly passive, and if
0≤Φ2, the system is input-strictly passive.

3. Passivity of MWCMNNs

3.1. Network Model. /e model of coupled neural network
with multiple weights is given by

_xi(t) � − Kxi(t) + Af xi(t)( 􏼁 + 􏽘
s

r�1
􏽘

N

j�1
drG

r
ijH

r
xj(t)

+ J + Cui(t),

(4)

where i � 1, 2, . . . , N, xi(t) � (xi1(t), xi2(t), . . . ,

xin(t))T ∈ Rn indicates the state vector of the ith node;
0<K � diag (k1, k2, . . . , kn) ∈ Rn×n; f(xi(t)) �

(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T ∈ Rn, and fρ(·)

means the activation function of ρth neuron; Rn×n∍A de-
notes a constant matrix; J � (J1, J2, . . . , Jn)T ∈ Rn is the
constant external input vector; C ∈ Rn×m is a constant
matrix; ui(t) � (ui1(t), ui2(t), . . . , uim(t))T ∈ Rm denotes
the external input vector; 0<dr stands for the coupling
strength of the rth coupling form; Rn×n∍Hr � diag
(hr

1, hr
2, . . . , hr

n)> 0 means the inner coupling matrix in the
rth coupling form; Gr � (Gr

ij)N×N is the external coupling
matrix for the rth coupling form, where Gr

ij satisfies the
following conditions:

G
r
ij � G

r
ji ≥ 0, i≠ j;

G
r
ii � − 􏽘

N

j�1
j≠i

G
r
ij,

(5)

if there is a link between node i and node j, then Gr
ij > 0 or

else Gr
ij � 0.

Consider the following multiple weighted coupled
memristive neural network (MWCMNN) consisting of N

identical MNNs with multiple weights:
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_xi(t) � − Kxi(t) + A xi(t)( 􏼁f xi(t)( 􏼁

+ B xi(t)( 􏼁g xi(t − τ)( 􏼁 + Cui(t)

+ 􏽘
s

r�1
􏽘

N

j�1
drG

r
ijH

r
xj(t)

+ J + ψi(t), i � 1, 2, . . . , N,

(6)

where K, J, xi(t), dr, Gr
ij, Hr, C, ui(t), f(xi(t)) have the

same meanings as in network (1); A(xi(t)) � (aηρ (xiη
(t)))n×n, B(xi(t)) � (bηρ(xiη(t)))n×n, η � 1, 2, . . . , n, ρ �

1, 2, . . . , n; xiη(t) ∈ R stands for the voltage for capacitorCη;
xi(t − τ) � (xi1(t − τ), xi2 (t − τ), . . . , xin(t − τ))T ∈ Rn; g

(xi(t − τ)) � (g1 (xi1(t − τ)), g2 (xi2(t − τ)), . . . , gn(xin

(t − τ)))T ∈ Rn, and gρ(·) means the activation function of
ρth neuron; τ indicates the propagation delay; ψi(t) ∈ Rn is
the control input; and aηρ(xiη(t))bηρ(xiη(t)) are described
by

aηρ xiη(t)􏼐 􏼑 �
Wηρ

Cη
× signηρ,

bηρ xiη(t)􏼐 􏼑 �
Mηρ

Cη
× signηρ,

signηρ �

1, η≠ ρ,

− 1, η � ρ,

⎧⎪⎨

⎪⎩

(7)

where Wηρ and Mηρ represent the memductances of
memristors Aηρ and Bηρ, respectively. Aηρ indicates the
memristor between xiη(t) and the function fρ(xiρ(t)),
andBηρ indicates the memristor between xiη(t) and the
function gρ(xiρ(t − τ)). In the light of the traits of voltage
and current of memristor, we can obtain that

aηρ xiη(t)􏼐 􏼑 �
􏽢aηρ, xiη(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ψη,

�aηρ, xiη(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>Ψη,

⎧⎪⎨

⎪⎩

bηρ xiη(t)􏼐 􏼑 �

􏽢bηρ, xiη(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ψη,

�bηρ, xiη(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>Ψη,

⎧⎪⎨

⎪⎩

(8)

where the switching jumps Ψη > 0; �aηρ, 􏽢aηρ,
�bηρ,

􏽢bηρ are
constants, η, ρ � 1, 2, . . . , n.

Define aηρ � |�aηρ − 􏽢aηρ|, A � (aηρ)n×n, 􏽥aηρ � max |�aηρ|,􏽮

|􏽢aηρ|},
􏽥A � diag (􏽐

n
ρ�1 􏽥a2

1ρ, 􏽐
n
ρ�1 􏽥a2

2ρ, . . . , 􏽐
n
ρ�1 􏽥a2

nρ), bηρ � |�bηρ−

􏽢bηρ|, B � (bηρ)n×n,
􏽥bηρ � max |�bηρ|, |􏽢bηρ|􏽮 􏽯, 􏽥B � diag (􏽐

n
ρ�1

􏽥b
2
1ρ,

􏽐
n
ρ�1

􏽥b
2
2ρ, . . . , 􏽐

n
ρ�1

􏽥b
2
nρ).

Remark 1. Considering the fact that plenty of networks in
the actual world ought to be described by CNs with multiple
weights, for instance, human social networks and public
transport networks. Nevertheless, only some researchers
have investigated the passivity of MWCNNs [22]. /erefore,
it is interesting to discuss the passivity of MWCMNNs. In
this paper, a kind of memristor-based coupled neural net-
work model with multiple weights is proposed.

/roughout this paper, we put forward the following
assumption.

Assumption 1. If there are positive constants λρ, μρ, 􏽥λρ, and
􏽥μρ, ρ � 1, 2, . . . , n, such that

fρ δ1( 􏼁 − fρ δ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ λρ δ1 − δ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, fρ(δ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽥λρ,

gρ δ1( 􏼁 − gρ δ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ μρ δ1 − δ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, gρ(δ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽥μρ,
(9)

for any δ, δ1, δ2 ∈ R.
Consider that x∗ � (x∗1 , x∗2 , . . . , x∗n )T ∈ Rn is an equi-

librium point for network (6), then

− Kx
∗

+ A x
∗

( 􏼁f x
∗

( 􏼁 + B x
∗

( 􏼁g x
∗

( 􏼁 + J � 0. (10)

Letting error vector zi(t) � xi(t) − x∗, we get

_zi(t) � − Kzi(t) + A xi(t)( 􏼁f zi(t)( 􏼁

+ A xi(t)( 􏼁 − A x
∗

( 􏼁􏼂 􏼃f x
∗

( 􏼁

+ B xi(t)( 􏼁g zi(t − τ)( 􏼁

+ B xi(t)( 􏼁 − B x
∗

( 􏼁􏼂 􏼃g x
∗

( 􏼁 + Cui(t)

+ 􏽘
s

r�1
􏽘

N

j�1
drG

r
ijH

r
zj(t) + ψi(t),

(11)

where

i � 1, 2, . . . , N, zi(t − τ) � zi1(t − τ), zi2(t − τ), . . . , zin(t − τ)( 􏼁
T

,

f zi(t)( 􏼁 � f xi(t)( 􏼁 − f x
∗

( 􏼁, g zi(t − τ)( 􏼁 � g xi(t − τ)( 􏼁 − g x
∗

( 􏼁.
(12)

According to the network (11), a feedback controller is
developed as follows:

ψi(t) � − sign zi(t)( 􏼁(A􏽥λ + B􏽥μ), (13)

where 􏽥λ � (􏽥λ1, 􏽥λ2, . . . , 􏽥λn)T, 􏽥μ � (􏽥μ1, 􏽥μ2, . . . , 􏽥μn)T, sign
(zi(t)) � diag(sign(zi1(t)), sign(zi2 (t)), . . . , sign(zin(t))),

i � 1, 2, . . . , N.
From (11) and (13), one has
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_zi(t) � − Kzi(t) + A xi(t)( 􏼁f zi(t)( 􏼁

+ A xi(t)( 􏼁 − A x
∗

( 􏼁􏼂 􏼃f x
∗

( 􏼁

+ B xi(t)( 􏼁g zi(t − τ)( 􏼁

+ B xi(t)( 􏼁 − B x
∗

( 􏼁􏼂 􏼃g x
∗

( 􏼁 + Cui(t)

+ 􏽘

s

r�1
􏽘

N

j�1
drG

r
ijH

r
zj(t) − sign zi(t)( 􏼁(A􏽥λ + B􏽥μ).

(14)

/e output vector yi(t) ∈ Rw of the network (14) is given
by

yi(t) � Q1zi(t) + Q2ui(t), (15)

in which Q1 ∈ Rw×n and Q2 ∈ Rw×m.
For convenience, we denote

∧ � diag λ21, λ
2
2, . . . , λ2n􏼐 􏼑,

M � diag μ21, μ
2
2, . . . , μ2n􏼐 􏼑,

z(t) � z
T
1 (t), z

T
2 (t), . . . , z

T
N(t)􏼐 􏼑

T
,

u(t) � u
T
1 (t), u

T
2 (t), . . . , u

T
N(t)􏼐 􏼑

T
,

y(t) � y
T
1 (t), y

T
2 (t), . . . , y

T
N(t)􏼐 􏼑

T
.

(16)

3.2. Passivity Criteria

Theorem 1. If there is a matrix F ∈ RwN×mN satisfying

Ξ1 Ξ2

ΞT2 −
1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≤ 0, (17)

where Ξ1 � IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B) +

2􏽐
s
r�1 drG

r ⊗Hr, Ξ2 � IN ⊗C − 1/2(IN ⊗QT
1 )F, then the

network (14) is passive.

Proof. Select the following Lyapunov functional for the
network (14):

V(t) � 􏽘
N

i�1
z

T
i (t)zi(t) + 􏽘

N

i�1
􏽚

t

t− τ
z

T
i (s)Mzi(s) ds. (18)

/en, one has

D
+
V(t) � 􏽘

N

i�1
z

T
i (t)Mzi(t) − 􏽘

N

i�1
z

T
i (t − τ)Mzi(t − τ)

+ 2􏽘
N

i�1
z

T
i (t) _zi(t)

≤ 2􏽘
N

i�1
z

T
i (t) − Kzi(t) + A xi(t)( 􏼁f zi(t)( 􏼁􏼈

+ A xi(t)( 􏼁 − A x
∗

( 􏼁􏼂 􏼃f x
∗

( 􏼁

+ B xi(t)( 􏼁g zi(t − τ)( 􏼁

+ B xi(t)( 􏼁 − B x
∗

( 􏼁􏼂 􏼃g x
∗

( 􏼁 + Cui(t)

+ 􏽘
s

r�1
􏽘

N

j�1
drG

r
ijH

r
zj(t)

− sign zi(t)( 􏼁(A􏽥λ + B􏽥μ)􏽯

+ 􏽘
N

i�1
z

T
i (t)Mzi(t)

− 􏽘
N

i�1
z

T
i (t − τ)Mzi(t − τ).

(19)

Based on Assumption 1, one can obtain

2z
T
i (t) A xi(t)( 􏼁 − A x

∗
( 􏼁􏼂 􏼃f x

∗
( 􏼁

� 2 􏽘
n

η�1
􏽘

n

ρ�1
ziη(t) aηρ xiη(t)􏼐 􏼑 − aηρ x

∗
η􏼐 􏼑􏼐 􏼑fρ x

∗
ρ􏼐 􏼑

≤ 2 􏽘
n

η�1
􏽘

n

ρ�1
ziη(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �aηρ − 􏽢aηρ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽥λρ

� 2 z
T
i (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌A
􏽥λ.

(20)

Similarly, one has

2z
T
i (t) B xi(t)( 􏼁 − B x

∗
( 􏼁􏼂 􏼃g x

∗
( 􏼁

� 2 􏽘
n

η�1
􏽘

n

ρ�1
ziη(t) bηρ xiη(t)􏼐 􏼑 − bηρ x

∗
η􏼐 􏼑􏼐 􏼑gρ x

∗
ρ􏼐 􏼑

≤ 2 􏽘
n

η�1
􏽘

n

ρ�1
ziη(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
�bηρ − 􏽢bηρ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽥μρ

� 2 z
T
i (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌B􏽥μ.

(21)

It can be obtained from Lemma 2.1in [28] and As-
sumption 1 that
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2z
T
i (t)A xi(t)( 􏼁f zi(t)( 􏼁

≤ z
T
i (t)A xi(t)( 􏼁A

T
xi(t)( 􏼁zi(t) + f

T
zi(t)( 􏼁f zi(t)( 􏼁

� 􏽘
n

η�1
􏽘

n

ρ�1
z
2
iη(t)a

2
ηρ xiη(t)􏼐 􏼑 + 􏽘

n

ρ�1
f
2
ρ ziρ(t)􏼐 􏼑

≤ 􏽘
n

η�1
􏽘

n

ρ�1
z
2
iη(t)􏽥a

2
ηρ + 􏽘

n

ρ�1
λ2ρz

2
iρ(t)

� z
T
i (t)􏽥Azi(t) + z

T
i (t)∧zi(t).

(22)

Similarly, we get

2z
T
i (t)B xi(t)( 􏼁g zi(t − τ)( 􏼁

≤ z
T
i (t)B xi(t)( 􏼁B

T
xi(t)( 􏼁zi(t)

+ g
T

zi(t − τ)( 􏼁g zi(t − τ)( 􏼁

� 􏽘
n

η�1
􏽘

n

ρ�1
z
2
iη(t)b

2
ηρ xiη(t)􏼐 􏼑 + 􏽘

n

ρ�1
g
2
ρ ziρ(t − τ)􏼐 􏼑

≤ 􏽘
n

η�1
􏽘

n

ρ�1
z
2
iη(t)􏽥b

2
ηρ + 􏽘

n

ρ�1
μ2ρz

2
iρ(t − τ)

� z
T
i (t)􏽥Bzi(t) + z

T
i (t − τ)Mzi(t − τ).

(23)

According to (19)–(23), one gets

D
+
V(t)≤ 􏽘

N

i�1
z

T
i (t)(− 2K + ∧ + 􏽥A + M + 􏽥B)zi(t)

+ 2􏽘

N

i�1
z

T
i (t)Cui(t)

+ 2􏽘
s

r�1
􏽘

N

i�1
􏽘

N

j�1
drG

r
ijz

T
i (t)H

r
zj(t)

� 􏽘
N

i�1
z

T
i (t)(− 2K + ∧ + 􏽥A + M + 􏽥B)zi(t)

+ 2􏽘
N

i�1
z

T
i (t)Cui(t)

+ 2􏽘
s

r�1
drz

T
(t) G

r ⊗H
r

( 􏼁z(t)

� z
T
(t) IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B)􏽨

+2􏽘

s

r�1
drG

r ⊗H
r⎤⎦z(t)

+ 2z
T
(t) IN ⊗C( 􏼁u(t).

(24)

Further, one obtains

D
+
V(t) − y

T
(t)Fu(t)

≤ z
T
(t) IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B)􏽨

+2􏽘

s

r�1
drG

r ⊗H
r⎤⎦z(t)

+ z
T
(t) 2IN ⊗C − IN ⊗Q

T
1􏼐 􏼑F􏽨 􏽩u(t)

− u
T
(t)

1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩􏼚 􏼛u(t)

� ϑT
(t)

Ξ1 Ξ2

ΞT2 −
1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ϑ(t),

(25)

where ϑ(t) � (zT(t), uT(t))T.
From (17), one can derive

y
T
(t)Fu(t) ≥D

+
V(t). (26)

By (26), one has

􏽚
tε

t0

y
T
(s)Fu(s)ds ≥V tε( 􏼁 − V t0( 􏼁, (27)

for any t0, tε ∈ [0, +∞) and tε ≥ t0. □

Theorem 2. If there exist matrices F ∈ RwN×mN and
0<L1 ∈ RmN×mN satisfying

Ξ1 Ξ2

ΞT2 −
1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩 + L1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≤ 0, (28)

where Ξ1 � IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B) +2􏽐
s
r�1 drG

r ⊗
Hr, Ξ2 � IN ⊗C − 1/2(IN ⊗QT

1 )F, then the network (14) is
input-strictly passive.

Proof. For the network (14), choosing the identical Lya-
punov functional as (18), then one can obtain

D
+
V(t) − y

T
(t)Fu(t) + u

T
(t)L1u(t)

≤ z
T
(t) IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B)􏽨

+2􏽘
s

r�1
drG

r ⊗H
r⎤⎦z(t)

+ z
T
(t) 2IN ⊗C − IN ⊗Q

T
1􏼐 􏼑F􏽨 􏽩u(t)

− u
T
(t)

1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩 − L1􏼚 􏼛u(t)

� ϑT
(t)

Ξ1 Ξ2

ΞT2 −
1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩 + L1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ϑ(t),

(29)

where ϑ(t) � (zT(t), uT(t))T.
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From (28), we can get

y
T
(t)Fu(t) − u

T
(t)L1u(t)≥D

+
V(t). (30)

By (30), one has

􏽚
tε

t0

y
T
(s)Fu(s) − u

T
(s)L1u(s)􏼐 􏼑ds ≥V tε( 􏼁 − V t0( 􏼁, (31)

for any t0, tε ∈ [0, +∞) and tε ≥ t0. □

Theorem 3. If there exist matrices F ∈ RwN×mN and
0<L2 ∈ RwN×wN satisfying

Ξ3 Ξ4
ΞT4 Ξ5

􏼠 􏼡≤ 0, (32)

where

Ξ3 � IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B) + 2􏽘

s

r�1
drG

r ⊗H
r

+ IN ⊗Q
T
1􏼐 􏼑L2 IN ⊗Q1( 􏼁,

Ξ4 � IN ⊗C −
1
2

IN ⊗Q
T
1􏼐 􏼑F + IN ⊗Q

T
1􏼐 􏼑L2 IN ⊗Q2( 􏼁,

Ξ5 � −
1
2

IN ⊗Q
T
2􏼐 􏼑F + F

T
IN ⊗Q2( 􏼁􏽨 􏽩 + IN ⊗Q

T
2􏼐 􏼑L2 IN ⊗Q2( 􏼁,

(33)

then the network (14) is output-strictly passive. Proof. For the network (14), choosing the identical Lya-
punov functional as (18), then we can derive

D
+
V(t) − y

T
(t)Fu(t) + y

T
(t)L2y(t)

≤ z
T
(t) IN ⊗ (− 2K + ∧ + 􏽥A + M + 􏽥B)􏽨

+ 2􏽘
s

r�1
drG

r ⊗H
r

+ IN ⊗Q
T
1􏼐 􏼑L2 IN ⊗Q1( 􏼁⎤⎦z(t)

+ z
T
(t) 2IN ⊗C − IN ⊗Q

T
1􏼐 􏼑F􏽨

+ 2 IN ⊗Q
T
1􏼐 􏼑L2 IN ⊗Q2( 􏼁􏽩u(t)

− u
T
(t)

1
2

IN ⊗Q
T
2 􏼑F + F

T
IN ⊗Q2(􏼐 􏼑􏽨 􏽩􏼚

− IN ⊗Q
T
2􏼐 􏼑L2 IN ⊗Q2( 􏼁􏽯u(t)

� ϑT
(t)

Ξ3 Ξ4

ΞT4 Ξ5
⎛⎝ ⎞⎠ϑ(t),

(34)

where ϑ(t) � (zT(t), uT(t))T.
From (32), one can get

y
T
(t)Fu(t) − y

T
(t)L2y(t)≥D

+
V(t). (35)

By (35), one has

􏽚
tε

t0

y
T
(s)Fu(s) − y

T
(s)L2y(s)􏼐 􏼑ds ≥V tε( 􏼁 − V t0( 􏼁, (36)

for any t0, tε ∈ [0, +∞) and tε ≥ t0. □

Remark 2. It is a key issue that NNs are unable to achieve the
passivity by themselves in some circumstances [23]. As
a consequence, it is necessary to utilize an appropriate
control method to make NNs passive. For all we know, the
passivity problem of MWCMNNs via feedback control has
not been researched. In the above discussion, with the help
of a developed feedback controller, several criteria are
established to ensure that the proposed network is passive,
output-strictly passive, and input-strictly passive,
respectively.
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4. Numerical Example

Example 1. /e MWCMNN is considered as follows:

_xi(t) � − Kxi(t) + A xi(t)( 􏼁f xi(t)( 􏼁

+ B xi(t)( 􏼁g xi(t − τ)( 􏼁 + Cui(t)

+ 􏽘
3

r�1
􏽘

6

j�1
drG

r
ijH

r
xj(t) + J + ψi(t),

(37)

in which i � 1, 2, . . . , 6, fρ(δ) � gρ(δ) � 1/8(|δ + 1|

− |δ − 1|), ρ � 1, 2, 3, K � diag (1.6, 2.1, 2.6), τ � 1, J �

(0, 0, 0)T, d1 � 0.1, d2 � 0.2, d3 � 0.3, H1 � diag (0.3, 0.6,

0.4), H2 � diag (0.5, 0.6, 0.2), H3 � diag (0.6, 0.5, 0.3), and
the matrices G1, G2, G3, C, A(xi(t)), B(xi(t)) are chosen as
follows:

G
1

�

− 0.2 0 0.1 0 0.1 0

0 − 0.4 0 0.2 0.1 0.1

0.1 0 − 0.5 0 0.2 0.2

0 0.2 0 − 0.5 0.1 0.2

0.1 0.1 0.2 0.1 − 0.7 0.2

0 0.1 0.2 0.2 0.2 − 0.7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G
2

�

− 0.3 0 0.1 0 0.1 0.1

0 − 0.5 0 0.2 0.1 0.2

0.1 0 − 0.4 0 0.3 0

0 0.2 0 − 0.6 0.2 0.2

0.1 0.1 0.3 0.2 − 0.9 0.2

0.1 0.2 0 0.2 0.2 − 0.7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G
3

�

− 0.4 0.1 0.1 0 0.1 0.1

0.1 − 0.4 0 0.1 0.2 0

0.1 0 − 0.7 0.2 0.3 0.1

0 0.1 0.2 − 0.5 0.1 0.1

0.1 0.2 0.3 0.1 − 1.0 0.3

0.1 0 0.1 0.1 0.3 − 0.6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C �

0.3 0.6

0.3 0.1

0.2 0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(38)

a11 xi1(t)( 􏼁 �
− 0.20, |xi1(t)|≤ 1,

− 0.36, |xi1(t)|> 1,
􏼨

a12 xi1(t)( 􏼁 �
0.43, |xi1(t)|≤ 1,

− 0.20, |xi1(t)|> 1,
􏼨

a13 xi1(t)( 􏼁 �
− 0.20, |xi1(t)|≤ 1,

0.32, |xi1(t)|> 1,
􏼨

a21 xi2(t)( 􏼁 �
0.47, |xi2(t)|≤ 1,

− 0.30, |xi2(t)|> 1,
􏼨

a22 xi2(t)( 􏼁 �
− 0.53, |xi2(t)|≤ 1,

0.40, |xi2(t)|> 1,
􏼨

a23 xi2(t)( 􏼁 �
0.33, |xi2(t)|≤ 1,

− 0.66, |xi2(t)|> 1,
􏼨

a31 xi3(t)( 􏼁 �
0.56, |xi3(t)|≤ 1,

0.40, |xi3(t)|> 1,
􏼨

a32 xi3(t)( 􏼁 �
0.20, |xi3(t)|≤ 1,

− 0.42, |xi3(t)|> 1,
􏼨

a33 xi3(t)( 􏼁 �
− 0.45, |xi3(t)|≤ 1,

0.48, |xi3(t)|> 1,
􏼨

b11 xi1(t)( 􏼁 �
0.58, |xi1(t)|≤ 1,

− 0.49, |xi1(t)|> 1,
􏼨

b12 xi1(t)( 􏼁 �
− 0.66, |xi1(t)|≤ 1,

− 0.22, |xi1(t)|> 1,
􏼨

b13 xi1(t)( 􏼁 �
0.38, |xi1(t)|≤ 1,

0.53, |xi1(t)|> 1,
􏼨

b21 xi2(t)( 􏼁 �
− 0.32, |xi2(t)|≤ 1,

0.28, |xi2(t)|> 1,
􏼨

b22 xi2(t)( 􏼁 �
0.40, |xi2(t)|≤ 1,

0.32, |xi2(t)|> 1,
􏼨

b23 xi2(t)( 􏼁 �
− 0.56, |xi2(t)|≤ 1,

− 0.30, |xi2(t)|> 1,
􏼨

b31 xi3(t)( 􏼁 �
0.24, |xi3(t)|≤ 1,

− 0.36, |xi3(t)|> 1,
􏼨

b32 xi3(t)( 􏼁 �
0.34, |xi3(t)|≤ 1,

0.18, |xi3(t)|> 1,
􏼨

b33 xi3(t)( 􏼁 �
0.46, |xi3(t)|≤ 1,

− 0.55, |xi3(t)|> 1.
􏼨

(39)

Obviously, fρ(·) as well as gρ(·) satisfy Assumption 1
with λρ � 􏽥λρ � 0.25 and μρ � 􏽥μρ � 0.25. Besides, R3∍x∗ �

(0, 0, 0)T is an equilibrium point of the isolated node for
MWCMNN (37).

/e output vector yi(t) ∈ R3 is chosen as follows:

yi(t) � Q1zi(t) + Q2ui(t), i � 1, 2, . . . , 6, (40)

in which
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Q1 �

0.4 0.3 0.2

0.1 0.5 0.3

0.6 0.4 0.6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Q2 �

0.3 0.4

0.2 0.5

0.6 0.1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(41)

Case 1. /e following matrix F which satisfies (17) can be
derived with the assistance of the MATLAB YALMIP
Toolbox:

F � I6 ⊗

− 0.6168 8.0766

− 1.6951 0.2803

4.1206 − 3.0097

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (42)

In accordance with /eorem 1, the MWCMNN (37) is
passive via the controller (13).

Case 2. /e following matrices F and L1 which satisfy (28)
can be derived with the assistance of the MATLAB YALMIP
Toolbox:

F � I6 ⊗

− 0.2914 12.7012

− 2.1342 1.2881

4.8077 − 5.9296

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

L1 � I6 ⊗
1.1852 − 0.0482

− 0.0482 2.5658
􏼠 􏼡.

(43)

By /eorem 2, the MWCMNN (37) is input-strictly
passive via the controller (13).

Case 3. /e following matrices F and L2 which satisfy (32)
can be derived with the assistance of the MATLAB YALMIP
Toolbox:

F � I6 ⊗

− 1.4129 6.4117

− 0.9625 1.8288

5.2249 − 1.8118

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

L2 � I6 ⊗

2.2956 − 0.2844 − 0.6467

− 0.2844 2.4627 − 0.4603

− 0.6467 − 0.4603 1.8159

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(44)

On account of /eorem 3, the MWCMNN (37) is
output-strictly passive via the controller (13). Figure 1 ex-
hibits the simulation results.

5. Conclusion

It is the first time that the passivity of MWCMNNs has been
discussed in this paper. Based on the Lyapunov stability
theory, feedback control theory, and functional differential
equations, several novel criteria have been set up to guar-
antee that the considered network is passive, output-strictly
passive, and input-strictly passive. Finally, one numerical
simulation example has been presented to demonstrate the
effectiveness of the theoretical results. In the future work, the
investigation of the synchronization and passivity for
multiple weighted CMNNs with time-varying delays via
adaptive control will be considered.
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