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Electronic power converters are in a state of exhibiting some complex features which can be in�uenced by the converter’s
structure parameters and load, as well as its pulse period. In this paper, we propose to investigate these phenomena occurring in
the dc/dc buck converter by carrying out the dynamics of the said system when it exhibits the �ngerprints of frequency-
dependent pinched hysteresis loops. �e essential part of this study is consecrated to the nonlinear dynamics when the
converter load is memristive. Under two kinds of switch states, the independent nonlinear models and equations are derived
which provide a complete dynamics description of the system under investigation. �e dynamics analysis is performed by
making use of bifurcation tools, phase portraits, and two parameters Lyapunov diagrams showing that the system depicts very
rich and striking behaviors such as periodic orbits, period-doubling bifurcation, quasiperiodicity, chaos, and pinched hysteresis
loops of the memristive load. Finally, the numerical simulation results are in almost perfect agreement with the analog result
obtained with PSIM. �e results obtained in this work have not yet been reported in the literature to the best of our knowledge
and thus deserve dissemination.

1. Introduction

Dc/dc power converters are considered as the most vital
empowering devices of electrical and electronic engineering
as they act as a bu�er between a power source of electronic
equipment and a load [1]. �ese devices are used to convert
an unregulated dc voltage to a regulated or variable dc
output voltage by stockpiling the input energy momentarily
and debit the energy to the output stage to ensure adequate
current and voltage regulation. �ey are also known to have
a signi�cant variety of complex nonlinear behaviors such as
subharmonic oscillations bifurcation phenomena that can
lead to chaotic phenomena, and period-1 oscillations, due to

switching actions and feedback control. We recall that the
nonlinear dynamics have been experimentally observed in
di�erent types of dc/dc buck converters where there are a
series of modulation strategies, such as current-mode
control [2, 3], voltage-mode control [4, 5], PWM voltage-
current hybrid control [6–10], hysteresis-current or -voltage
control [10, 11], one-cycle control [12, 13], and model
predictive control [14–16]. Unfortunately, the nonlinear
switching of power converters can put their stability at risk
and make them prone to exhibit various nonlinear instable
phenomena. �is can have harmful e�ects on the converter
since stability and e�ciency are two fundamental criteria for
the design of these converters. It is therefore imperative to
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understand and establish the mechanism of formation of
various complex phenomena occurring in the buck con-
verters when the circuit parameters, circuits topologies,
control schemes, and load change.

Many researchers investigated the dynamic analysis of
dc/dc converters according to the system parameters and
loads in the literature. Several types of load are reported such
as capacitive voltage load [17–19], the linear load [20–24],
and the constant current load [25, 26]. )e complete dy-
namic of the dc/dc converter is determined by the type of the
load which leads to various complex phenomena with re-
spect to different switching modes. For the sake of brevity,
we mention the chaos issue, quasiperiodicity, and some
stringent behavior such as the coexistence of attractors and
pulse bursting, etc (the reader is referring to References
[17, 19, 27] and the references therein). Other important
characteristics such as chaos transition in buck-boost [28]
and hidden attractors in multilevel dc/dc converters have
been investigated by Zhusubaliyeu and Wang [29], re-
spectively. )e dynamic modeling and analysis of the bi-
directional dc/dc boost-buck converter for renewable energy
applications were presented by Spier et al. [30], while Kamal
and coworkers developed a buck-boost converter small
signal model: dynamic analysis under system uncertainties
[31]. Recently, the study of complex dynamics in dc/dc boost
converter with dspace-based real-time controller is pre-
sented by Ghosh et al. [32]. Another relevant work is
proposed by Mandal et al. in which the modeling and
analysis of complex dynamics for dspace controlled closed-
loop dc/dc boost converter is investigated. Despite extensive
investigations on the complex behavior of the basic dc/dc
topology converters over the past decade [33], such phe-
nomena in the resonant dc/dc converters with memristive
load issues remain largely unexplored in the buck converter
which still remains challenging and thus deserves more
dissemination.

Motivated by the pioneer works of Zhang and Bao
dealing with the dynamical behaviors and circuit experi-
ments of the switching dc/dc boost converter have been
efficiently studied [34]. In addition, the dynamical effects of
memristive load on peak current mode buck-boosts
witching converter have been considered [35] which shows
that the memristors can be applied to create very complex
dynamics (rich texts are provided in References [36, 37]).
Due to various applications of this device, it is very im-
portant to demonstrate that the current-mode-controlled
buck converter with memristance load has a large impact on
the exhibited nonlinear dynamics such as chaotic and
subharmonic oscillations. We then investigate in this paper
the nonlinear dynamical behaviors, i.e., chaotic and sub-
harmonic oscillations, of the dc/dc buck converter with
memristance load by numerical simulations and PSIM
circuit analysis.

)e rest of the paper is organized as follows. In Section 2,
the circuit topology and fundamental operating principle of
the current-mode-controlled dc/dc buck converter are in-
troduced, respectively. Section 3 presents the system
equations and their dimensionless forms based on the

schematic of the buck converter with memristance load. We
discuss the equilibrium points of these dimensionless circuit
systems and their stability in Section 4. Section 5 is devoted
to the forming mechanism of the chaotic and subharmonic
dynamics through numerical simulations. Furthermore, the
PSIM circuit topology is designed and the results are in
perfect agreement with the numerical plots in Section 6.
Finally, some conclusions are drawn in Section 7.

2. Background and System Description

In this section, we present a basic knowledge on the dc/dc
buck converter with a memristive load. Before designing and
analyzing the circuit system, it is necessary to mention that,
so far, various dc/dc power converters with resistance load
have been predominantly studied, with different types of
converters such as boost, buck-boost, and buck converters.
)e single-stage buck converter presents some specific de-
sign details on the dynamics which is highly interesting to
investigate in behavior when the load is memristive, as
presented in Figure 1.

3. dc/dc Single-Stage Buck Converter

A single dc/dc buck power converter under investigation is
presented in Figure 1. )e inductor and capacitor stand as
energy storage elements, two semiconductors such as diode
and the switch ensures two conduction modes of the circuit,
the current-mode-controlled feedback loop consists of a
comparator U and an RS trigger, and the load which can be
regarded as a memristive load. Let us denote the reference
current as Iref and the current through inductor L by I. )e
fundamental operation of a buck converter consists of two
distinct states (i.e., ON-state and OFF-state), which can be
described as in (Table 1).

In summary, the states of the buck converter are con-
trolled by the switch S. As long as the switch S is neither on
nor off, both ON-state and OFF-state occur in a switching
period. From the circuit of Figure 1, it is not obvious to
obtain the link between the switching period Ts and the
pulse period T of the clock; their ratio depends strongly on
the dynamical behaviors of the buck converter. )is mea-
suring element remains fixed or variable when the buck
converter is periodic or quasiperiodic, respectively.

3.1. Modeling of the Memristor. Memristor is commonly
known as the fourth key circuit element, first introduced by
Chua in 1971 [38]. In exact terms, memristor has an elegant
effect to memorize the past quantity of electric charge. )e
current-voltage (i, v) is known as a fingerprint of a mem-
ristor i.e., it displays a pinched hysteresis loop whose shape
varies with frequency. )e fundamental mathematical ex-
pressions describing the memristor are defined as follows:
vM � M(σ)iM or iM � W(φ)vM where M(σ) andW(φ) de-
note the memristor controlled by charge σ and fluxφ, re-
spectively, which satisfies the following relations:
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where h(iM, σ, z) and k(vM,φ, z) denote the internal state
functions of a memristor.

Using Kirchhoff laws and some techniques for circuits
analysis, we derive the following equations from Figure 2;

iM �
1

RM

−
R3

R4RM

  +
1

RM

φ vM,

dφ
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�
vM

R2C
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Letting vM � vc, (1/R2C) � αm, (1/R1C) � αn, p �

(R3/R4RM) − (1/RM), r � (1/RM), equation (2) becomes

iM � (rφ − p)vM,

dφ
dt

� α mvM − nφ( ,

⎧⎪⎪⎪⎨
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(3)

where iM is the current passing through the memristive
emulator (emulator refers to the electronic circuit that
imitates the behavior of a complex phenomenon) load where
the simplified electrosymbol is represented in Figure 2. )e
circuit parameters of the memristive load emulator are
recorded in Table 2. Taking the input voltage of the terminal
of the memristor load emulator as vM � 4 sin(5000πt)V and
f chosen as 200Hz. )e loci in the vM − iM phase plane and
the memductance curves are plotted in Figures 3(a)–3(d).
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Figure 1: A novel circuit system having a dc/dc buck converter and a memristance load.

Table 1: Operation principle of the buck converter.

Switch Initial value of iL Current variation Buck state

ON iL(0) � Imin iL increasing and reaches Iref ON-state
OFF iL(TS/2) � Iref iL pass through the diode D and the capacitor C OFF-state
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Figure 2: Memristive load emulator circuit. Electrosymbol of a memristor.
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From these figures, we observe the zero-crossing property of
the memristor which stipulates that the output iM is always
equal to the input vin at zero. )is important feature shows
the existence of memristive fingerprint. We recall that, in the
past few years, various memristor emulators implemented
by already-existing electronic components have been re-
ported in the literature [4, 39]. Most of the hardware to-
pologies mainly include multiplier-based memristor
equivalent circuits [40] and op-amps. Many researchers used
different memristive loads to capture some special dy-
namical behaviors in memristive systems [41] and the ref-
erences therein. Compared with other memristor emulators
reported previously, the memristor emulator shown in
Figure 2 presents an important feature. )e hysteresis curve
is located in the quadrants (1 and 3); instead, in references
[35, 38], the same curve is located in the quadrants (2 and 4)
which corresponds respectively to the active and passive
zone of the operation of the memristor. As an active device
(as in our case), it provides energy to the system and also
allows for chaotic oscillations. However, as a passive device,
it consumes energy in the system and obtaining oscillations
can only be possible when exploiting a nonlinearity of the
system, not of the memristor.

Remark 1. We note that the hysteresis loop falls into the
second and the fourth quadrants. )e memristor is a passive
component and then efficiently stores information because
the value of its electrical resistance changes permanently
when a current is applied. A memristor can also have a high
resistance value and a low resistance value. For instance, for
a very high resistance value, it is observed that the resulting
characteristic is located in the first and fourth quadrants, and
for a low resistance value, it can be observed in the second
and the third quadrants [42].

Remark 2. In real applications, there is no resistive load in
nature because the linear component does not exist in real
life. Since the load can reveal a plethora of complex be-
haviors, it seems interesting to investigate the case that the
load is characterized by the hysteresis phenomenon such as
memristor. We recall that the intrinsic nature of the
memristor modifies the current-voltage characteristic of the
converter and has a considerable impact on the dynamics of
the buck converter.

3.2. System Description. We recall that the analysis of the
dynamics is strongly determined by the state of the switch.
We then propose to obtain the mathematical model from
Figure 1 based on the electrical circuit analysis.

Case 1. Switch D is ON
When the switch S is ON, there are two independent

loops denoted by red dashed lines in Figure 4. According to
Kirchhoff’s law, we have

L
diL
dt

� E − vc,

C
dvc

dt
� iL − (rφ − p)vc,

(4)

where vc denotes the voltage across the flux contused mem-
ristor. If we consider the expression (dφ/dt) � α(mvc − nφ) as
the memristor’s internal state of function, we derive the fol-
lowing equations:

L
diL

dt
� E − vc,

C
dvc

dt
� iL − (rφ − p)vc,

dφ
dt

� α mvc − nφ( .

(5)

Equation (4) is the state of equation when the circuit of
Figure 2 is in the ON-state.)is state will be sustained until i

reaches iref .

Case 1. Switch S is OFF
When the switch S is OFF, the diode D conducts. Also,

another two independent loops denoted by red dashed line
are shown in Figure 4. Combining these two loop equations,
we obtain

L
diL

dt
� − vc,

C
dvc

dt
� iL − (rφ − p)vc,

dφ
dt

� α mvc − nφ( .

(6)

)ese two system equations can be summarized into the
following system of equations as follows:

diL

dt
� − a1 E(1 − u) − vc( ,

dvc

dt
� a2 iL − (rφ − p)vc( ,

dφ
dt

� α mvc − nφ( ,

(7)

where u �
1, for turn − off
0, for turn − on .

Table 2: Parameter values.

Circuit component Values
CLOCK frequency f 5000Hz
Inductance L 0.6mH
Capacitance C 200 μF
DC source V-I 12V
Resistance R3 30 kΩ
Resistance R 10Ω
Reference current Iref 0.6A
Resistance R1 5 kΩ
Resistance R2 10 kΩ
Resistance RM 1Ω
Resistance R4 10 kΩ
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Figure 3: Numerical and analog simulation of the pinched hysteresis loops and memductance curves of the memristive load. (a, c) PSIM
circuit simulations; (b, d) Fortran numerical simulations; (a, b) pinched hysteresis loops in the (vM − iM) plane; (c, d) memductance curves
versus time.
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Figure 5: Electrical circuit of a switch OFF buck chopper.

Table 3: Nature of the roots of the characteristic equation computed for various values of E.

Values of the bifurcation
parameter (E)

Eigenvalues at (λ1, λ2, λ3) nontrivial fixed
O0(((mr/n)E − p)E, E, (m/n)E)

Eigenvalues at (λ1, λ2, λ3) the origin
O1(0, 0, 0)

E � 0 − 2.000 × 104; 0.9082 × 104; 0.0918 × 104 (unstable) − 2.000 × 104 ; 0.9082 × 104,
0.0918 × 104; (unstable)

E � 5 (− 1.0968 ± 1.3254i) × 104; − 1.0563 × 104 (stable) − 2.000 × 104, 0.9082 × 104; 0.0918 × 104
(unstable)

E � 8 (− 1.4861 ± 1.9474i) × 104, − 0.0278 × 104; (stable) − 2.000 × 104; 0.9082 × 104; 0.0918 × 104
(unstable)

E � 12 (− 1.9917 ± 2.4597i) × 104, − 0.0166 × 104; (stable) − 2.000 × 104; 0.9082∗ 104; 0.0918 × 104
(unstable)

Iref

i
L
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n

Figure 6: Operation waveforms iL operating in CCM.
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Figure 7: Stability analysis for u � 0 (a) and u � 1 (b), stability curves (a, b) plotted with the set of parameters as follows:
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)ere are two states for the continuous mode which are
linked. Figure 5 presents the dynamical change of the
current iL in continuous current mode (CCM).

4. Equilibrium Points and their Stability

Generally, there are equilibrium points in most of the
physical systems and it is necessary to investigate the
equilibrium points since they affect the system dynamics to a
great extent. For equations (5) and (6), we can calculate their
equilibrium points by solving the following equation:

diL

dt

dvc

dt

dφ
dt

  � 0 0 0( . (8)

By solving (8), the general equilibrium point is given
by

Ou

mr

n
E(1 − u) − p E(1 − u), E(1 − u),

m

n
E(1 − u) .

(9)

)e Jacobian matrices are
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Figure 8: Bifurcation diagram versus E and Ts: (a) E ∈ [10; 16]; (b) Ts ∈ [0; 7 × 104] and the corresponding graph of maximum Lyapunov
exponent. A positive value of Lyapunov exponent indicates chaos while regular oscillations are related to negative values of Lyapunov
exponent.
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with a1 �
1
C

et a2 �
1
L

.

(10)

)e eigenvalues are obtained at equilibrium point by
solving the expression

det JO − λI3(  � 0. (11)

)e characteristic equation is given by

λ3 + αn + a2r
m

n
E(1 − u) − a2p λ2

+ a1a2 + 2αma2rE(1 − u) − αna2p( λ

+ αna1a2 � 0.

(12)

Obviously, equation (12) represents the characteristic
equation that can be used to analyze the stability of the
system around its equilibrium points. However, the non-
trivial fixed points can be found by exploiting numerical
methods, in particular, by using the Newton Raphson
method. As already pointed out, it can be found that there
exists two equilibrium points on the (x, y, z) plane, that is,
for u � 0, the equilibrium point is, O0(((mr/n)E − p)E,

E, (m/n)E), and O1(0, 0, 0) for u � 1. Table 3 shows the roots
of the characteristic equation computed for various values of
E. It clearly appears from Table 3 that the system is unstable
for some values of E and the graphical representations are

provided in Figure 6. As the system presents instability, it is
necessary to study the dynamic behavior of the system. Note
that for a smooth chaotic circuit system with a memristor,
the local activity, i.e., the negative resistance region of a
memristor is essential for generating chaos, while for a
switched chaotic system with a memristor, it might be
unnecessary for generating chaos. Figure 7 shows the
eigenvalue locus in the complex plan (Re(λ), Im(λ)) with the
following parameter values: n � 2; m � 1; p � 2;

r � 1; α � 10000; L � 0.6mH. )e intersection of the curve
with imaginary axis shows the presence of the Hopf bi-
furcation in the system.

5. Numerical Investigations

5.1. Bifurcation and Lyapunov Exponent Analysis based on
Computer Simulations. )e bifurcation and Lyapunov ex-
ponent diagrams are powerful graphical nonlinear analysis
tools to locate promising parameter windows that provide a
detailed knowledge of the system behavior. )ere exist
several numerical techniques to differentiate these motions,
and the bifurcation diagram is one of the most important
ones. A bifurcation diagram can be used to exhibit the
qualitative changes in features under the variation of one or
more parameters on which the system depends. Generally,
there exist one or more bifurcation parameters in a chaotic
system. To this end, equations (4) and (5) were integrated
systematically over grids of equally spaced parameters using
a standard Runge–Kutta fourth-order algorithm with a fixed
time step h � 10− 6. In order to provide a better performance,
Fortran software is exploited to perform this high-resolution
computation which is quite demanding.)e following initial
conditions are considered for the simulations x � 1, y � 0,

z � 0, t � 0. We recall that for a chaotic system, for special
parameters, the buck converter may have distinct motions

Figure 11: Screenshot of PSIM simulation model of the buck converter with memristive load.
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such as periodic motion, quasiperiodic motion, sub-
harmonic, chaos, and hyper-chaos. Figure 8 presents in two
complementary ways (described below) bifurcation dia-
grams and Lyapunov exponent characterizing the far-

reaching regular organization induced by the set of stable
and unstable oscillations of the circuit. )ese panels’ bi-
furcation and their corresponding Lyapunov exponent are
plotted for the values of parameters set as follows:
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Figure 12: Analog simulation PSIM: the time-domain waveforms and phase portraits of dc/dc single-stage current-mode-controlled buck
converter. (a) inductor current with chaotic orbit for E � 12V; (b) capacitor voltages with chaotic orbit; (c) phase portrait with period-1
orbit for E � 9V; (d) phase portrait with period-2 orbit for E � 9.67V; (e) phase portrait with chaotic orbit corresponding to (a) versus (b).
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TS � 200 μs; m � 1; n � 2; r � 1; p � 2; iref � 0.6mA; L

� 0.6mH; C � 200 μF,

E � 12V; m � 1; n � 2; r � 1; p � 2; iref � 0.6mA; L

� 0.6mH; C � 200 μF.

(13)

Figures 8(a) and 8(b) show the bifurcation diagrams of
the current-mode-controlled buck converter by taking input
voltage E and the Ts parameter as bifurcation parameters,
respectively. From these, we clearly observe that the first
period-doubling bifurcations occur at E� 10V and
Ts � 5.8 × 10− 4, respectively. As the parameter E increases,
forward bifurcation routes with period-doubling and border
collision to chaos suddenly appear in the buck converter and
globally characterize the routes toward chaos. When pa-
rameter Ts increases, reversed bifurcation routes with pe-
riod-doubling and chaos appear in the buck converter
topology under investigation.

With the aim to have a perfect and complete knowledge
of the total dynamics of the system, the standard Lyapunov
stability diagrams are plotted to give the zones of chaotic and
periodic oscillations according to two parameters of the
system. Figures 9(a) and 9(b) represent the bifurcation di-
agrams with the corresponding Lyapunov exponents when
the voltage E and period Ts are monitored. One can see that
the negative exponents correspond to the periodicity zones
of the diagram of bifurcation and the positive exponents
correspond to chaos. Figure 9(a) shows a two parameters
sweep, obtained by plotting the aforementioned fine pa-
rameter grid, the nonzero Lyapunov exponent which stands
as a familiar indicator allowing one to discriminate un-
ambiguous chaos (positive exponents) from periodic os-
cillations (negative exponents). Indeed, the values below
zero are the negative values (indicated on the legend by the
color blue) of Lyapunov exponent and those above are
positive values (on the legend indicated by the color green,
red, and yellow) of Lyapunov exponent. A very distinct and
complementary representation of the same parameter of
bifurcation [E, TS] is presented in Figure 9(b), in the form of
a bifurcation diagram namely, a diagram obtained by
plotting local maxima according to the control parameters.
)is diagram was drawn using 18 colors; the first 17 colors
represent the zones of periodicity (represented by rainbow
color) and the last color (black) represents chaos.

)e results previously obtained can be proven by the
time-domain waveforms and the phase portraits which are
particularly important for observing nonlinear phenomena.
)e current-mode-controlled buck converter can be ob-
tained using Runge–Kutta algorithm via constructing
piecewise smooth switching models obtained from Fortran
simulation (the time-domain waveforms and the phase
portraits of the inductor current versus output voltage).
Taking the variation of input voltage E into consideration,
the time-domain inductor current and output voltage
waveforms are obtained for E� 12V. Figures 10(a) and 10(b)
present the time evolution of the states (iL and Vc) and the
phase portraits are shown in Figures 10(c)–10(f ) which

correspond to period-1 orbit, period-2 orbit, period-4 orbit,
and chaotic orbit, respectively.

6. PSIM Simulation Results

6.1. Schematic Circuit. In this section, the dc/dc converter
circuit with a memristance load in PSIM is built to dem-
onstrate the presence of complex phenomena in the system
under investigation. Based on Figure 1, the schematic circuit
is shown in Figure 11. )e schematic circuit consists of the
buck circuit (on the left) of the memristor emulator (on the
right) and the controlled current source. )e experimental
values considered are recorded in Table 2.)e current sensor
ISEN7, which can transform the current signal into a voltage
signal, is used to collect the current i through the inductor L.
)e collected voltage signal as the input of comparator U can
be used to compare the reference current Iref . Note that the
input signal of the comparator U is in fact a voltage signal;
therefore, V2 � 0.6V can be regarded as Iref ≡ 0.6A.

6.2. Validation by Circuit Simulations. PSIM (Power Sim-
ulation) software is a useful simulation tool, which can be
used to simulate the time sequences and phase portraits of
the memristive buck converter. With PSIM Version 9.0
software, the circuit simulation model is built with a relevant
frequency and duty cycle of the square-wave voltage source
to have these different behaviors. We note that their default
values are 5000Hz and 0.5, respectively. However, we plot
the current iM at the terminal of the inductor and the voltage
vm at the terminal of the memristor. )e results are reported
in Figure 12. Note that the time series, periodic, and chaotic
portraits are captured by the virtual oscilloscope in PSIM.
With reference to the pictures in Figure 12, it can be seen
that the buck converter under consideration experiences the
same bifurcation scenarios as predicted in the previous
section.

7. Conclusion

)e nonlinear behavior of current-mode-controlled buck
converter memristive load is investigated in this paper. )e
study of stability allowed us to observe that the system has
rich dynamic behavior when some system parameters
change. Different tools such as bifurcation diagrams,
Lyapunov exponent, phase portraits, and two parameters
Lyapunov diagram are considered to provide a systematic
total dynamics of the dc/dc buck converter. Peak current-
mode controlled single-stage buck converter system with a
memristance load goes to chaos via period-doubling and
border collision routes. Moreover, it was found that the
analog results in PSIM are similar to the numerical results
in Fortran. Especially, peak current controlled buck con-
verter exhibits inverse nonlinear behaviors compared with
a current-mode-controlled buck converter. More inter-
estingly, one of the key contributions is the finding of
various regions in the parameters’ space in which the buck
converter experiences the unusual phenomenon of com-
peting attractors which is not yet reported in the literature.
It should be noted that we only focused on the investigation
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of dynamical behaviors with respect to the frequency and
the voltage, and it will be necessary to further study the dc/
dc converters with a memristance load by considering the
system parameters and topological structures in future
research studies. It is worth noting here that we have
worked with a continuous memristor model on a discrete
converter topology, and some recent works present in
detail analyzes the discrete memristor model [42, 43]. )is
issue should be considered in our future directions with the
same converter topology with the aim to point out some
technical specifications.

Data Availability

)e research data used to support the findings of this study is
described and included in the article. Furthermore, some of
the data used in the study are also supported by providing
references as described in the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e research proposed here was supported by Sundar-
apandian Vaidyanathan, who is an academic editor of this
journal.

References

[1] M. A. Sakka, J. Van Mierlo, and H. Gualous, Electric Vehicles
Modelling and Simulations, InTech, Rijeka, Croatia, 2011.

[2] N. Dan, L. Dan, P. Viorel, and I. Corina, “Bifurcation and
Chaotic Aspects in Peak Current Controlled Buck-Boost
Converters,” WSEAS Transactions on Circuits and Systems,
vol. 7, 2008.

[3] G. H. Zhou, B. C. Bao, J. P. Xu, and Y. Y. Jin, “Dynamical
Analysis and Experimental Verification of valley Current
Controlled Buck Converter,” Chinese Physics B, vol. 19, 2010.

[4] D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert, “Stability
Analysis of the Continuous-Conduction-Mode Buck Con-
verter Via Filippov’s Method,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 55, no. 4, pp. 1084–1096,
2008.

[5] L. Q. Zheng and Y. Peng, “Chaos control of voltage mode
controlled buck-boost converter,” Acta Physica Sinica, vol. 65,
no. 22, 2016.

[6] M. di Bernardo, F. Garefalo, L. Glielmo, and F. Vasca,
“Switchings, bifurcations, and chaos in DC/DC converters,”
IEEE Transactions on Circuits and Systems I: Fundamental
;eory and Applications, vol. 45, no. 2, pp. 133–141, 1998.

[7] H. Li, Z. Li, B. Zhang, Q. Zheng, andW. Halang, “)e stability
of a chaotic PWM boost converter,” International Journal of
Circuit ;eory and Applications, vol. 39, no. 5, pp. 451–460,
2011.

[8] J. D. Morcillo, D. Burbano, and F. Angulo, “Adaptive Ramp
Technique for Controlling Chaos and Subharmonic Oscilla-
tions in DC-DC Power Converters,” IEEE Transactions on
Power Electronics, vol. 31, no. 7, pp. 5330–5343, 2016.

[9] H. Zhang, W. Li, H. Ding, P. Luo, X. Wan, and W. Hu,
“Nonlinear Modal Analysis of Transient Behavior in Cascade

DC-DC Boost Converters,” International Journal of Bifur-
cation and Chaos, vol. 27, no. 9, p. 1750140, 2017.

[10] L. Corradini, E. Orietti, P. Mattavelli, and S. Saggini, “Digital
Hysteretic Voltage-Mode Control for DC-DC Converters
Based on Asynchronous Sampling,” IEEE Transactions on
Power Electronics, vol. 24, no. 1, pp. 201–211, 2009.

[11] R. Gavagsaz-Ghoachani, M. Phattanasak, M. Zandi et al.,
“Estimation of the bifurcation point of a modulated-hysteresis
current-controlled DC-DC boost converter: stability analysis
and experimental verification,” IET Power Electronics, vol. 8,
no. 11, pp. 2195–2203, 2015.

[12] N. Zamani, M. Ataei, and M. Niroomand, “Analysis and
control of chaotic behavior in boost converter by ramp
compensation based on Lyapunov exponents assignment:
theoretical and experimental investigation,” Chaos, Solitons &
Fractals, vol. 81, pp. 20–29, 2015.

[13] W. Hu, B. Zhang, R. Yang, and D. Qiu, “Dynamic behaviours
of constant on-time one-cycle controlled boost converter,”
IET Power Electronics, vol. 11, no. 1, pp. 160–167, 2018.

[14] P. Karamanakos, T. Geyer, and S. Manias, “Direct Voltage
Control of DC-DC Boost Converters Using Enumeration-
BasedModel Predictive Control,” IEEE Transactions on Power
Electronics, vol. 29, no. 2, pp. 968–978, 2014.

[15] B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan,
and P. L. So, “Model Predictive Voltage Control for Single-
Inductor Multiple-Output DC-DC Converter With Reduced
Cross Regulation,” IEEE Transactions on Industrial Elec-
tronics, vol. 63, no. 7, pp. 4187–4197, 2016.

[16] Q. Wei, B. Wu, D. Xu, and N. R. Zargari, “Model Predictive
Control of Capacitor Voltage Balancing for Cascaded Mod-
ular DC-DC Converters,” IEEE Transactions on Power Elec-
tronics, vol. 32, no. 1, pp. 752–761, 2017.

[17] N. Katayama, S. Tosaka, T. Yamanaka, M. Hayase, K. Dowaki,
and S. Kogoshi, “New topology for DC-DC converters used in
fuel cell-electric double layer capacitor hybrid power source
systems for mobile devices,” IEEE Transactions on Industry
Applications, vol. 52, no. 1, pp. 313–321, 2016.

[18] B. C. Bao, G. H. Zhou, J. P. Xu, and Z. Liu, “Unified clas-
sification of operation-state regions for switching converters
with ramp compensation,” IEEE Transactions on Power
Electronics, vol. 26, no. 7, pp. 1968–1975, 2011.

[19] M. Zhioua, A. El Aroudi, S. Belghith et al., “Modeling, dy-
namics, bifurcation behavior and stability analysis of a DC-
DC boost converter in photovoltaic systems,” International
Journal of Bifurcation and Chaos, vol. 26, no. 10, p. 1650166,
2016.

[20] S. Banerjee and K. C. Chakrabarty, “Nonlinear modeling and
bifurcations in the boost converter,” IEEE Transactions on
Power Electronics, vol. 13, no. 2, pp. 252–260, 1998.

[21] E. El Aroudi, L. Benadero, E. Toribio, and S. Machiche,
“Quasiperiodicity and chaos in the DC-DC buck-boost
converter,” International Journal of Bifurcation and Chaos,
vol. 10, no. 02, pp. 359–371, 2000.

[22] J. P. Wang, B. C. Bao, J. P. Xu, G. H. Zhou, and W. Hu,
“Dynamical effects of equivalent series resistance of output
capacitor in constant on-time controlled buck converter,”
IEEE Transactions on Industrial Electronics, vol. 60, no. 5,
pp. 1759–1768, 2013.

[23] Y. Wang, R. Yang, B. Zhang, and W. Hu, “Smale Horseshoes
and Symbolic Dynamics in the Buck-Boost DC-DC Con-
verter,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 1, pp. 800–809, 2018.

[24] G. H. Zhou, B. C. Bao, and J. P. Xu, “Complex dynamics and
fast-slow scale instability in current-mode controlled buck

12 Discrete Dynamics in Nature and Society



converter with constant current load,” International Journal
of Bifurcation and Chaos, vol. 23, no. 04, p. 1350062, 2013.

[25] C. C. Fang, “Saddle-node bifurcation in the buck converter
with constant current load,” Nonlinear Dynamics, vol. 69,
no. 4, pp. 1739–1750, 2012.

[26] Y. F. Zhou, D. D. Jiang, J. C. Huang, and J. N. Chen, “Im-
pedance characteristic of load in dc-dc converters and its
effect on stability,” Proc CSEE, vol. 30, pp. 15–21, 2010.

[27] A. El Aroudi, L. Benadero, E. Toribio, and G. Olivar, “Hopf
bifurcation and chaos from torus breakdown in a PWM
voltage-controlled DC-DC boost converter,” IEEE Transac-
tions on Circuits and Systems I: Fundamental ;eory and
Applications, vol. 46, no. 11, pp. 1374–1382, 1999.

[28] Y. Wang, R. Yang, B. Zhang, and W. Hu, “Smale Horseshoes
and Symbolic Dynamics in the Buck-Boost DC-DC Con-
verter,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 1, pp. 800–809, 2018.

[29] Z. T. Zhusubaliyev and E. Mosekilde, “Multistability and
hidden attractors in a multilevel DC/DC converter,” Math-
ematics and Computers in Simulation, vol. 109, pp. 32–45,
2015.

[30] D. W. Spier, G. G. Oggier, and S. A. O. da Silva, “Dynamic
modeling and analysis of the bidirectional DC-DC boost-buck
converter for renewable energy applications,” Sustainable
Energy Technologies and Assessments, vol. 34, pp. 133–145,
2019.
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