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Federated learning (FL) has emerged for solving the problem of data fragmentation and isolation in machine learning based on
privacy protection. Each client node uploads the trained model parameter information to the central server based on the local
training data, and the central server aggregates the parameter information to achieve the purpose of common training. In the real
environment, the distribution of data among nodes is often inconsistent. By analyzing the influence of independent identically
distributed data (non-IID) on the accuracy of FL, it is shown that the accuracy of the model obtained by the traditional FL method
is low. Therefore, we proposed the diversified sampling strategies to simulate the non-IID data situation and came up with the
OPTICS (ordering points to identify the clustering structure)-based clustering optimization federated learning method (OCFL),
which solves the problem that the learning accuracy is reduced when the data of different nodes are non-IID in FL. Experiments

indicate that OCFL greatly improves the model accuracy and training speed compared with the traditional FL algorithm.

1. Introduction

With the huge improvement of algorithms and computing
power in machine learning in recent years, as well as the rise
of big data research, it is widely believed that artificial in-
telligence has ushered in the third research peak.

However, training a successful model requires a huge
amount of data. With the further development of big data, it
is a worldwide trend to attach importance to data privacy
and security [1]. Countries are strengthening the protection
of citizens’ privacy security, which brings great challenges to
the field of artificial intelligence. How to design a machine
learning framework that allows Al systems to access the data
they need without compromising data privacy, security, and
regulation? One possible solution is FL [2].

FL is a collaborative training machine learning model
that does not require all data to be gathered into a central
server [3]; each client with data trains their own model and
then synthesizes each node model to get a global model [4].
In this process, the exchange of model information between
clients will be carefully designed, so that no organization can
guess the private data content of another organization; this is
the core idea of FL [5]. The objective of FL is to build a global

model based on distributed data sets. During FL model
training, model-related information can be exchanged be-
tween parties (or in encrypted form) without exposing any
protected private parts of the data on each site. A trained FL
model can be placed with participants or shared among
multiple parties [6].

However, the traditional FL algorithm is not ideal when
applied to non-IID data. Experiments show that when the
data distribution of each node is highly skewed, the precision
of the trained model will be greatly reduced [7]. However,
the data of each node can be affected by other nodes or the
local environment in the actual generation process, and the
data of each node are often non-IID [8], which poses a
difficult problem for the application of FL, that is, how to
reduce the impact of non-IID data on the accuracy of FL.

In order to solve the abovementioned problems, this
paper first uses a diversified sampling strategy to simulate
data with different distributions and explores the influence
of the data distribution skew degree on the accuracy of FL.
The experimental results show that the training accuracy of
FL model decreases with the increase of data distribution
skew. In order to solve the problem of low training accuracy
when the data are extremely unbalanced in FL, the local
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trained model parameter information of each client node is
clustered by the OPTICS algorithm and divided into dif-
ferent clusters, so that the node distribution in the cluster has
a higher similarity, then carry out training in each cluster
such that each cluster gets its own global model.

In this paper, multiple nodes and parameter servers are
simulated locally, and the experiment proves that it can
effectively reduce the influence of the data non-IID on the
model accuracy, so as to produce a more accurate model. To
sum up, the main contributions of this paper are as follows.

(1) Prove that the deeper the distribution skew of each
node data, the lower the precision of the global
model trained in FL by experiments with real data
sets;

(2) Propose a clustering method that does not need to
obtain the original data of the client, the parameter
server clusters the model parameters uploaded by the
client through the OCFL method. OCFL has the
advantages of strong applicability, insensitive pa-
rameters, and high accuracy.

(3) Simulate the non-IID distribution on multiple data
sets using a diverse sampling strategy and test the
effectiveness of the OCFL against the FedAvg al-
gorithm. Experiments demonstrate that the model
obtained by OCFL has higher accuracy and faster
convergence.

The remainder of this paper is organized as follows. In
Section 2, we provide a background on FL and an overview
of related works. We then present our proposed framework,
OCEFL, in Section 3. Finally, in Section 4, we first show the
influence of heterogeneous data distribution on the accuracy
and convergence speed of the model, and then, we provide a
thorough empirical evaluation of OCFL on a suite of real-
world standard data sets. Our empirical results demonstrate
the practical improvements of OCFL over FedAvg in het-
erogeneous data distribution.

2. Related Work

In order to solve the contradiction between the increasingly
tighter privacy protection requirements and machine
learning requirements for a large amount of training data,
McMahan proposed a deep network joint learning method
based on iterative model averaging and came up with the
Federated Averaging (FedAvg) algorithm [9], the training of
this approach takes place through a loose federation of
clients coordinated by a central server; a major advantage is
the separation of model training from the need for direct
access to raw training data, which is significant in scenarios
where data privacy is strictly required or where it is difficult
to share data centrally.

With the rise of the FL study, a lot of problems emerge.
Peter Kairouz et al. [10] discusses recent advances and
presents an extensive collection of open problems and
challenges on FL: (1) non-IID data in FL; (2) preserving the
privacy of user data; (3) communication and compression;
(4) robustness to attacks and failures; (5) ensuring fairness
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and addressing sources of bias. To improve the efficiency and
effectiveness of FL, a basic challenge is the non-IID.

Non-IID exists widely in reality, for example, (1) het-
erogeneous client distribution, data on each client are
generated locally, so the sample generation mechanism may
differ from client to client (like different countries or re-
gions); (2) characteristic distribution tilt (Covariate Shift),
for example, in handwriting recognition, even if it is the
same word, different people write it differently; (3) label
distribution skew (Prior probability drift), such as the use of
the Chinese people in China, mainly in foreign people use
less; (4) quantity inclined or unbalanced, etc. In real life, all
kinds of situation may lead to the occurrence of non-IID
data. Traditional machine learning is based on the as-
sumption of IID data, but FL is different from the centralized
machine learning, in the case where the data are not cen-
tralized; the data for each node are non-1ID [11].

In order to solve the problem of data non-IID in FL,
Zhao et al. [12], improved the FedAvg algorithm, found that
the FedAvg algorithm will have a high precision loss when
the data are non-IID. This reduction in precision can be
explained by weight divergence, which can be quantified by
the distance of the Eearth mover (EMD) between the dis-
tribution of classes on each device and the population
distribution, and proposed a strategy to improve training on
non-IID data by creating a small subset of data that is
globally shared between all edge devices. Although this
method can reduce the impact of data skew, it is equivalent
to artificially adding errors. Moreover, this method of data
sharing essentially violates the principle of data privacy
protection of federal learning and has great difficulties in
implementation.

Jiang et al. [13] thought the training model can be
personalized to reduce heterogeneity and get a higher quality
personalized model for each model. Personalized FL can be
divided into two steps: (1) build a global model in a col-
laborative manner and (2) personalize the global model for
each client using the client’s private data.

Muhammad et al. combined the FL and recommenda-
tion system and proposed the FedFast algorithm [14].
FedFast focuses on two key steps: client selection and model
aggregation. In client selection, this article first uses the
K-means method to cluster the similarity of recommen-
dation systems of different nodes and divides all nodes into
different classes. Then, a certain number of nodes are
randomly selected from different clusters to participate in
the training. Meanwhile, we used the updated gradient in-
formation of nodes that participated in training in each
round to update the information of nodes of the same cluster
class that did not participate in training, so as to achieve
faster convergence. The main purpose of the FedFast al-
gorithm is to improve the efficiency of training, its clustering
method is to cluster the information from the recommen-
dation system, and it is not universal to the FL method,
which is not combined with the recommendation system;
moreover, K-means clustering cannot exclude interference
of outliers and can be attacked by malicious nodes [15]. This
method requires the number of clusters to be specified in
advance. In reality, the central server does not know the data
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distribution of the clients, so it is impossible to specify in
advance how many clusters to cluster the clients.

Ghosh et al. [16] proposed the Iterative Federated Clus-
tering Algorithm (IFCA) to divide each client into different
clusters based on the local empirical loss function. The basic
idea of IFCA is a strategy that alternates between estimating
the cluster identities and minimizing the loss functions and
thus can be seen as an alternate minimization algorithm in a
distributed setting. In this paper, they prove the convergence
of the algorithm for strong-convex objective function under
appropriate parameter conditions and prove that exponential
convergence speed can be achieved, and in a certain region, it
can obtain nearly optimal statistical error rate.

Sattler et al. [17] proposed a dynamic partition algorithm
based on node gradient. This paper proposes that traditional
FL follows a core assumption: we can satisfy all clients with a
single model. However, in fact, this is not accurate. First, the
model may not be accurate enough to meet the requirements
of all clients, and second, the data distribution of each client
may not be the same. Therefore, in this paper, a new hy-
pothesis is proposed: there exists a reasonable partition such
that the nodes in each partition satisfy the traditional FL core
assumption. This paper uses cosine similarity of each par-
ticipant to divide. For a classification problem, first count the
cosine similarity matrix for all the nodes, and then sort the
similarity matrix by index from smallest to largest, take the
smallest nodes in different groups, and merge them until
finally only the group of the specified classification is left.
This method also needs to specify the number of clusters in
advance and cannot exclude outlier interference.

3. OCFL Architecture

In order to solve the problems mentioned above, this paper
first simulates data with different distributions on multiple
data sets based on different sampling strategies; experiments
show that the skew degree of data distribution affects the
accuracy of the model. In the case of extremely uneven
distribution of data, we proposed the Clustered Federated
Learning based on the OPTICS clustering method; by means
of clustering, the clients in the cluster have a high similarity
degree to reduce the influence of data non-IID on the model
accuracy. The meanings of all symbols are shown in Table 1.

OPTICS is a density-based clustering algorithm. It de-
fines the cluster as the maximum set of points connected by
density and divides the region with sufficient density into
clusters [18]. OPTICS can find clusters of arbitrary shapes in
noisy spatial data compared to K-means and BIRCH, which
are only suitable for clustering with convex sample sets,
while OPTICS is insensitive to input parameters compared
to the DBSCAN method, which improves clustering sta-
bility. To sum up, OPTICS clustering has several advantages
over other clustering methods: (1) OPTICS does not require
prior knowledge of the number of cluster classes to form; (2)
OPTICS can find cluster classes of any shape; (3) OPTICS
can detect noise points and strip out the effects of certain
malicious attack nodes; and (4) OPTICS is not sensitive to
input parameters. Compared to the clustering method
mentioned above, the method proposed in this paper does

not need to specify the number of clusters in advance and
can eliminate outlier interference, so it has a wider appli-
cation in practice.

In the traditional FL algorithm, a very important link is
to extract a certain number of nodes from all nodes
according to the turn to participate in training to improve
the global model. The FedAvg algorithm adopts the method
of random extraction, which randomly extracts a specified
number of nodes from all nodes. This method is very ef-
fective in the face of IID data. In the face of non-IID data, the
efficiency and accuracy of training will be greatly affected
(see the experimental section for detailed data), and the
more serious the data distribution skew, the lower the
training accuracy, the non-IID data greatly affect the
training quality of FL.

In the FL application scenario, the data on each node are
generated independently, so the local data on each node
cannot represent the overall distribution, traditional FL
treats the data as IID, and it is not feasible to apply all node
data with a single global model. In order to reduce the
impact of the non-IID data on the model accuracy, it is a
better choice to cluster users in the early stage, and then train
a global model within each cluster.

0, is the neural network parameterization in client k, the
cosine similarity between the neural network parameteri-
zation of any two clients is given by the following:

o = a(6,0;)

_ 6,0 (1)
leil]e;|

The data similarity between different clients can be
obtained by calculating the cosine similarity under the same
random seed of the neural network. In Figure 1, the pa-
rameters of the neural network trained by similar data are
similar. Meanwhile, the parameters of the neural network
trained can be regarded as high-dimensional vectors for
clustering of high-dimensional vectors, which provides the
possibility for clustering of nodes without obtaining node
data, as long as each node uploads the model parameter
information of local training.

To find the right clustering for all the client nodes, all the
node clients do a full local learning and upload the learned
parameters and gradient information to the parameter
server, which uses the OPTICS clustering method to cluster
the model parameters of these nodes into different clusters
and then continue OCFL in different clusters.

To get an accurate clustering, first, all nodes receive the
initial global model from the parameter server 0, and then, run
SGD using local data Dy to get fully trained. After that, the new
model parameters are returned to the parameter server. The
neural network parameter received by the server is a high-
dimensional vector composed of the parameters of each layer
of neural network, which contains the local data distribution
information of the client. Flatten multiple layers of data to get a
1N matrix, then the OPTICS clustering is used to cluster the
parameter information of each node. OPTICS clustering re-
quires one important parameter: min_samples which defined
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TaBLE 1: Summary of symbols.
Symbol Explanation
K<N Number of clients
M Number of data generating distribution
frac The fraction of clients that perform computation on each
round
B The local minibatch size used for the client updates
B The local minibatch
E The number of local epochs
n Learning rate
0 Neural network parameterization
Dy Data on client k
wy, Model weight on clients k
c;eC One cluster in the set of all clusters found by OCFL

Cosine similarity

0 5 10 15 20 25 30
Communication rounds

—— same dataset
—— different dataset

FI1GURE 1: Cosine similarity result. The cosine similarity between
model parameters from the same data set stays more or less
constant throughout the FL process, the cosine similarity between
model parameters from different data set quickly decreases.

the density conditions required to be a core point. Taking
different values, the number of clustering results will be dif-
ferent; at the same time, the change of the xi value can also
slightly change the number of clusters, the specific values of the
two parameters are determined by the experimental results.

OCEFL is divided into two parts: one is the operation of the
parameter server and the other one is the operation of the
node client. The main task of the server is to maintain the
global model of each cluster; in each training round, the server
randomly chooses m clients, those selected clients run SGD
using local data for specified times, then sends parameter w
back to server, server will sum the parameters according to the
weight of the client, the more data on the client, the higher the
weight. The main task of the client is to update the model
parameters based on local data, receive global model pa-
rameters, and send new model parameters back.

4. Experiments

All experiments in this paper are run on a computer with the
Ubantul8 64-bit operating system based on Inter(R) Core
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(TM) 19-9900kF CPU @ 3.60ghz processor and GeForce
RTX2080TI graphics card.

4.1. Experimental Settings. To simulate the different distri-
bution of data, diversified sampling strategies are adopted to
divide the data from the data set into different nodes
according to different sampling methods. For example, when
using independent sampling without replacement, randomly
extract a certain amount of data from a data set, data in each
node are IID (Figure 2(a)); sort the data set by label and slice
it into different clients; and then data in different clients are
subjected to non-IID. The skew of the data varies depending
on the slice size; this paper simulates two non-IID cases:
non-IID (Figure 2(b)) and non-IID2 (Figure 2(c)). In the
non-IID situation, each client approximately contains two
types of data; in the non-IID2 situation, each client ap-
proximately contains only one type of data, so the second is
more skewed. Figure 2 shows the distribution of data when
taking 10 clients.

Subsequent experiments used the Mnist and Cifar-10
standard data set, simulated the situation of 100 client nodes,
data on each node account for 1% of the total data. The MLP
and CNN neural networks are used for local training, to
verify the algorithm under different neural network models.

4.2. Influence of Non-IID Data. Traditional FL performs
differently on different distributed data. In this section, we
set up a control experiment to explore the influence of the
degree of skewness of the data distribution on the accuracy
of the model.

Figure 3 shows the model accuracy obtained after 100
rounds of iterative training, it can be seen that with the
deepening of the imbalance of data distribution, the
training quality of the model also decreases. The Cifar-10
data set is a small data set used to identify universal objects,
including 10 categories of RGB color images, such as
aircrafts, cars, etc. Compared with the Mnist data set, Cifar-
10 is a 3-channel RGB color image, and Mnist is a grayscale
image. Compared with handwritten characters, Cifar-10
contains a lot of real objects, which are not only noisy, but
also have different proportions and characteristics, which
brings great difficulties to identification. Therefore, after
100 times iteration, the accuracy of the model on Cfar-10
data set is only about 40% (Figures 3(c) and 3(d)), which is
much lower than in the Mnist data set (Figures 3(a) and
3(b)).

As can be seen from Figure 3, the skew of data distri-
bution also causes the fluctuation of test accuracy; this is
because when the data are extremely uneven, each client
contains approximately one type of data. Then, the data
extracted for each round of training will be very different,
which creates an increase in volatility. In order to mitigate
the effects of this fluctuation on the experiment, in subse-
quent experiments, relatively small learning rate and high
training rounds should be selected. Specific experimental
results are shown in Table 2.
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Input: initial parameters 60 ,M

for each k € M in parallel do

9k<—SG D (9, Dk)

min_samples « 2

xi < 0.2

model « OPTICS (min_samples, xi)
€1,€, . .. € C—model fit_predict(0,, 6,, . .
return C

-0,

ArGoriTHM 1: OPTICS Clustering.

Input: initial parameters w,, set of clients ¢
Server execute:

for each cluster (cy,¢,,...) € C in parallel do
for each round t=1,2, ...do

m«— max (frac- N, 1),

S, (random set of m clients).

for each client k € S, do

wfﬂ «——Client execute (k, w,),
K

Wi Z ”k/”wfn'

k=1
return w’ to cluster jlc;j e
Client execute (k, w):
B (split P into batches of size B).
for each local epoch i from 1 to E do
for batch b €  do
we—w — nVe(w;b).
return w to server

AvLcorrTHM 2: OCFL.
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Ficure 2: Continued.
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FIGURE 2: Display of the data distribution ((K) =10, the first is IID, the second is non-IID, the third is non-1ID2).

Model accuracy

o \“‘,” N .l‘-"‘-"\fx""\.’IV""‘-’
80 | R S S A Y
~ i WA (Tt o
70 R
604 |/
1
50 { |4
i
40 z r 7'
|
30{ /i
q?
20 1 |
]
10 A . . . . .
0 20 40 60 80 100
Communication rounds (Mnist, MLP)
—— IID
--- non-I1ID
~ ~ non-I1ID2

Model accuracy

80

N
(=}
L

'S
S
.

20

A
LoNn
boono ML G

7~
A Y WY

AR
Moy N ) ey
H wy l\\ i‘“l..\-/\ ! \_f\"
] !, 1 i AT i T
i N VUV ERNALS nji
RAARL TS
THE ] 1 |l
pogbii : i
’ i ,‘v‘\.l J
\ ri“ i [ ‘
PN
:’-"‘ iy "I]I v
J{V i
i
0 20 40 60 80 100
Communication rounds (Mnist, CNN)
—— IID
--- non-IID
~ ~ non-1ID2

(®)

FiGgure 3: Continued.



Discrete Dynamics in Nature and Society

40 A
35
>~
Q
£ 30 -
j=)
Q
s
T 25
s}
=]
=
20
15
0 20 40 60 80 100
Communication rounds (Cifar-10, MLP)
—— 1ID
--- non-I1ID
non-1ID2

(c)

7
40
35 4
B 30 A
&
3 25
B
T 20 {
=
15 4
10
5 L T T T T T T
0 20 40 60 80 100
Communication rounds (Cifar-10, CNN)
—— IID
--- non-IID
non-IID2

(d)

FIGURE 3: Model test accuracy on different distribution data. ( =0.001, frac=0.1, (E) =1, (B) = 10).

TaBLE 2: Model test accuracy on different distributed data (after 100
rounds training).

IID  Non-IID Non-IID2 IID Non-IID Non-IID2

MLP CNN
Mnist 0.9152 0.8797  0.8069 0.9541 0.8312  0.7006
lcéfar’ 04103 03409 03103 03971 02070  0.1410

Different models and data sets have different sensitivities
to data distribution. In the Mnist data set, the performance
of the MLP model decreased by up to 11.833%, the per-
formance of the CNN model decreased by up to 26.570%; in
the Cifar-10 data set, the performance of the MLP model
decreased by up to 24.372%, the performance of the CNN
model decreased by up to 64.493%. It can be seen that CNN
model is sensitive to the distribution of data and is greatly
affected.

4.3. OCFL Experiments. Mnist experiments split 60,000
instances into training (48,000) and test (12,000), the data
distribution in all clients (K=100) is consistent with non-
IID2, and each client contains approximately one data label.

First, test the effectiveness of the OPTICS clustering,
using ARI (Adjusted Rand Index) to evaluate the clustering
results, the results under different local iterations epochs are
shown in Figure 4.

Using OPTICS clustering can achieve relatively high
accuracy and does not require a high number of local it-
erations. On the contrary, the effect is better when the
number of iterations is low, when local epoch is 1, one can
get the maximum value 1.0. Select local epochs =1, all clients
are clustered into 10 clusters and adjusted for intuitive
perception of the data distribution. However, if the number
of clusters is too large, the generalization of the model will be
poor. While we want as many clients as possible to fit into a

1.000 -

0.995 -+

0.990 -

0.985

0.980 -

ARI (0-1)

0.975 +

0.970 +

0.965 -+

0 2 4 6 8
local epochs

FIGURE 4: ARI results (data sets = Mnist, min_samples = 2, xi =0.1).

global model, at the same time, this clustering result is also
caused by the way of data division; therefore, we decided to
artificially reduce the number of clusters based on the
abovementioned results. The cosine similarity between
different clusters was calculated, and then similar clusters
were combined; finally, 10 clusters were combined into 3
clusters.

In order to test the performance of the algorithm pro-
posed, experiments were set to compare the accuracy of the
model trained by the FedAvg algorithm and OCFL algo-
rithm on the test set.

In Figure 5, the existence of non-IID data will cause a
great fluctuation of model training; in particular, the CNN
model is sensitive to data distribution, so we set a relatively
low learning rate. As can be seen from the experimental
results, in all clusters, the accuracy of the OCFL is higher and
the convergence rate is faster (Figures 5(a) and 5(b)). Es-
pecially when the distribution of data is extremely uneven,
the model trained by traditional FL may perform very poorly
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FIGURE 5: Mnist data set clustering experiment (rounds =500, # =0.000005, frac=0.1, (E) =1, (B) = 10. Left is the result of MLP, right is the

result of CNN).

TaBLE 3: Model test accuracy on Mnist.

FedAvg OCFL FedAvg OCFL
MLP CNN
Cluster1 0.7806 0.9421 0.6895 0.9164
Cluster2 0.5973 0.8823 0.4978 0.8081
Cluster3 0.5321 0.8742 0.3029 0.7194
0.86
0.84
0.82
—~ 0.80
€ 078 1
=
< 0.76 -
0.74
0.72 4
0.70
0 2 4 6 8

Local epochs

FIGURE 6: ARI results (Data sets = Cifar-10, min_sample =2, xi=0.2).

in a certain cluster; for example, as shown in Table 3, after
500 rounds training in CNN, clusterl can get 68.95% ac-
curacy while cluster 3 is only 30.29%. This is grossly unfair to
clients in cluster 3. At OCFL, the model accuracy of each
cluster training is greatly improved, the convergence speed is
faster, and the imbalance of the model is alleviated.
Cifar-10 experiments split 50,000 instances into
training (40,000) and test (10,000), data distribution in all

clients (K=100) conforms to non-IID2, where each client
contains approximately one data label.

In Figure 6, the lower iteration is still selected, when the
number of iterations is 1, the ARI value is 0.86, and all clients
are grouped into 10 clusters. For the same reason in Mnist
experiments, we calculated the cosine similarity between
clusters and divided 10 clusters into 3 clusters. In Figure 7,
we show the experiments in Cifar-10 data sets, the
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FiGure 7: Cifar-10 data set clustering experiment (rounds = 500, # = 0.00001, frac=0.1, (E) = 1, (B) = 10. Left is the result of MLP, right is the

result of CNN).

TaBLE 4: Model test accuracy on Cifar-10.

FedAvg OCFL FedAvg OCFL

MLP CNN
Clusterl 0.1584 0.5642 0.2368 0.5413
Cluster2 0.1903 0.5267 0.2065 0.3842
Cluster3 0.2934 0.4797 0.1264 0.4516

experimental results also demonstrate the superiority of
OCEFL. Specific experimental values are shown in Table 4.

5. Conclusions

This paper proposes the OCFL to reduce the impact of non-
IID data on the accuracy of FL. When the local data dis-
tribution of each client is extremely heterogeneous, by
clustering the model parameters of the client, the data with
different distributions can be divided into different clusters
according to the similarity without compromising the cli-
ent’s raw data. Experiments show the effectiveness of the
proposed method. OCFL improves the accuracy of each
cluster training model and the speed of model training;
moreover, it also alleviated the fairness problem caused by
non-IID to some extent.

However, there are many deficiencies in our research.
We chose to comprehensively cluster all the parameters of
the model, which creates huge computing and commu-
nication overhead; in future research, knowledge distilla-
tion can be used to simplify the model, reducing the
consumption of calculation without reducing the clustering
accuracy. At the same time, we can also use optimization
algorithms such as the evolutionary algorithm to optimize
the model parameters to improve the accuracy of the
model.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. Shultz, “When your voice betrays you,” Science, vol. 347,
no. 6221, p. 494, 2015.

[2] K. Bonawitz, H. Eichner, W. Grieskamp et al., “Toward
Federated Learning at Scale: System Design,” 2019, https://
arxiv.org/abs/1902.01046.

[3] H. B. Mcmahan, D. Ramage, K. Talwar, and Z. Li, “Learning
Differentially Private Recurrent Language Models,” 2017,
https://arxiv.org/abs/1710.06963.

[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine
learning,” ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 2, pp. 1-19, 2019.

[5] K. Bonawitz, I. Vladimir, K. Ben et al., “Practical Secure
Aggregation for Privacy-Preserving Machine Learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, Dallas, Texas, USA, October
2017.

[6] Q. Yang, “Al and data privacy protection: the way to federated
learning,” Journal of Information Security Research, vol. 5,
no. 11, 2019.

[7] F. Sattler, S. Wiedemann, K.-R. Muller, and W. Samek,
“Robust and communication-efficient federated learning from
non-i.i.d. Data,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 9, pp. 3400-3413, 2020.

[8] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: challenges, methods, and future directions,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 50-60, 2020.


https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1710.06963

10

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

H. B. Mcmahan, E. Moore, D. Ramage, H. Seth, and A. Blaise
Agiiera y, “Communication-Efficient Learning of Deep Net-
works from Decentralized Data,” 2016, https://arxiv.org/abs/
1602.05629.

E. Kairouz and H. B. Mcmahan, “Advances and open prob-
lems in federated learning,” Foundations and Trends® in
Machine Learning, vol. 14, no. 1, 2021.

X. Li, K. Huang, W. Yang, W. Shusen, and Z. Zhihua, “On the
Convergence of FedAvg on Non-IID Data,” 2019, https://
arxiv.org/abs/1907.02189.

Y. Zhao, M. Li, L. Lai, S. Naveen, C. Damon, and C. Vikas,
“Federated Learning with Non-IID Data,” 2018, https://arxiv.
org/abs/1806.00582.

Y. Jiang, J. Konen, K. Rush, and K. Sreeram, “Improving
Federated Learning Personalization via Model Agnostic Meta
Learning,” 2019, https://arxiv.org/abs/1909.12488.

K. Muhammad, W. Qingin, O. -M. Diarmuid et al., “FedFast:
Going beyond Average for Faster Training of Federated
Recommender Systems,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, Virtual Event, CA, USA, August 2020.

A. Ghosh, J. Hong, D. Yin, and R. Kannan, “Robust Federated
Learning in a Heterogeneous Environment,” 2019, https://
arxiv.org/abs/1906.06629.

A. Ghosh, J. Chung, Y. Dong, and R. Kannan, “An efficient
framework for clustered federated learning,” 2006, https://
arxiv.org/abs/2006.04088.

F. Sattler, K. R. Muller, and W. Samek, “Clustered federated
learning: model-agnostic distributed multitask optimization
under privacy constraints,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 8, pp. 3710-3722,
Aug 2021,

M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander,
“OPTICS: ordering points to identify the clustering structure,”
SIGMOD Record: Special Interest Group on Management
Data, vol. 28, pp. 49-60, 1999.

Discrete Dynamics in Nature and Society


https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1909.12488
https://arxiv.org/abs/1906.06629
https://arxiv.org/abs/1906.06629
https://arxiv.org/abs/2006.04088
https://arxiv.org/abs/2006.04088

